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Abstract. This paper is a continuation of our previous work presented
at the IMA-6, see [1]. We continue to analyze the parametric excitation
of Marangoni instability by a periodic flux modulation in a liquid layer
with insoluble surfactant. Contrary to the previous investigation here
the upper free surface of the layer is deformable. The linear stability
analysis for the disturbances with arbitrary wave numbers is performed.
Three response modes of the system to an external periodic stimula-
tion were found – synchronous, subharmonic, and quasi-periodic ones.
Results for different Galileo and inverse capillary parameters are pre-
sented. It is shown that contrary to the situation with nondeformable
interface, at small values of Galileo and inverse capillary parameters a
new subharmonic instability region appears in the range of long waves.

1 Introduction

It is known that the influence of external periodic forcing on a physical system can
change essentially the behavior of this system. Most often the frequencies of the
response on this forcing are related to the driving frequency by an integer multiplier,
and these responses are synchronous. However, under certain conditions a response
with a frequency less than the driving one can also appear. These responses are known
as subharmonics. Later on, we will consider subharmonic responses with frequency
proportional to the half of the driving frequency. The response can also be quasi-
periodic.
Thus, depending on the frequency and amplitude of the driving force the physical

system exhibits a rich variety of different types of behavior. The convective system
is only one example of these systems, see [2–4]. It is not so important what kind of
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driving mechanism is applied. It can be gravity modulation, as well as temperature or
gradient of temperature modulation [5]. It is important that the considered physical
system has its natural frequency, as an ordinary planar pendulum in a well-known
Kapitza pendulum problem [6].
The adsorption of insoluble surfactants at the free liquid surface reduces the sur-

face tension. The inhomogenity of surface temperature also may change the surface
tension. Both these factors under certain conditions generate oscillations of the liq-
uid in the layer heated from below with absorbed insoluble surfactant on the upper
surface. These oscillations have their natural frequency and under external periodic
forcing lead the system to its parametric excitation. Our previous investigation of
the onset of Marangoni convection in a liquid layer with insoluble surfactant under
heat flux modulation [7] and [1], considered the liquid with flat free surface. In the
present paper we consider the deformable free surface of the liquid. Section 2 contains
formulation of the problem. In the next section numerical method is described. The
results of modeling are presented in Sect. 4. The last Section is devoted to concluding
remarks.

2 Formulation of the problem

2.1 Basic equations and boundary conditions

Let us consider a horizontally infinite layer of an incompressible liquid, bounded by
a rigid lower plane which is located at z = 0, and a free deformable upper boundary
at z = h(x, t) (the z axis is directed vertically upward). The rotational symmetry of
the problem allows us to consider two-dimensional disturbances in the case of linear
stability problem. The liquid layer is heated from below with periodically changing in
time temperature gradient varying around the mean value −a (for heating from below
the value a is positive), while on the upper surface the standard Newton’s cooling
occurs,

z = 0: Tz = −a+ d cos(2Ωt), (1)

z = h(x, t): λTz + qT = 0. (2)

Here T is the difference between the liquid temperature and the temperature of the
ambient gas, d is the amplitude of the heat flux modulation, 2Ω is the external
modulation frequency, λ is the thermal conductivity of the liquid, and q is the heat
transfer coefficient at the free surface. The subscript denotes the partial derivative
with respect to the corresponding variable.
The following set of equations governs the process:

ux + wz = 0, (3)

ut + uux + wuz = −ρ−1px + ν(uxx + uzz), (4)

wt + uwx + wwz == −ρ−1pz + ν(wxx + wzz)− g, (5)

Tt + uTx + wTz = χ(Txx + Tzz). (6)

Here u, w are the x− and z− components of velocity field, respectively, ρ is the
density of the liquid, p is the pressure, ν and χ are the kinematic viscosity and
thermal diffusivity, respectively, t is the time.
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On the upper free surface of the liquid an insoluble surfactant is adsorbed. The
dynamical distribution of the surfactant concentration, Γ(x, t), is described by the
following equation [8]:

z = h(x, t): Γt − ht(ez · ∇s)Γ +∇s(vτΓ) + (∇s · n)(v · n)Γ = D∇s2Γ. (7)

Here ez = (0, 1) is the unity vector directed upward, n = (−hx, 1)(1 + h2x)−1/2 is the
unity vector normal to the interface, ∇s = ∇−n(n ·∇), vτ = v−(v ·n),∇ = (∂x, ∂z),
and D is the interfacial diffusion coefficient.
In addition to the above-mentioned boundary condition we have the balance con-

ditions for the normal and tangential stresses on the upper surface, the augmented
kinematic condition on the upper surface, the non-slip and non-penetration conditions
on the bottom of the layer:

z = 0: u = w = 0, (8)

z = h(x, t): − p+ 2μn · D · n+ 2κσ = 0, (9)

2μn · D · t = ∇σ · t, (10)

ht + uhx = w. (11)

Here D is the deviatoric stress tensor, κ is the mean interfacial curvature, σ is the
surface tension, t = (1, hx)(1 + h

2
x)
−1/2 is the unit tangent vector, μ = ρν.

