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Abstract. The aim of this study is to investigate the influence of
the container size and shape on the main fluid flow characteristics of
Surface-Tension-Driven Bénard Convection. Computations have been
performed for high Prandtl number fluids and realistic boundary
conditions in various configurations either at steady state when it
exists or unsteady one for Mac ≤Ma ≤ 2.5Mac. The threshold value,
its associated pattern and secondary bifurcation one are presented for
each configuration. For very small aspect ratios, it turns out that the
threshold value is determined by the friction coefficient whereas for
medium size aspect ratios both size and shape enters the game in a
more subtle way. Some containers have been found to induce a quasi-
perfect hexagonal pattern in their core region provided they satisfy
shape and size compatibility conditions. Otherwise, dynamical regimes
may appear even close to the threshold so their peculiar characteristics
have been reported and analyzed as they seem to be intrinsic to small
aspect ratio configurations.

1 Introduction

Natural convection has been extensively studied during the last few decades, because
of its practical importance and theoretical relevance. Buoyancy and surface tension
both take place in a wide range of industrial applications in which convection play
a crucial part and must be controlled to end up in high quality processes (coating,
painting, welding, etc.). In this paper we are interested in the cases where buoyancy
is negligible with respect to surface tension gradients, the so-called Surface-Tension-
Driven Bénard Convection (STDBC). The main feature of this configuration is such
that for a fluid layer of large horizontal extension the convective flow is organized into
a cellular pattern just above the threshold, the famous hexagonal pattern first studied
by Bénard [1]. On the other hand when the liquid is confined into small containers,
mechanical and thermal effects of lateral walls become determining so that vessel size
and shape strongly affect the fluid flow pattern. Most of its characteristics are very
different from the infinite layer case owing to the imposed physical and geometrical
restraints.
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The literature on confined STDBC is scarce and scattered [5,18] and yield a
variety of results somehow disconnected owing to various operating conditions and
driving physical mechanisms at play. They are characterized by at least four dimen-
sionless numbers (Rayleigh, Marangoni, Biot, Prandtl), container size and shape, etc.
The influence of the aspect ratio on the pattern characteristics in Rayleigh-Bénard-
Marangoni convection confined into hexagonal and triangular vessels of various sizes
was first reported in [2,3]. Then, many other experiments were performed in circular
and square containers of small aspect ratios for STDBC [14]. Linear stability analyses
were also performed in confined configurations (square and rectangular enclosures [10],
circular ones [8,24]. Pattern transitions and unsteady behaviours have been studied
in some peculiar small vessel cases. A dynamical four-cell pattern has been observed
in a small aspect ratio square container at large distance from the threshold for which
dynamical models have been derived [15,19] and references therein. Comparable dy-
namical behaviors were also observed in small aspect ratio circular containers [11,13]
and later on modeled and analyzed [6].
The aim of the present study is to investigate the influence of the container shape

and size for STDBC on: i) the threshold value and its associated pattern; ii) the
steady or unsteady convective fluid flow pattern beyond the threshold up to the
secondary bifurcation. The content of the paper is as follows. Section 2 briefly presents
physical assumptions, governing equations and implemented numerical model. The
influence of the container shape and size on the convective threshold value and its
associated patternalong with steady states at second bifurcation are presented in
Sect. 3, while dynamical regimes are presented in Sect. 4. A discussion on some
generic features is provided in Sect. 5 and a summary is given in Sect. 6.

2 Physical and numerical models

Our study deals with STDBC in an horizontal liquid layer for which the liquid-air
interface is assumed to be flat (no meniscus), the heat transfer across the thin air
layer is dominated by conduction (Biot number Bi < 0.5), it is bounded by below
by a hot isothermal wall and surrounded by an adiabatic lateral wall. This latter
assumption mimics experimental configurations in presence of an outer liquid guard
ring [14]. Taking into account these assumptions and recalling that we are interested
in the weakly non-linear regime led us to consider a one layer model, which has been
confirmed to be very satisfactory in the considered case [12]. Under these assumptions
the problem is governed by the coupled incompressible Navier-Stokes and energy
equations, under the Boussinesq approximation. Introducing dimensionless variables
of space, time, velocity (V ), pressure (p) and temperature (θ), dl, d

