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Abstract Dynamics is central to living systems. Many experiments in the last two decades have revealed
glassy dynamics in diverse biological systems, showing a transition between a solid-like and a fluid-like
state. The biological systems have nontrivial characteristics: they are active with novel control parameters
and immense complexity. Moreover, glassiness in these systems has many nontrivial features, such as the
behavior of dynamical heterogeneity and readily found sub-Arrhenius relaxation dynamics. Theoretical
treatments of these systems are generally challenging due to their nonequilibrium nature and large number
of control parameters. We first discuss the primary characteristics of a glassy system and then review the
experiments that started this field and simulations that have led to a deeper understanding. We also show
that despite many challenges in these systems, it has been possible to develop theories that have played a
significant role in unifying diverse phenomena and bringing insights. The field is at the interface of physics
and biology, freely borrowing tools from both disciplines. We first discuss the known equilibrium scenario
and then present the primary changes under activity.

Abbreviations

MSD Mean square displacement
SPPs Self-propelled particles
DH Dynamical heterogeneity
ATP Adenosine Tri-Phosphate
MDCK Madin–Darby canine kidney cells
HBEC Human bronchial epithelial cells
ABP Active Brownian particle
AOUP Active Ornstein–Uhlenbeck particle
RTP Run-and-tumble particle
SNTC Shot noise Temporal Correlation
RCP Random close packing
MCT Mode-coupling theory
IMCT Inhomogeneous mode-coupling theory
IDP Intrinsically disordered proteins
CPM Cellular potts model
MC Monte Carlo
MD Molecular dynamics
RFOT Random first-order transition
AVM Active vertex model
FDR Fluctuation–dissipation relation
FDT Fluctuation–dissipation theorem
ITT Integration through transients
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FSS Finite size scaling

1 Introduction

This review concerns the fascinating phenomenology of glassy dynamics in biological systems at varying length
scales. Glassy dynamics refers to the extreme dynamical slowdown, by several orders of magnitude, with a modest
change in the control parameters [1, 2]. Surprisingly, the phenomenon does not accompany any phase transition
or discernible change in static structures. A snapshot of a liquid and a glass look nearly identical, but their
dynamics are markedly different. Glassy systems show slower than exponential (stretched-exponential) relaxation
[3], sub-diffusive mean-square displacement (MSD) at intermediate times [4], non-Gaussian distribution of particle
displacement [5], dynamical heterogeneity [6], aging [7, 8], etc. In the last couple of decades, experiments have
shown that many biological systems also have glass-like dynamics. Examples include the cell cytoplasm [9–12],
cellular aggregates and tissues [13–19], colonies of bacteria [20] or ants [21–23], synthetic systems [24–26], etc.
The glass transition from a solid-like jammed state to a fluid-like flowing state seems to be crucial for several
biologically significant processes, such as wound healing [16, 27–29], cancer progression [30, 31], embryogenesis
[32–35], and many others. The importance of the problem has led to many simulations [36–42] and theories
[43–51] for a quantitative understanding of the phenomenon. Figure 1 provides some examples of various biological
systems having glassy dynamics that was once the subject of inert systems alone. These examples, and many
others, have immensely enriched the field of glassy dynamics with new challenges, fresh ideas, and possibilities of
novel discoveries.

One essential feature of biological systems is that they are active: the constituent particles consume energy and
do some work. The work can be diverse: for example, the particles can divide, die, differentiate, be confluent, change
their conformation, control the geometry and strength of interaction, propel themselves, etc. [52, 53]. Developing
a theoretical framework for such systems is a daunting task. However, commendable research works of the last
decades have shown that it is possible to reveal the generic principles and obtain a theoretical framework for these
systems, at least in some appropriate limits [52–54]. Predictions made from such theories have been tested and
validated in experiments and simulations. For example, cell division and apoptosis fluidize the system by cutting
off the relaxation time scale [55, 56]. Different stochastic models can make robust predictions about cellular fate
[57]. Energy landscape ideas of statistical physics provide crucial insights into the protein folding pathways and
distinctive folding processes [58]. These fascinating examples of applying physics principles to complex systems
demonstrate that it is possible to draw meaningful insights via the consideration of specific aspects of these systems
at a time. In the last decade or so, a large amount of theoretical work has focused on the glassy dynamics in active
systems of self-propelled particles (SPPs) and confluent epithelial tissues.