The surface tension is assumed to be a linear function of the temperature and
surfactant concentration:

σ = σ0 − σ1T − σ2Γ,
where σ0 is the reference value of the surface tension, σ1 = −∂Tσ, and σ2 = −∂Γσ.

2.2 Nondimensionalization and set of equations for disturbances

To formulate the problem in a nondimensional form , the following scales are chosen:
length is scaled by H0 (the mean thickness of the layer), time by H

2
0/χ, velocity

χ/H0, pressure by ρνχ/H
2
0 , temperature by aH0, and the surfactant concentration

by Γ0 (the value for the quiescent state).
Following our previous paper [1] we decompose the base temperature into two

components, Tb = T̄b+ T̃b (T̄b is the time-independent average temperature, T̃b is the
fluctuation around the average temperature). In nondimensional form,

T̄b = −z + 1 +B
B
, (12)

T̃b = T̃
+
b (z)e

α2t + T̃−b (z)e
−α2t, (13)

T̃+b (z) = a1e
αz + a2e

−αz, T̃−b (z) = (T̃
+
b )
∗, (14)

a1 =
(B − α)δ

4αeα[B cosh(α) + α sinh(α)]
, a2 =

−(B + α)δeα
4α[B cosh(α) + α sinh(α)]

· (15)

(“*” denotes a complex conjugate expression). Here we have the following parameters,
B = qH/λ is the Biot number, 2ω = 2ΩH2/χ is the nondimensional frequency of heat
flux modulation, δ = d/a is the nondimensional amplitude of heat flux modulation,
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α =
√
2iω. The base state values of the surfactant concentration and liquid surface

function are Γb = 1, hb = 1.
The dimensionless form of the linearized equations and boundary conditions for

disturbances of the vertical velocity, w, temperature, θ(x, z, t) = T (x, z, t) − Tb(z, t),
surface concentration, γ(x, t)=Γ(x, t)−1, and free surface function ζ(x, t)=h(x, t)−1,
is (here the pressure, p, and the horizontal velocity component, u, are eliminated
from the set):

P−1(wzzt + wxxt) = wzzzz + 2wxxzz + wxxxx, (16)

θt + w(Tb)z = θxx + θzz, (17)

z = 0: w = wz = θz = 0, (18)

z = 1: w = ζt, θz + ζ(Tb)zz +B[θ + ζ(Tb)z] = 0, (19)

γt − wz = Lγxx, (20)

wxx − wzz = −M [θxx + ζxx(Tb)z]−Nγxx, (21)

−P−1wzt + wzzz + 3wzxx +Gζxx − Σζxxxx = 0. (22)

Here we have the following dimensionless parameters: M =σ1aH
2/μχ is the

Marangoni number, N =σ2HΓ0/μχ is the elasticity number, L=D/χ is the Lewis
number, G= gH3/νχ is the Galileo number, Σ=σH/μχ is the inverse capillary
number.
The variables of the problem are decomposed into normal perturbations

(w, θ, γ, ζ) = (ŵ(z, t), θ̂(z, t), γ̂(t), ζ̂(t)) exp(ikx+ rt), (23)

where k and r are, respectively, the dimensionless wave number and growth rate of

disturbances. The amplitudes ŵ(z, t), θ̂(z, t), γ̂(t), and ζ̂(t) are periodic in time with
the period π/ω (later on, the hats are omitted).
Finally, we obtain the following system for investigation:

P−1[wzzt + rwzz − k2wt − rk2w] = wzzzz − 2k2wzz + k4w, (24)

θt + rθ + w(Tb)z = θzz − k2θ, (25)

z = 0: w = wz = θz = 0, (26)

z = 1: w = rζ + ζt, θz + ζ(Tb)zz +B[θ + ζ(Tb)z] = 0, (27)

γt + rγ − wz = −k2Lγ, (28)

k2w + wzz = −Mk2[θ + ζ(Tb)z]− k2Nγ, (29)

P−1(wzt + rwz)− wzzz + 3k2wz + k2(G+ k2Σ)ζ = 0. (30)

This system of equations with boundary conditions defines a spectral problem for
the eigenvalue r. The condition �(r) = 0 determines the critical value of Marangoni
number for the parametric excitation of the Marangoni instability.