2
l /κ, κ/dl and ΔT

respectively into the conservation equations of mass, momentum and energy equations
read:

∇ ·V = 0 (1)

1
Pr

(
∂V

∂t
+V · ∇V

)
= −∇p+ΔV +Ra θ ez (2)

∂θ
∂t
+V ·∇θ = Δθ (3)

supplemented with appropriate initial and boundary conditions. The fluid flow bound-
ary conditions are no slip velocity at solid walls (V = 0) and the Marangoni condition
at the free surface (z = 1):V·n = 0; ∂u

∂z
= −Ma ∂θ

∂x
and ∂v

∂z
= −Ma ∂θ

∂y
. The associated

heat transfer boundary conditions reduce to θ = 1 at the heated horizontal bottom
wall (z = 0), ∂θ

∂n
= 0 at all lateral walls, and ∂θ

∂n
= −Biθ at the free surface (z = 1).
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The related physical parameters have been gathered into four non-dimensional num-
bers, namely the Biot number (Bi = dl

κl

κa
da
), the Marangoni number (Ma = γdlΔT

μlκl
),

the Rayleigh number (Ra =
βgd3lΔT
νlκl

) and the Prandtl number (Pr = νl/κl). They in-
volve eleven physical quantities, namely dl, da, kl, ka, g, β, γ, κ, νl, μl,ΔT , representing
liquid and air layer thickness, liquid and air thermal conductivity coefficients, coef-
ficient of gravitational acceleration, temperature coefficients of density and surface-
tension, thermal diffusivity, kinematic and dynamic viscosity of the liquid, average
temperature difference across the liquid layer, respectively. On the other hand, in
order to compare vessels having different shapes we also introduce an extra non-
dimensional number, the aspect ratio defined as Γ =

√
A/dl, where A represents the

free surface area.
Reference computations in STDBC have been conducted in the past, but none

of them simultaneously account for effective presence of lateral walls, critical and
fully developed convection, etc. [12,20,21]. The numerical model we have developed
aims to overcome most of the above mentioned limitations. It enables us to com-
pute the threshold value and its associated pattern, fully non linear steady states or
transient solutions for containers of various shapes (polygonal or circular) and small-
to-moderate horizontal extension. The numerical model dealing with the unsteady
solution algorithm is presented in [16], whereas the steady state solution algorithm
along with the continuation one enabling us to locate the threshold and subsequent
bifurcations have been described in [4,17]. Various validations on STDBC configu-
rations have been conducted successfully on both experimental and numerical refer-
ences solutions. The set of chosen dimensionless parameters refer to a silicone oil layer
(Pr = 900), considered in the STDBC limit (Ra = 0), topped by a thin air layer
(Bi = 0.1) into containers of various shapes (regular polygons from 3 to 6 lateral sides
and circular), of various sizes. The considered Γs (from 2 up to 24) were selected ei-
ther for comparison purposes [14] or with respect to the size compatibility condition,
hereafter defined. Geometrical characteristics are gathered in appendix, along with
computational meshes.

3 Container size and shape influence on threshold and its pattern

The container shapes have been chosen by virtue of their expected geometrical
compatibility or incompatibility with respect to the perfect hexagonal pattern.
Equilateral triangle and regular hexagonal containers should a priori conform to the
basic STDBC hexagonal pattern, so in the following they are classified as compatible
vessels (CV ). On the other hand regular pentagon and square or rectangular contain-
ers are expected to be incompatible vessels (ICV ), meanwhile the circular containers
represent a special case owing to their axial symmetry. In the following Pn designates
regular polygon with n side walls (3 ≤ n ≤ 6) and P∞ circular vessel, respectively.
According to the authors’ knowledge, there are neither threshold values nor patterns
reported in the literature for P3, P5 and P6, whereas for P4 or P∞ they are scarce
and do not necessarily correspond to our physical parameters. Several comparisons
have been nevertheless made in the case of square vessels with Γ = 2, where we
found Mac = 145.4 (Bi = 0.1), which is in good agreement with 145.8, 146.1 and
145.8 reported in [7,9,23] (Bi = 1), respectively. For Γ = 5.70, 6.19, 6.37, 8.45, 9.70
the discrepancy between our threshold values and those of Dauby et al. [8] (Bi = 1)
never exceeds 1.5%. Likewise for circular vessels we found Mac = 87.6 for Γ = 4.71
(for Bi = 0.1, P r = 900) whereas interpolation of Fig. 1 from Dauby et al. [7] gives
86.6 (Bi = 0, P r = 104), which is consistent with the Biot number difference. Our
values are also within 2% as compred to that of Dauby et al. [8] for Bi = 1, which is
consistent with the fact that Mac increases with Bi (see for instance [24]).
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Fig. 1. Relative threshold values in very small aspect ratio containers of various shapes, for
Pr = 900, Bi = 0.1 (legend: � P3; � P4; � P5; x P6; ◦ P∞). (a) Versus aspect ratio (Γ )
and from suggested correlation Eq. (4); (b) versus friction coefficient (f).

