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Abstract. We investigate a longwave Marangoni convection in a two-
layer system which consists of a liquid layer and a poorly conductive
gas layer. The system is heated from below and confined between two
rigid walls: the upper wall is ideally conductive, the lower one is ther-
mally insulated. We aim at finding the analogue of the novel oscilla-
tory mode that was detected analytically within the one-layer approach
in [S. Shklyaev, M. Khenner, and A. A. Alabuzhev, “Oscillatory and
monotonic modes of long-wave Marangoni convection in a thin film,”
Phys. Rev. E 82, 025302 (2010)]. To properly account for the influence
of processes in gas on deformation of the interface we apply the
two-layer approach. Considering only the heat transfer in gas phase we
derive nonlinear amplitude equations that describe the coupled
evolution of the layer thickness and temperature perturbation. Linear
stability analysis of these equations yields the results similar to those
obtained for a single layer whereas nonlinear equations reveal certain
differences. The new oscillatory mode is found to be critical in a certain
range of parameters, which allows us to provide the recommendations
for a possible experiment.

1 Introduction

Marangoni convection is known to be studied so thoroughly that every discovery
made in that field deserves a great attention. Such a discovery was a new oscillatory
mode in a thin film heated from below, see [1], where the authors worked within the
one-layer approach. To investigate the influence of processes in fluids on both sides
of the interface on the new mode we employ the two-layer model and compare our
results with the one-layer results from the above-mentioned paper.
Pearson in [2] considered a single liquid layer with nondeformable free surface

and two types of solid substrates: ideally thermally conductive and poorly conduc-
tive, when temperature and heat flux are specified, respectively. In the latter case
he found a monotonic long-wave instability for the layer heated from below with
thermally insulated free surface (this corresponds to zero value of the Biot number).
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Later it was shown that for a small value of the Biot number the critical wavenumber
is proportional to Bi1/4, see, for example [3,4]. The deformational mode was discov-
ered by Scriven&Sternling who took into account free surface deflection and found
that in the absence of gravity the layer should be unstable at the infinitely small
heating from below, see [5]. Smith in [6] explained the counter-intuitive result of [5].
He demonstrated that gravity suppresses the free surface deflection, which leads to
nonzero instability threshold. Later the oscillatory mode was detected in [7] for a
heated from above layer atop an ideally thermally conductive substrate. In the mono-
graph [8] a careful numerical analysis of the convection in a liquid layer was provided
for both types of thermal boundary conditions at the substrate. However, the au-
thors concluded that the oscillatory mode exists only for heating from above. It was
shown in [1,9] that a long-wave oscillatory mode is critical for heating from below;
in [10] the new oscillatory mode existence was confirmed by numerical analysis of
finite-wavenumber perturbations. The present study is the continuation of the last
two works.
In most of the aforesaid works Marangoni convection is studied within the sim-

plest, one-layer, approach which considers the interface as free surface and convection
in the liquid layer only. Within such approach the influence of the gas phase is de-
scribed in a phenomenological way by means of the Biot number, while the Biot
number cannot be determined through the physical parameters of the system with
a free surface. Within the realistic two-layer approach, processes in fluids on both
sides of the interface are considered. Such an approach provides a better agreement
with the experimental results (see, for example, [11]) and even reveals the phenomena
which cannot be predicted by the one-layer model (“anticonvection”, several oscilla-
tory modes, see [12]). The two-layer approach is unavoidable when the deformability
of the interface is important [13,14].
In [1] the authors couple the two long-wave instabilities, Pearson’s and deforma-

tional ones, applying the one-layer model which described the Marangoni convection
in a thin film heated from below atop a poorly heat conductive substrate. The fol-
lowing assumptions are made: (i) the capillary number is large, (ii) the Biot number
is small whereas the product of the capillary number and the Biot number is finite,
(iii) the Galileo number is O(1). These assumptions allow one (i) to take into account
the surface tension within the lubrication approximation, (ii) to prescribe a small
heat flux from the free surface, (iii) to prevent the gravity-induced suppression of free
surface deflection. Under these restrictions a new oscillatory mode was detected.
In our work we modify the above model to investigate a realistic two-layer system.

Within the modified model assumptions (i) and (iii) remain the same, whereas (ii)
is rewritten. A small heat flux from liquid across the interface leads to high tem-
perature gradients in the gas phase. Consequently, if the surface is deformable, even
small surface deformations can lead to large temperature deviations at the interface
and change considerably the liquid-to-gas heat transfer rate. Therefore, we take into
account the heat transfer in gas layer assuming its thermal conductivity to be small
and its thickness not to be large.
We apply the multiscale expansion to derive the set of nonlinear amplitude equa-

tions that describes the coupled evolution of liquid layer thickness and temperature
perturbation. Then we perform linear stability analysis of these equations concentrat-
ing on searching for an oscillatory mode.