3 Numerical method

In the systems with time-periodic forcing we can find three types of instability: syn-
chronous, subharmonic, and quasi-periodic. To find the first two modes of instability
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we assume r = 0 and decompose the unknown variables into the sets of harmonic
functions as the Fourier expansions

w(z, t) =
∑

m

wm(z)e
imωt, θ(z, t) =

∑

m

θm(z)e
imωt,

(31)
γ(t) =

∑

m

γme
imωt, ζ(t) =

∑

m

ζme
imωt,

where m= ± 1,±3, . . . correspond to the subharmonic instability mode and
m = 0,±2,±4, . . . to the synchronous one. The subharmonic mode has the period
which is twice the period of the heat flux forcing, the synchronous one has the same
period as the external heat flux. The substitution of (31) into (24)–(30) yields two
independent infinite systems for amplitudes wm, θm, γm and ζm for synchronous and
subharmonic disturbances.
Boundary condition (28) leads to the following relationship between amplitudes

of surfactant concentration and amplitudes of vertical velocity component:

γm = wm,z/(imω + k
2L). (32)

Equation (24) gives an infinite system for amplitudes wm(z)

iωm

P
[wm,zz − k2wm] = wm,zzzz − 2k2wm,zz + k4wm. (33)

The general solution of these equations contains the coefficients, which can be ex-
pressed by ζm. Substituting the solution with respect to wm into (25) we obtain the
infinite system of equations for θm, its formal solution also contains ζm. One obtains
two infinite homogeneous systems of linear algebraic equations for coefficients ζm.
One system is for the synchronous disturbances, another one is for the subharmonic
ones. Each system has a nontrivial solution if the characteristic determinant of the
system equals zero. The latter condition allows to find the eigenvalues of the prob-
lem, the critical values M . The calculations were performed using from 32 up to 512
harmonics for each mode which assured a good accuracy of the analysis. For more
detailed information on the method see [4].
To find the quasi-periodic instability mode, we apply the Floquet theory. For that

kind of instability, only the real part rr of the growth rate r = rr + iri vanishes on
the stability boundary, rr = 0. The imaginary part, ri, is defined modulo 2ω. Because
the imaginary eigenvalues of system (24)–(30) appear in pairs, r = irr and r

∗ = −iri,
without loss of generality we can assume 0 ≤ ri ≤ ω. The case ri = 0 corresponds to
the synchronous instability and ri = ω to the subharmonic ones.
Before discussing the results of our calculation let us estimate the non-dimensional

parameters of the problem. We suppose that typical values of the dimensional physical
parameters have the following orders (in SI): kinematic viscosity ∼10−6, density of
liquid ∼103, thermal diffusivity ∼10−7, surface tension ∼10−2 − 10−1, heat transfer
coefficient ∼102–103, surface diffusion coefficient ∼10−9. The problem has a lot of
parameters, so we fix some of them. The Lewis number is fixed as L = 0.01. It is
known, see [9], that low-molecular-weight surfactants in emulsions and foams form
monolayers with low elasticity number N < 1 and we will fix this number as N = 0.1.

4 Results and discussion

We begin the computation with high values of Galileo and inverse capillary parame-
ters, G=105, Σ=105; the modulation frequency, as well as amplitude of the modu-
lation are fixed: ω=0.25, δ=0.6. These parameters (G and Σ) are so high, that the
liquid surface is flat and neutral curves look like in the case of nondeformable layer.
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Fig. 1. Neutral curves in the (k,M) – plane for different Biot numbers. Blue color lines are
for B = 0, red color lines – B = 0.2. Solid line is for synchronous mode, dashed one is for
subharmonic mode, and short-dotted line for quasi-periodic mode. Parameters of the system
ω = 0.25, δ = 0.6, Σ = 105, G = 105, P = 7, L = 0.01, N = 0.1.