Active systems of SPPs comprise particles with a self-propulsion force, f0, and a persistence time, τp, of their
motion [54, 62–64]. Many biological systems can be conveniently modeled as systems of SPPs; for example, birds
and fishes [65–68], ants colonies [21], swimming bacteria [69], etc. There are also examples from cellular [13–15,
18, 19] and sub-cellular levels [70–72], as well as synthetic systems [25, 73–80]. Properties of active SPP systems in
their dilute regime have been the subject of intense research activities in the last several decades [54, 62, 81]. It is
well-known that these systems show many non-trivial properties. For example, they can have a flocking transition
in spatial dimension two when the mean velocity or the average direction of the particles go from zero to a non-zero
value [81]. We know that a continuous symmetry cannot spontaneously break in spatial dimension two; this is the
Mermin–Wagner theorem [82]. However, this theorem does not apply to active systems as they are out of equilib-
rium. In fact, a recent work [83] has shown that it is not only the orientation order, nonequilibrium fluctuations
in active systems can be strong enough to “violate” the Mermin–Wagner theorem leading to translational order
as well. Reference [84] has shown that long wavelength density fluctuations, reminiscent of Mermin–Wagner like
fluctuations, in 2D active glasses with only a few percent of active particles performing run and tumble active
motions get enhanced by several factors leading to divergence of mean squared position fluctuations with increas-
ing system size L in a power law as 〈Δr2〉 ∼ Lδ, with δ ∼ 1 rather than usual log(L) divergence as predicted by
Mermin-Wagner theorem in equilibrium solids. Similarly, even the disordered phase is quite different from ordinary
liquids. These systems show giant number fluctuations [54, 77]: the particle number fluctuation, ΔN , in a specific
volume is proportional to the average number of particles N in that volume. By contrast, ordinary liquids have
ΔN ∼ √

N . Another surprising aspect of active systems is the presence of long-range velocity correlations in these
systems [54, 85, 86]. In contrast, dense active systems are subjects of more recent interest. Experiments reveal that
they have glass-like properties [9, 13, 15, 87].

On the other hand, epithelial tissues have quite a distinctive character compared to ordinary particulate systems.
Epithelial tissues are confluent, i.e., packing fraction remains unity at all times. This specific character enforces
different types of models to theoretically study their properties. Some such models are the Vertex model [88–90],
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Fig. 1 We show different examples of biological and biology-inspired systems having glassy dynamics. We present four
different classes of systems; despite their widely varying natures, they all have glass-like dynamics. Some of the figures are
taken with permission from Refs. [1, 9, 59–61]

the Voronoi model [91, 92], the cellular Potts model [93–95], etc. These models represent cells as polygons and
can be considered either in [96, 97] or out of equilibrium [40, 98], depending on the absence or presence of self-
propulsion [40, 92], cell division and apoptosis [55, 99]. In recent literature, the competition between molecular
crowding and thermal or active agitation leading to slow dynamics has sometimes been described as jamming [100,
101]. We emphasize that the term jamming here is different from the zero-temperature zero-activity geometric
transition in disordered systems [102–104]. In this field, it refers to the transition separating the solid-like and the
fluid-like states. This transition, strictly speaking, is the glass transition. However, as the term jamming is easy to
grasp, it has grown in popularity [99–101].

Biological systems are complex, with too many variables. One must selectively choose the relevant parameters for
the phenomenon of interest. Choosing the “right model”, for example, particulate vs. confluent, as discussed above,
is also crucial for theoretical progress. What are the benefits of theoretical analysis, particularly for such complex
systems? It is often instrumental for deeper insight and quantitative predictions. But apart from these, it also
“reveals relations between quantities or phenomena that would go unnoticed without a theoretical model” [53]. On the
other hand, from the physics perspective, these fascinating systems extend the scope and extent of the equilibrium
glass transition problem. Many of these phenomena, exhibited in active glasses, are amenable to rigorous theoretical
frameworks. Understanding these characteristics can lead to deeper insights into the equilibrium problem itself.

The field of active glass is necessarily interdisciplinary. For the most part, we, therefore, take a parallel approach.
We will first briefly discuss the known results of the equilibrium problem and then present the corresponding results
for active glasses. We hope that such a presentation will benefit a wider audience. We emphasize that the term
“active” is quite broad and can refer to several forms, not limited to self-propulsion alone [52, 53]. Several review
articles on active glasses already exist [100, 101, 107, 108]. However, the field of active glass is rapidly growing,
and after these reviews were published, many works have appeared in the last few years. These works have further
enriched our understanding of the problem and helped the field mature, making more detailed comparisons with
biological systems feasible. Thus, our perspective article should complement these excellent existing reviews. This
review is organized as follows: we first describe the defining characteristics of a glassy system in Sect. 2. We then
briefly summarize in Sect. 3 some of the experimental results that led to this field, followed by a summary of
simulations in Sect. 4. We review the theoretical developments in Sect. 5 and conclude this review in Sect. 6,
discussing the current status and our perspective on the future directions and challenges of the field.