Thresholds are numerically detected when the algebraic system becomes singu-
lar [4]. We have plotted in Fig. 1a and Fig. 2 (plain symbols) the relative distance
of the critical Marangoni number (Mac) for the considered containers with respect
to the limiting case of infinite horizontal extension (Mac∞), versus the aspect ratio.
Figure 1a gathers the very-small aspect ratio range (Γ < 3.5), because there is only
one cell in the pattern. Figures 2a–e gather the small-to-medium range 3.5 < Γ < 24,
where the pattern consists of more than one cell. As expected, the Mac in finite size
containers are always larger than the infinite layer value (Mac∞) owing to the lat-
eral confinement and the resulting no-slip boundary condition. In very small aspect
ratios only one cell fills the vessel and takes roughly its shape (less than 3% of the
free surface is motionless in the wedge vicinity for P3). Mac steeply increases as Γ
decreases for a given vessel shape (size effect). On the other hand for a given Γ the
threshold value slightly increases as the vessel wetted surface increases (i.e. from P∞
to P3 containers) (shape effect). In small-to-medium vessels several cells can fill the
container. The dotted lines in Fig. 2 only serve as guides to the eye since the thresh-
old line can exhibit non-monotonic variation between selected Γ values. A slight slope
breaking appears in the range 7 < Γ < 9, which corresponds to the first core-cell that
appears in the pattern and indicates the transition from the small to medium aspect
ratio configurations. For Γ > 10 the threshold asymptotically approachesMac∞ (less
than 2% for Γ > 20).
At threshold the convective pattern induced in a container results from two inde-

pendent constraints. The first one comes from lateral walls, which directly induces an
orientation or shape constraint to the pattern as the cell-side separating two adjacent
cells lying along a lateral wall is roughly perpendicular to it. The second one is a size
constraint that originates from cellular convection in the bulk, which seeks to set in
at the same time in the whole fluid layer as a rather regular tiling of the plane. Hence,
if the pattern reconcile these two constraints it results in a quasi-perfect hexagonal
pattern for large enough Γ, whereas otherwise structural defects appear. One can then
define the container shape compatibility (or incompatibility) as the ability (or inabil-
ity) for a given container to induce a quasi-perfect hexagonal steady state pattern.
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Fig. 2. Thresholds (open symbols), patterns at threshold (lower row), secondary bifurca-
tions (bold symbols) and patterns at secondary bifurcation (upper row) in various shape
containers: (a) triangular; (b) square; (c) pentagonal; (d) hexagonal; (e) circular.

Besides the evolution ofMac versus Γ, Fig. 2 also presents a synopsis of the associated
convective patterns at threshold (lower row, plain symbols) and at second bifurca-
tion (upper row, bold symbols). Solid lines represent the cell limits at free surface,
which correspond to a zero horizontal velocity component. When not specified the
flow is upward in the cell centre and downward along its periphery, otherwise “+”
or “−” signs indicate specific upward or downward flows. Finally, a dashed line indi-
cates the separating line at the free surface between convective adjacent torus. Very
few patterns are available in literature for the Γ considered, but when they exist the
agreement is good. Furthermore, patterns at threshold are very difficult to observe
experimentally owing to the very small value of velocity. Moreover a secondary steady