2 Problem statement

Let us consider a two-layer liquid-gas system with a deformable interface, sand-
wiched between horizontal rigid walls. The system is heated from below; the thermal
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conductivity of liquid κ̃ is assumed to be large in comparison with that of a lower
wall, so that the vertical component of the heat flux κ̃A is fixed at the substrate.
The thermal conductivity of gas κ̃g is considered small in comparison with those of
liquid and upper rigid wall. (In what follows, we prescribe tildes to the dimensional
properties of fluids; the subscript “g” refers to gas.)
The liquid density ρ̃ and the dynamic viscosity η̃ are large in comparison with those

for gas, thereby we take into account the heat transfer but not the hydrodynamics in
gas phase. Liquid-gas interfacial tension depends linearly on temperature:

σ̃ = σ̃0 + α̃T̃ ;

hence, the Marangoni mechanism of convective instability in a liquid is considered
predominant. The unperturbed liquid-layer thickness h0 is sufficiently small, so that
the interface deflection should be taken into account.
The surface-tension-driven convection in this system is governed by the following

system of dimensionless equations and boundary conditions:

1

Pr

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇2v −Gak,

∂T

∂t
+ v · ∇T = ∇2T, ∂Tg

∂t
= χg∇2Tg, (1)

∇ · v = 0,

z = 0: v = 0,
∂T

∂z
= −1,

z = h (x, y, t) :
∂h

∂t
= w − u · ∇h,

σnτ = −Ma ∂
∂τ
(T |z=h) , σnn = p− CaK, (2)

T = Tg,
∂

∂n
(T − κgTg) = 0,

z = H: Tg = 0,

where v = (u, w) is the liquid velocity (u is velocity in the horizontal x− y plane and
w is the vertical component), p is the pressure, σ is the viscous stress tensor of the
liquid, h is the local liquid-layer thickness, H is the overall thickness of two layers, k
is the upward unit vector; K, n and τ are the curvature, the normal and tangential
unit vectors of the interface, respectively. T and Tg are the temperature in the liquid
and the gas, respectively.
We use the following scalings: h0 for the length, h

2
0/χ̃ for the time, χ̃/h0 for the

velocity, η̃χ̃/h20 for the pressure, Ah0 for the temperature (χ̃ is the thermal diffusivity
of liquid). The problem is characterized by the following dimensionless parameters:

Ca =
σ̃0h0

η̃χ̃
, Ma =

α̃h20A

η̃χ̃
, Ga =

gh30
ν̃χ̃
, Pr =

ν̃

χ
, κg =

κ̃g

κ̃
, χg =

χ̃g

χ̃
,

which are the capillary, Marangoni, Galileo and Prandtl numbers, dimensionless heat
conductivity and thermal diffusivity, respectively. Here ν̃ is the kinematic viscosity of
the liquid.
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Equations (1)–(2) have the obvious base solution, that corresponds to the conduc-
tive state:

h(0) = 1, T (0) = −z + 1 + H − 1
κg
, T (0)g =

H − z
κg
, p(0) = Ga (1− z) . (3)

Below we study the linear stability of the conductive state with respect to the
long-wave perturbations and the evolution of the large-scale perturbations into the
conductive state.

3 Lubrication approximation

To study the evolution of a large-scale flow, we rescale the coordinates, the time and
the velocity according to the relations

X = εx, Y = εy, Z = z, τ = ε2t, U = εu, W = ε2w, (4)

where ε� 1 can be thought of as the ratio of h0 to a typical horizontal lenghtscale.
We apply the following expansion

U = U0 + ε
2U1 + . . . , W =W0 + ε

2W1 + . . . , p = p0 + ε
2p1 + . . . ,

T = −z + H − 1
κg

+ T0 + ε
2T1 + . . . , (5)

Tg =
H − z
κg

+ Tg0 + ε
2Tg1 + . . .

We do not drop out the equilibrium fields from T and p; it is clear that the base
conductive state corresponds to T0 = 1, p0 = p

(0).