123



Eur. Phys. J. Spec. Top.

Fig. 2 a The self overlap function, Q(t), as a function of time for different values of temperatures (Adapted with permission
from Ref. [105]). b The self intermediate scattering function, Fs(k, t), at wave vector k = 7.25 as a function of time t for
various T (Adapted with permission from Ref. [106]). Both Q(t) and Fs(k, t) show a complex two-step relaxation process
as the system approaches the glass transition. c Mean-square displacement (MSD) as a function of t for different T . MSD
changes ballistically at short times, goes to a sub-diffusive plateau at intermediate times, and becomes diffusive at long
times. The plateau increases as T decreases (Adapted with permission from Ref. [1])

2 How to characterize a glassy system

Glass transition refers to the change of the liquid-like state to the solid-like state without crystallization when
we vary some system parameters, such as temperature or density. The relaxation time, τ , and the viscosity, η,
increase rapidly as the temperature T decreases. The glass transition temperature, Tg, is the T at which τ becomes
a specific value, ∼ 102 −103 s (say). Here, we first discuss how to characterize a glassy system; these characteristics
are the same for any system in the glassy regime. The most common defining hallmark of glassy systems is
the slower than-exponential, i.e., stretched exponential relaxation [1, 109–111]. One can characterize this via the
self-intermediate scattering function, Fs(k, t), at wave vector k , and time t ,

Fs(k, t) =
1
N

〈 N∑
i=1

eι̇k.(ri(t)−ri(0))
〉
, (1)

where N is the number of particles, ri(t) is the position of the ith particle at t , and 〈. . .〉 denotes ensemble as well
as time origin averaging. Another measure that is often used in the study of the dynamics of supercooled liquids
is the overlap function, Q(t) [109, 112] (Fig. 2a), defined as:

Q(t) = 〈Q̃(t)〉 =
〈 1

N

N∑
i=1

W
(
a − |ri(t) − ri(0)|

)〉
, (2)

where W (x ) is the Heaviside Step Function: W (x ) is 1 if x > 0 and 0 otherwise. The parameter a represents
the typical vibrational amplitude of the caged particles. Fs(k, t) and Q(t) show exponential decay in a liquid.
Relaxation becomes complex close to Tg: they decay toward a plateau at intermediate times and then toward zero at
long times (Fig. 2b) [1, 109, 110]. The long-time data fit well with a stretched exponential form, φ(t) ∼ exp[−(t/τ)β ],
β is the stretching exponent. When Fs(k, t) or Q(t) decays to a particular value, usually taken as 1/e, that time
defines a relaxation time, τ .

Fig. 3 a The van Hove function for spatial displacement, Gs(r, t), and b the van-Hove function for displacement in
a particular direction, Gs(x, t). In a glassy system, they both show non-Gaussian behavior at intermediate times. The
directions of increasing time are shown in the figure. Adapted with permission from Ref. [5]
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Fig. 4 a Snapshot of a glassy system with the arrow length proportional to velocity and the colors red and blue for the
fast and slow (compared to the average velocity) particles. The system shows dynamical heterogeneity, that is dynamic
coexisting domains of slow- and fast-moving particles. b The four-point function, χ4(t), characterizes DH, is plotted against
time for various temperatures, T .; it has a non-monotonic nature, with the peak time corresponding to a relaxation time
and the peak value to the domain volume. [Adapted with permission from Ref. [113]]

When molecular crowding is dominant compared to thermal fluctuations, it is hard for a particle to move through
the other particles as their movement is also constrained, leading to the phenomena of caging, another hallmark
glassy characteristic. We can track the motion of an average particle via mean-square displacement (MSD) at time
t :

〈r2(t)〉 =
〈 1

N

N∑
i=1

[ri(t) − ri(0)]2
〉
. (3)

The particle moves freely up to a very short inter-particle distance, manifested by the ballistic part of MSD with
slope 2 (Fig. 2c). After that, it feels the presence of the other particles, and the movement gets constrained; it
vibrates inside the cage formed by the neighboring particles. MSD becomes flat and sub-diffusive at this interme-
diate time. At very long times, it breaks the cage and gets trapped in another cage. This hopping-like motion is a
universal feature of glassy relaxation, leading to a universal exponential tail in the van Hove correlation function
(discussed later). Subsequent breakage of cages eventually leads to a diffusive motion at a long enough timescale.
This transition from sub-diffusive to diffusive behavior is another generic feature of glassy systems. We emphasize
that although glassy systems show sub-diffusive MSD and stretched exponential auto-correlation functions, these
characteristics alone do not imply glassy dynamics. Several non-glassy systems can also show these characteristics
[111, 114]. Glassy systems show several additional nontrivial features.