222 The European Physical Journal Special Topics

state bifurcation could also occur very close to the threshold and it could be sometimes
mistaken with the former by experimentalists. The general trend is that the pattern
is made of different kinds of convective cells with cell edges not always straight line.
Computations show that cells of highest kinetic energy tend to have a concave regular
boundary, whilst conversely cells of lower kinetic energy have a convex boundary and
finally boundary between cells of similar energy levels is straight. Finally it is notewor-
thy that hexagonal cells never appear (in the range of studied Γ) immediately at the
threshold in the ICV s (P4 and P5) whereas they appear in CV s for Γ > 8 in P3 and
for Γ > 11 in P6, but with curved cell sides. Considering the correspondence between
pattern and vessel symmetries one can observe that the container most often imposes
only some of its own symmetries. Indeed, apart patterns in P3 that always keep its
three-fold symmetry whatever Γ is, all others loose for some aspect ratios some of the
vessel symmetries. Furthermore, from obtained results and to unify denominations
among authors, one can suggest a classification of container sizes relevant to confined
configurations. Let Nlc and Ncc designate the numbers of lateral and core cells in
a steady-state pattern, respectively. Five ranges of aspect ratios are distinguished
according to their intrinsic convective pattern structure:

– Nlc = 1 and Ncc = 0: Γ < 3.5; very small aspect ratios (V S);
– Nlc > 1 and Ncc = 0: 3.5 < Γ < 7− 9; small aspect ratios (S);
– Nlc > 1 and Ncc = 1: 7 < Γ < 9; small-to-medium aspect ratio transition (StM);
– Ncc > 1 and Ncc/Nlc ≈ 1: 7− 9 < Γ < 30− 40; medium aspect ratios (M);
– Ncc/Nlc >> 1: 30− 40 < Γ; large aspect ratios (L).

4 Beyond the threshold

As the Marangoni number is increased above the threshold one can encounter a sec-
ondary bifurcation that corresponds to not only a pattern change but also a slope
change in the Nusselt number plot. Moreover, we checked that different initial con-
ditions lead to the same pattern. Depending on the (ε,Γ) set we have encountered
either steady state or dynamical configurations, even for small values of ε < 0.2,
ε = (Ma−Mac)/Mac, Mac critical Marangoni number for the container considered.

4.1 Steady states

We have studied supercritical regimes according to [14] up to the second bifurcation,
plotted in Figs. 2a–e (bold symbols) along with their corresponding patterns (upper
row). In spite of the container shape diversity it can be seen that all patterns display
a similar evolution as Γ increases: i) for very small Γ only one cell exists, which has
necessarily the container shape; ii) for 3.5 < Γ < 7 − 9, several lateral-cells (lc),
made up of tetragons or pentagons, in contact with the container walls exist; iii)
going further, for Γ ≈ 7− 9 depending on the vessel shape, one central-cell appears,
whose shape depends on the container geometry. The shape of central-cell is much
less constrained by the container shape than the lateral-wall-cells. Hence this central-
cell is very likely to be a somewhat regular polygon, whereas the lateral-cells are in
turn very likely to become of pentagonal shape. However one can notice that the first
core-cell (cc) appears for smaller Γ in CV s than in ICV s. iiii) beyond this aspect ratio
transition (Γ ≈ 7−9) because the number of core cells increases faster than the number
of lateral cells, the higher the aspect ratios, the less geometrically constrained the core-
cells by the lateral walls. Then the first central-cell is replaced by polygonal cells;
iiiii) finally any further increase in the aspect ratio, provided it satisfies a geometrical
compatibility rule (hereafter designated “size-length condition”) produces an internal
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core of hexagonal cells, surrounded with a belt of lc. Concerning the patterns one can
observe that they only keep the container symmetries in P3. Otherwise one observes
a two or four-fold symmetry for P4, two or five-fold for P5, two, three or six-fold for
P6. Finally for P∞ all the symmetries have been displayed from two-fold up six-fold
(where n-fold corresponds to a 2π/n symmetry).
Let us now move to some new specific behaviours that have not been reported yet,