4 Amplitude equations

As our aim is to find the analogue of the new oscillatory mode in the two-layer
liquid-gas system by coupling two monotonic modes, Pearson’s and deformational,
we apply the same scalings as in [1]: large values of the capillary number, a finite
Galileo number, and a small gas thermal conductivity

Ca = ε−2C, Ga = O(1), κg = ε2κg2. (6)

The latter assumption allows us to prescribe a small heat flux from the liquid through
the interface.
Substituting Eqs. (4)–(6) into problem (1)–(2) we obtain the following zeroth-

order boundary-value problem

p0Z = −Ga, ∇p0 = U0ZZ , W0Z = −∇ ·U0,
T0ZZ = 0, Tg0ZZ = 0, (7)

Z = 0: W0 = U0 = T0Z = 0,

Z = h: hτ =W0 −U0 · ∇h, p0 = −C∇2h, U0Z = −M∇ (T0 − h) , (8)

T0 − h = Tg0, T0Z = Tg0Z ,
Z = H: Tg0 = 0.
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Hereafter ∇ ≡ (∂X , ∂Y , 0) is a two-dimensional projection of the gradient operator
onto the X − Y plane.
The solution of the problem is

p0 = P (X,Y, τ)−GaZ,

U0 =
Z

2
(Z − 2h)∇P − ZMa∇f, (9)

W0 =
Z2

2
∇ ·
[
1

3
(3h− Z)∇P +Ma∇f

]
,

T0 = Θ(X,Y, τ) , Tg0 =
H − Z
H − hΘ,

where P = Gah − C∇2h, and f = Θ − h is the perturbation of the interface tem-
perature. The evolution of the liquid layer thickness is governed by the well-known

condition hτ = −∇ ·
∫ h
0
U0dz, which provides the first amplitude equation

hτ = ∇ ·
[
h3

3
∇P +Mah

2

2
∇f
]
= ∇ · j, (10)

where vector −j is the longitudinal flux of liquid averaged across the layer.
From the first order of the expansion we need only the equation that describes

heat transfer in liquid

T1ZZ = Θτ −∇2Θ+U0 · ∇Θ−W0, (11)

Z = 0 : T1Z = 0, Z = h : T1Z = ∇h · ∇Θ− κg2

H − hf. (12)

The solvability condition of this problem provides the second amplitude equation.
The integration of Eq. (11) with the boundary conditions (12) results in

hΘτ = ∇ · (h∇Θ)− κg2

H − hf + j · ∇f +∇ ·
(
h4

8
∇P + h

3

6
Ma∇f

)
· (13)

Equations (10) and (13) form a closed set of amplitude equations which describes the
nonlinear dynamics of long-wave perturbations. These equations include the following
effects: in the right-hand side of Eq. (10), suppression of the interface deflection by
gravity and surface tension, and influence of the thermocapillary flow on the layer
thickness; in the right-hand side of Eq. (13), heat conductivity in the longitudinal
directions (the first term), heat losses from the interface into gas phase (the second
term), and advective heat transfer by the flow (the third and fourth terms).
The base state, corresponding to motionless fluid and gas with a constant heat

flux maintained through the layers, is given by h = 1 and Θ = 1.

4.1 Comparison with the one-layer model

Longwave Marangoni convection in a thin film heated from below atop a poorly con-
ducting substrate was investigated in [1] within the one-layer approach. The problem
(1)–(2) was formulated in liquid phase only, where the thermal conditions at the free
surface were prescribed by Newton’s law of cooling. The authors used similar scalings
to Eqs. (4)–(6) except for the assumptions of smallness of the heat flux from the free
surface, which was replaced by he following scaling of the Biot number Bi = βε2.
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Our set of amplitude Eqs. (10) and (13) is very close to the amplitude equa-
tions derived within the one-layer approach. Evolutionary equations of liquid layer
thickness in both models are absolutely the same. There are two differences in the
evolutionary equation for temperature perturbation. The first one is that in the two-
layer approach the term corresponding to the heat losses from the interface into gas
phase is κg2Θ/ (H − h), whereas the similar term from the one-layer model is βΘ. The
second difference is that the term from the one-layer model (∇h)2 /2 corresponding
to the heat losses from the free surface is absent in the two-layer model, see Eq. (13).
Apparently all the differences between one-layer and two-layer evolutionary equa-
tions are nonlinear, therefore, the results of linear analysis are similar if we denote
κg2/a ≡ β (where a = H − 1 means dimensionless thickness of the gas layer). Note
that it is not valid when the gas layer becomes thick enough or especially infinite.