Figure 1 shows typical neutral curves at different values of the Biot number. The
blue lines represent the case with poorly conducting upper layer, B = 0. The solid line
is for synchronous mode, the dashed line is for subharmonic one, and the dotted line
is for quasi-periodic instability mode. The computation shows that when the wave
number approaches zero the Marangoni number value for the synchronous threshold
of instability tends to 168, that exactly coincides with the value obtained for the
monotonic mode, Mm = 48 + 12N/L, of long-wave instabilities in the absence of
modulation [11]. At the same time the quasi-periodic threshold tends to 49.7, which
corresponds to a critical Marangoni number for oscillatory instability mode of non-
modulated quiescent state, Mosc = 48 + 12(4L+N).
Hence, the system at high values of Galileo and inverse capillary parameters be-

haves similarly to the situation with flat upper surface, see [1]. This system in the
absence of heat modulation has two modes of instability–monotonic and oscillatory.
When the modulation appears the monotonic neutral curve is transformed to a syn-
chronous one, and the oscillatory into a quasi-periodic one. At small values of the
modulation amplitude on the oscillatory neutral curve around the value of k, where
the frequency of the neutral oscillatory mode is equal to ω (to half of the frequency of
the external modulation), a subharmonic “bubble” appears, similarly to the problem
of convective instability of gravity-modulated doubly cross-diffusive fluid layer [10].
This bubble grows as the amplitude modulation parameter δ grows and that causes
existence of two minima of the stability curve–one is that related to the quasi-periodic
mode, another one to the subharmonic mode.
As Fig. 1 shows the subharmonic bubble grows with the Biot number. The red

lines represent the case with fixed value of the Biot parameter, B = 0.2. The lines
are shifted up when the Biot parameter grows which means that the stability regions
increase. This situation was described in detail in our previous work.
Here we consider in detail the situation with small values of Galileo and inverse

capillary numbers, G=100 and Σ=100, the case when the deformability of the upper
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Fig. 2. Neutral curves in the (k,M) – plane for different parameters G and Σ (case without
modulation). Black color lines are for G=105 and Σ=105, red color lines are for G=100
and Σ=100. Solid line is for synchronous mode, dashed one is for subharmonic mode. Para-
meters of the system: B=0.2,Σ = 100, G=100, P = 7, L=0.01, N =0.1. Points show where
subharmonic mode appears.

surface is significant. First, we consider the liquid layer with insoluble surfactant
without modulation of the mean temperature flux. In this case our system of
Eqs. (16)–(22) coincides with system (41)–(43) of [11] and can be solved analytically
using the Mathematica package. The results are shown in Fig. 2, which represents the
neutral curves–black color lines are for the case of high-valued parameters, G=105

and Σ=105, red color lines are for the case of small values of parameters, G=100
and Σ=100. Solid lines are for the monotonic instability mode, dashed lines are
for the oscillatory mode. Other parameters are as follows: B=0.2, P =7, L=0.01,
and N =0.1. Here the unusual kink on the curve for the oscillatory mode (red
color dashed line) is caused by the fast change of the eigenfrequency in that
region (as shown in Fig. 3).
To check here the fact, that when the system is excited by external heat flux mod-

ulation the subharmonic bubble appears at the wave number where driving frequency
equals the double eigenfrequency of the system, we plot the dependence of the eigen-
frequency of the system on the wave number of disturbances. Figure 3 shows this
dependence for both cases, the red solid line is for the case with G = 105, Σ = 105

and the black dashed line is for the case with G = 100, Σ = 100.
From Fig. 3 we can see that for disturbances with wave numbers k ≥ 0.5 the eigen-

values of the system for both cases are very close one to another. For example, for the
eigenfrequency of the system, ω0 = 0.25 the oscillatory instability mode appears at
wave number k = 1.21 in the case with G = 100 and Σ = 100, and at k = 1.25 for the
case with G = 105, Σ = 105. Numerical solution of the full system (24)–(30) shows
that even at small value of δ parameter (ratio of amplitude of the external modulation
to the mean temperature flux), δ = 0.001, the subharmonic bubble appears, starting
as “a germ point” at small δ parameter. The Marangoni numbers, respectively, are
M = 52.7 for k = 1.21 and M = 65.5 for k = 1.25. As it might be seen in Fig. 2, the
first point, blue color, lies on the red oscillatory line and another point, green color,
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Fig. 3. Dependence of eigenfrequency of the system on wave number of disturbances (sit-
uation without modulation). Red solid line is for G = 105 and Σ = 105, black line is for
G = 100 and Σ = 100. Other parameters of the system B = 0.2, P = 7, L = 0.01, N = 0.1.

lies on the black oscillatory line. Exactly this situation was observed in our previous
investigation with flat surface [1].
However, as Fig. 3 shows we can obtain additional subharmonic regions in the

region of long wavelengths at small values of modulation driving frequency. For ex-
ample, for the driving frequency ω=0.2 in addition to the known “germ point” of
subharmonical response of the system at k=1.06 and M =51.1 we have two addi-
tional points in the long-wavelength region, at k=0.09 withM =180.4 and at k=0.22
with M =128.7, respectively. These values of the Marangoni number are obtained
analytically solving the system of equations without modulation.
The numerical calculation of the system with modulation where driving frequency