although they present some interesting features. Considering CVs (i.e. P3 and P6) a
regular hexagonal pattern is obtained in the core region provided the vessel lateral-
wall length satisfies the size-length condition, even from Γ as small as Γ = 6.45 in
P6. Moreover, if the container diameter fits an odd number times the intrinsic wave-
length of the hexagonal-cell pattern, then the hexagonal symmetry is fully recovered.
Conversely, a two-fold symmetry can be observed and the central hexagonal-cells
could be slightly distorted. On the other hand, very small (less than 3% of the free
surface area) motionless wedge-cells appear for small Γ in P3, owing to high shear
stress in these zones. For the ICV P4 and for Γ < 9 some comparisons with exper-
iments [14] have been previously reported [16]. The computed weakly supercritical
patterns correspond to those that were instead attributed by the former authors as
patterns at threshold. For Γ > 9 we considered three other vessels that satisfy the size
length condition: in these cases a square pattern can exist. On the opposite for Γ = 22,
which does not satisfy this condition, a disordered pattern is observed. For P5, the
second ICV , the hexagonal pattern can only be observed for the second bifurcation
and large Γ (Γ = 22.16). For circular containers most of the lowest aspect ratios were
chosen for comparison purpose with previous experimental works [14]. Here again, our
weakly supercritical patterns correspond to their patterns attributed at threshold. Al-
though the circular vessel is not compatible with respect to the hexagonal pattern,
one can nevertheless achieve a length-size compatibility condition, which enables us
to perform quasi-regular hexagonal patterns for several aspect ratios.

4.2 Dynamical regimes

Rotating patterns are known in circular vessels [6,13] while oscillating patterns have
been observed in square vessels [19]. But we have found that dynamical regimes can
be encountered in most of the very-small and small aspect ratio configurations. We
present in Figs. 3a–d a few typical characteristic behaviours: cell pulsation, pattern
rotation and deformation, combination of both mechanisms. Rotating and oscillating
patterns have been observed in a P∞ with Γ = 4.71 (Fig. 3a) and P6 with Γ = 4.84
(Fig. 3b), respectively. Both patterns have a similar behaviour: the vessels contain
two cells at the second bifurcation (Ma = 1.03Mac andMa = 1.25Mac, respectively)
which become unstable at Ma ≈ 1.4Mac and Ma ≈ 1.5Mac, respectively, and give
rise to a periodic dynamical regime. In the cylinder this azimuthal motion results
in a continuous and uniform revolution of the whole structure, with a dimensionless
rotating period of Ta = 106.6 at ε = 0.25. In the P6 a periodic oscillation of ±π/6
appears with a dimensionless period of Tb = 181.6 at ε = 0.6.
In the P4 container (Γ = 9.75) the pattern is made up of nine identical square cells

at the secondary bifurcation (Ma = 1.16Mac, Fig. 3d) and becomes unstable atMa ≈
1.7Mac. The instability develops first in a pulsating mode in the cells, the central
one being in opposite phases with respect to its first four neighbouring cells. As far
as the magnitude of the pulsation reaches a critical value a periodical oscillation and
distortion of the central cell take place and superimpose on the pulsating movement.
The corresponding dimensionless period is Td = 25 at ε = 0.7.
The pattern in P5 container (Γ = 4.16) is made up of twin-cells at threshold, but

here the cell number evolves in the course of time from one to three cells (Fig. 3c).
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(a) ta ta+Ta/4 ta+Ta/2 ta+3Ta/4

(b) tb tb+Tb/4 tb+Tb/2 tb+3Tb/5 tb+9Tb/10

(c) tc tc+Tc/4 tc+Tc/3 tc+Tc/2 tc+3Tc/4

(d) td td+Td/4 td+Td/3 td+Td/2 td+3Td/4

Fig. 3. Samples of dynamical patterns computed in some regular polygonal and circular
containers close to the threshold (Pr = 900, Bi = 0.1); ti and Ti represent the time and
period of case i = a–d, respectively; (a) circular: Ta = 106.6, ε = 0.25; (b) hexagonal:
Tb = 181.6, ε = 0.6; (c) pentagonal: Tc = 190, ε = 0.8; (d) square: Td = 25, ε = 0.7.