5 Linear stability analysis

Considering small perturbations of temperature and interface deflection, Θ = 1 + θ
and h = 1 + ζ, and linearizing the equations we arrive at

ζτ = ∇2
[
1

3

(
Gaζ − C∇2ζ)+ Ma

2
(θ − ζ)

]
, (14)

Θτ = ∇2
[
θ +
1

8

(
Gaζ − C∇2ζ)+ Ma

6
(θ − ζ)

]
− κg2
a
(θ − ζ) , (15)

from which we obtain a quadratic equation for the growth rate, representing the
perturbation fields proportional to exp (λτ + ikX),

λ2 + λ

[
k2
(
1 +
G−Ma
3

)
+
κg2

a

]
+
k2

3

(
k2 +

κg2

a

)
G− Mk

4

2

(
1 +
G

72

)
= 0, (16)

where G=Ga + Ck2. This equation possesses both real (monotonic instability)
and complex (oscillatory instability) solutions. The neutral stability curves for the
monotonic (Mam) and oscillatory (Mao) modes are given by

Mam =
48
(
k2 +

κg2
a

)
G

k2 (72 + G)
, Mao = 3 +

3

k2
κg2

a
+G. (17)

Neural curve for the monotonic mode has a minimum at the finite values of k only if

κg2C

a
< 72, (18)

otherwise the critical value Maswc =48 is achieved in the limit k → ∞ (i.e., the
shortwave mode is critical). The imaginary part of the growth rate (frequency) for
neutral oscillatory perturbations is

λi =
k2

12

√
(72 + Ga + k2) (Mam −Mao). (19)

It is clear that the oscillatory mode is present only at Mao(k) < Mam(k).
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Fig. 1. (a) The domain of oscillatory instability. The dashed vertical line marks the boundary
of the longwave monotonic instability, Eq. (18). Panel (b) shows the domain where the
oscillatory mode is critical on the Ga− a plane for Ca = 1000 and κg = 0.1.

Keeping in mind the possible future experiments, below we present the expres-
sions for the neutral stability curves in terms of the unscaled wave number K = εk,
gas thermal conductivity κg and capillary number Ca. For the monotonic mode the
stability threshold is

Mam =
48
(
K2 +

κg
a

) (
Ga + CaK2

)
K2 (72 + Ga + CaK2)

· (20)

For the oscillatory mode the stability threshold is

Mao = 3 +
3

K2
κg

a
+Ga + CaK2. (21)

The parameter range where the oscillatory mode is critical is shown in Fig. 1a. The
boundaries between the domains of monotonic and oscillatory instabilities obtained
within the one-layer and two-layer approaches coincide if we denote κg/a ≡ Bi. How-
ever, our two-layer model reveals severe restrictions on the thickness of gas layer: for
silicon oil-air system under earthly conditions oscillatory mode is critical only if the
gas layer is sufficiently thin (see Fig. 1b). Therefore, the two-layer approach allows
us to provide a realistic estimates for a possible experiment. Considering the 1 mm
air layer over the 0.1mm film of the silicon fluid of the kinematic viscosity 100 cSt
we obtain Ga=10 and Ca=2000. The characteristic wavelength of the convective
structure is 1 cm and the period of the oscillations is 50 s. The critical Marangoni
number is attained at the temperature difference 4K.

6 Conclusion

We have investigated the longwave Marangoni convection in a two-layer system with a
deformable interface which consists of a liquid layer and a poorly conductive gas layer.
We assume capillary number Ca � 1, ratio of gas and liquid thermal conductivities
κg � 1, whereas Galileo number and ratio of gas and liquid thicknesses a to be
finite. Within the two-layer approach we take into account heat transfer but not
hydrodynamics in the gas phase. The set of amplitude equations, Eqs. (10) and (13),
which describes a coupled evolution of the liquid film height and the averaged across
the liquid layer part of the temperature is derived.
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This set of equations is similar to the amplitude equations derived by the authors
in [1] within the one-layer approach with a minor difference in nonlinear terms. The
linear stability analysis of our amplitude equations confirms the existence of the new
oscillatory mode, see Fig. 1a. The comparison of linear analysis results provided within
the two-layer and one-layer approaches demonstrates their coincidence if we denote
κg/a ≡ Bi. However, the important distinction of the two-layer results is that the
effective empirical parameter – the Biot number – is replaced by exact liquid and gas
characteristics. Thereby, within the two-layer approach we found a severe restriction
on gas layer thickness. The new oscillatory mode is critical only if the gas layer is
sufficiently thin in comparison with the liquid layer, see Fig. 1b. This allowed us to
provide better estimates for possible future experiments.
Finally, it is worthnoting that low heat conductivity of the gas in combination

with small thickness of the gas layer leads to high temperature gradients in the gas
phase. If the interface is deformable, even small surface deformations can lead to
large temperature deviations at the interface. Therefore, the convective heat trans-
port in the gas phase should be considered in order to get well-substantiated results
in Marangoni convective pattern formation in systems with a deformable interface.
However, this task is way beyond the present investigation.
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