ω = 0.2 and δ = 0.01 gives us these two additional subharmonic regions, red color
bubbles on Fig. 4. When the δ parameter increases, the subharmonic regions also
grows. On the same Fig. 4 the blue color region represents subharmonical instability
region at δ = 0.1, situation when two bubbles merge into one.
From Fig. 3 we can conclude that at modulation frequency greater than ω > 0.27

the system will have only one subharmonic region as in the case of big values of G and
Σ (non-deformable surface). However, the calculation done for the system at ω = 0.3,
as well as at ω = 0.4 and ω = 0.5 reveals the existence of subharmonic regions at long
wavelengths. The difference between these cases is in the fact that this subharmonic
region appears at values of the δ parameter greater than some critical value, δc (non-
equal to zero). Figure 5 shows the situation when the driving frequency ω = 0.4 (black
color region) and δ = 0.1. For the comparison the situation with ω = 0.2 at the same
value of δ is depicted by blue color. The calculation shows that the subharmonical
region for ω = 0.4 in the region of long-wavelengths can not be obtained numerically
with the number of harmonics in Fourier series equal to 128, as well as to 256. In the
case when driving frequency equals 0.5, δc = 0.14.
If we extrapolate these three situations at ω=0.3, 0.4 and 0.5 to the non-

modulated problem, localizing the “germ points” of the appearing subharmonic
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Fig. 4. Subharmonic regions in the long wave range. Red color bubbles are the subharmonic
regions at δ = 0.01 and blue color region corresponds to the case with δ = 0.1. Other
parameters of the system ω = 0.2, B = 0.2,Σ = 100, G = 100, P = 7, L = 0.01, N = 0.1.

Fig. 5. Subharmonic regions in the range of long waves. Blue color region is for ω = 0.2
and black color region is for ω = 0.4. Both cases at δ = 0.1. Other parameters of the system
B = 0.2,Σ = 100, G = 100, P = 7, L = 0.01, N = 0.1.

regions, and plot these points on the graph of the eigenfrequency of the system,
Fig. 3, we obtain Fig. 6. This Figure shows that all these three points lie on the same
line which is the continuation of one of branches of the eigenfrequency graph. The red
point corresponds to the driving frequency ω = 0.3, the brown point – to the ω = 0.4
and the purple point – to the ω = 0.5.
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Fig. 6. Dependence of the eigenfrequency of the system on the wave number with extrap-
olated points. Here the red color point is for ω=0.3, the brown point is for ω=0.4 and
the purple point is for ω=0.5. Other parameters of the system B=0.2, Σ=100, G=100,
P = 7, L=0.01, N =0.1.

The subharmonic regions for greater values of wave number, k > 0.5, behave as
described in our previous paper [1].
Here on the Figures the quasi-periodic modes are omitted, because they coincide

with oscillatory mode in the non-modulated case.

5 Conclusions

In this paper we have considered the parametric excitation of Marangoni convec-
tion by periodic heat flux modulation in a liquid layer with the insoluble surfactant
absorbed on a deformable free surface. It is shown that at high-valued Galileo and
inverse capillary numbers the behavior of this system is similar to the system with
the insoluble surfactant on non-deformable surface.
We can summarize the behavior of the system as follows. In the case without

external modulation the map of instability looks as Fig. 2. It contains three zones
on the (k,M) – map. The first zone below the the dashed line is a stable zone. Any
disturbances here disappear and dimension of the unstable manifold in this region
equals 0. The second zone is above the upper solid line. This is zone of monotonic
instability. Here the dimension of unstable manifold is equal to 1. Between the lower
dashed line and the upper solid line we have the zone of oscillatory instability. This
instability region is caused by competition of two mechanism, thermocapillary and
solutocapillary, that changes the surface tension gradient. This region has the dimen-
sion of unstable manifold equals to 2. So, the third zone represents the parameters of
the most unstable region. When we have external driving forcing on the oscillation
line, it is transformed to the so called “quasi-periodic” line, and the subharmonic
bubble appears where the dimension of the unstable manifold equals 1. This region,
see for example Fig. 1, grows when the driving frequency increases as well as the
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ratio of the amplitude of the external forcing to the mean value of the tempera-
ture gradient increases. The appeared subharmonic bubble has a trend to go upward
when the driving frequency increases and this means the system becomes more
stable.
When the values of Galileo and inverse capillary numbers are small and the role

of deformability in the system is significant, then in the range of long-wavelengths
additional subharmonic region appears, that grows when the driving frequency
increases.
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