This pattern becomes unstable forMa ≈ 1.65Mac through a pulsating mode in which
the two cells pulsate in opposite phases. Beyond a critical size the bigger cell splits
in two parts, which grow first in the same way provoking the disappearance of the
third cell. Then, one of them takes place in the facing wedge whereas the other one
lies in the wider left area. The wider cell expands to the detriment of the smaller
one, which progressively disappears while the wider splits at its turn in two parts
and the cycle repeats again. The corresponding dimensionless period is Tc = 190
at ε = 0.8.

5 Analysis and discussion

We address the main underlying point on how much do the container size and shape
quantitatively influence the convective fluid flow characteristics. Let us start our
analysis with the mechanisms at play at threshold in very small Γ (Γ < 3.5) where
only one convective cell takes place. Let us define a relative friction coefficient for
each vessel, which compares the driving free surface area (A) to the total friction one
(A + p dl, where p is the wetted vessel perimeter and dl is the liquid layer depth):
f = (A+p dl)/A = 1+Cn/Γ, where Cn is a geometrical constant, which only depends
on the vessel shape. Figure 1b plots εΓ versus f for Pr = 900 and Bi = 0.1, where
εΓ = (Mac −Mac∞)/Mac∞, for a vessel of aspect ratio Γ ), from which it is clearly
shown that for f ≈ 2−3 all vessels have the same εΓ for a given f . So it turns out that
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threshold values in very small aspect ratio vessels are mainly ruled by the relative
friction coefficient, which depends on both vessel size and shape. It can be concluded
from Figs. 1 and 2 that three zones can be distinguished owing to the leading mech-
anisms: i) for Γ < 3.5 threshold values are ruled by relative friction coefficient; ii) for
3.5 < Γ < 10 − 15 threshold is mainly ruled by vessel size and more weakly by its
shape; iii) for Γ > 10 − 15 threshold value tends asymptotically towards the infinite
layer limit. For a given Γ the friction area diminishes as the number of regular polygon
sides increases, up to the ultimate infinite value for the circular shape. On the other
hand, wedge influence in regular polygons scales as 1/n (n wedge number). Therefore,
taking into account these two effects let us introduce the following expression:

εΓ =
a+ c/n

Γ
+ b+ d/n (4)

where 3 < n < ∞ and a, b, c, d four constants (2.9; −0.2; 7; −0.35), which fairly
reproduces the general trend for very small aspect ratios within less than 2% discrep-
ancy on Mac, see Fig. 1a. This scaling law enables to estimate threshold value for
containers of any regular shape in the very-small aspect ratio range for the Pr and
Bi considered.
Let us consider to the confinement influence in a pattern made up of many cells. All

experiments and numerical simulations show that boundaries between adjacent cells
lying along vessel walls are roughly perpendicular to them. That is the reason in which
originates the distinction between CV s and ICV s (geometrical condition). Moreover,
as soon as a hexagonal pattern appears it tends to get its intrinsic size, which is that
of the unbounded pattern (hydrodynamical condition). However the pattern confined
in a container only tolerates cell-widths within an admissible bandwidth (±6%) [3]
(size condition). It has been observed that this bandwidth decreases as Γ increases
and is greater for ICV s than for CV s. For P6 and P∞ it is for a hexagonal central
cell ±1%, which roughly corresponds to the infinite layer pattern cell width. So, one
can conclude that P∞ behaves as a CV in the central part of the vessel, what that
formerly assumed by Bénard [1]. Furthermore, we have also observed that lateral cells
possess larger admissible deformation than core cells.
Let us finally discuss the existence of steady state or dynamical patterns. The

latter recurrently appeared much closer to the threshold in most of very small aspect
ratio configurations compared to previous works [11,15,19]. The spatially resonant
pattern [6,11] originates in the difference between intrinsic cell-size for the considered
ε and that imposed by the container. So, when the constrained pattern fits both
admissible bandwidth-size of the core cells and admissible “elasticity” of lateral cells,
then a steady state pattern can exist. Otherwise, a dynamical regime will emerge
even very close to the threshold. Dynamical regimes in small vessels and close to the
threshold can be explained theoretically by the existence of a co-dimensional two-
points [6,13]. On the other hand, computations have shown that the border shape
between two cells depends on their relative kinetic energy: it is a straight line if they
have the same energy and otherwise its concavity is towards the cell of highest energy.
When two neighbouring cells have the same energy, but different spatial distribution
their interface takes an S shape. This distorsion induces either a rotating (in P∞)
or oscillating (in P6) pattern that evolves in time from the concave to the convex
region. On the other hand when kinetic energy increases in a cell, its size increases
accordingly at the detriment of neighboring cells of lower kinetic energy up to a critical
limit, where this coarsening cell splits in two parts. This results in the “birth” of a
new cell and consequently to a dynamical pattern [22], which takes place whatever Γ
is. So, dynamical regimes seem to be an intrinsic STDBC behavior in the strongly
confined configurations, since it happens whatever the vessel shape is and even close
to the threshold.
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6 Conclusion

The container size and shape influences on both threshold and its associated pattern,
together with weakly supercritical regime up to the secondary bifurcation (ε < 2)
are studied in STDBC for high Prandtl number (Pr ≈ 900). Five container shapes
of various sizes, in the very small-to-moderate aspect ratio range (2 ≤ Γ < 24) have
been considered and their respective convective characteristics (threshold, pattern)
were compared. These results are the first ones ever obtained in P3, P5 and P6 con-
tainers along with original ones in P4 and P∞, according to the authors’ knowledge.
Indeed, in the latter case, some patterns have been found to correspond to the sec-
ondary bifurcation despite they were formerly attributed to threshold in experimental
works [14]. Furthermore, to unify the denominations among authors we have intro-
duced a classification of container sizes according to the convective structure. For
Γ < 3.5 the threshold value depends only on the friction coefficient, whereas for
larger aspect ratios it depends only on Γ and for Γ > 10−15 it tends towards the infi-
nite layer limit. Concerning the pattern in small aspect ratios, steady state solutions
only exist if a size compatibility condition is satisfied, whereas otherwise periodical
regime appears even very close to the threshold. This feature is an intrinsic STDBC
behaviour, since it appears in all the container shapes considered. Moreover various
modes can be observed depending on the container shape: rotating, pulsating and
mixed mechanisms in spatially resonant patterns (co-dimension-two points). On the
other hand, some containers are more likely to induce a perfect hexagonal pattern
than any others provided they satisfy both the geometrical condition (compatible ves-
sels: P3 and P6) and the size compatibility one (hydrodynamical condition). Hence
configurations of quasi-perfect hexagonal pattern in the core region can be devised
at wish, even in moderate aspect ratios, as they reproduce the infinite layer features.
This study could be extended in several promising directions: i) characterization of
the bifurcation nature at threshold according to the vessel shapes and sizes; ii) ex-
amination of higher distances from the threshold in which interesting steady state
pattern transitions occur.

The first author thanks CNRS (IDRIS) for providing substantial computing resources on its
supercomputers at Orsay, France.

Appendix

A summary of the studied geometrical configurations is listed in Table A1. Meshes
used in computations are reported in Table A2. A unit generic mesh has been built
for each shape and a conformal mapping onto the nodal coordinates of the generic
root mesh has been performed to match prescribed aspect ratios.

Table A1. Considered aspect ratios: a) P3; b) P4; c) P5; d) P6; e) P∞ containers.

a) 2.0 2.5 3.0 3.5 4.0 5.0 6.3 8.5 11.4 12.2 15.1 17.1 22.0
b) 2.0 2.5 3.0 3.5 4.0 5.68 6.18 6.36 8.48 9.75 13.0 16.25 22.0
c) 2.0 2.5 3.0 3.5 4.0 4.63 6.17 7.71 8.48 9.25 13.42 18.5 23.6
d) 2.0 2.5 3.0 3.5 4.0 4.84 6.45 8.38 11.28 14.1 16.92 19.75 22.36
e) 2.0 2.5 3.0 3.5 4.0 4.71 5.84 6.02 7.64 7.94 8.27 16.23 22.16
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Table A2. Computational meshes used for each container shape.

Computational domain shape # of H27 finite elements # of Mesh nodes
horizontal plane× depth horizontal plane x depth

Triangular 2187× 10 8911× 21
Square 2500× 10 10201× 21
Pentagonal 2205× 10 9031× 21
Hexagonal 2187× 10 8911× 21
Circular 2016× 10 8209× 21
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