Another way to determine the properties of particle displacements is to look at the van Hove function, Gs(r, t).
It gives the probability distribution of particle displacement r at time t [5, 105, 116]:

Gs(r, t) =
1
N

〈
N∑

i=1

δ(r − |ri(t) − ri(0)|)
〉

. (4)

In the high T liquid phase, particle displacements are uncorrelated, and therefore, Gs(r, t) is Gaussian. However,
as the system approaches Tg, Gs(r, t) deviates from Gaussian. One can also define the van-Hove function along a
particular direction x , Gs(x, t), as

Gs(x, t) =
1
N

〈
N∑

i=1

δ(x − (xi(t) − xi(0)))

〉
. (5)

The non-Gaussian nature of the van Hove function highlights correlated particle movements that also affect the
relaxation dynamics. Thus, the non-exponential nature of Fs(k, t) is concurrent with the non-Gaussian nature
of van Hove functions (Fig. 3) [5, 105]. One can also characterize the degree of non-Gaussian nature via the
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Table 1 Some typical characteristics of glassy systems

Observable Characteristics

Self-intermediate scattering function, Fs(k, t) Fs(k,

t) = 1
N

〈 ∑N
i=1 eι̇k.(ri(t)−ri(0))

〉
Fs(k, t) characterizes the dynamics, it decays exponentially
fast in liquids and develops a complex relaxation scenario
as the system approaches glass transition, where it first
decays to a plateau and then toward zero at long times
(Fig. 2a)

Self-overlap function, Q(t):

Q(t) =
〈

1
N

∑N
i=1 W

(
a − |ri(t) − ri(0)|

)〉 Q(t) decays exponentially fast in a liquid. But as the
system approaches the glassy state, it shows a complex
relaxation scenario. It first decays toward a plateau and
then from the plateau toward zero at very long time
(Fig. 2b)

Mean square displacement (MSD):

〈r2(t)〉 =
〈

1
N

∑N
i=1[ri(t) − ri(0)]2

〉 MSD is typically ballistic at short times. It becomes
sub-diffusive at intermediate times, showing a
characteristic plateau, and then becomes diffusive at long
times (Fig. 2c)

van Hove function or distribution of particle displacement:

Gs(r, t) = 1
N

〈∑N
i=1 δ(r − |ri(t) − ri(0)|)

〉 Particle displacements are Gaussian in normal liquids. But

for glasses, Gs(r, t) shows non-Gaussian tails at
intermediate times (Fig. 3b)

Breakdown of Stokes–Einstein relation In normal liquid, diffusivity is inversely proportional to
relaxation time, known as the Stokes–Einstein relation.
However, this relation breaks down in glassy systems
(Fig. 5)

Fragility and the nature of relaxation dynamics In the Angell plot representation, log(τ/τ0) vs. Tg/T , a
straight line represents Arrhenius relaxation dynamics
(Fig. 6). The systems whose curves fall below the
straight line have super-Arrhenius and above the straight
line have sub-Arrhenius relaxation dynamics. The slope of
these curves at T = Tg defines the fragility of the system

Four-point susceptibility, χ4(t)

χ4(t) = N
[〈

Q̃(t)2
〉

−
〈
Q̃(t)

〉2]
It is measured by the fluctuations in Q(t) or Fs(k, t). For a

liquid, χ4(t) ∼ 0, but as the system approaches glass

transition point, χ4(t) shows a growing peak. It signifies
the presence of dynamical heterogeneity in the system
(Fig. 4)

Fig. 5 Dη/T will be
constant if the
Stokes–Einstein relation is
valid. This ratio increases
with decreasing T in a
glassy system showing the
breakdown of the relation.
Adapted with permission
from Ref. [115]
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non-Gaussian parameter (NGP), α2(t). For example, in spatial dimension 3, one has,

α2(t) =

[
3
〈
r(t)4

〉

5〈r2(t)〉2 − 1

]
. (6)

When the particle displacements are uncorrelated, such that Gs(r, t) is Gaussian, we have α2(t) = 0. Non-zero
α2(t) generally refers to correlated movements; for glassy systems, it is attributed to dynamical heterogeneity
(DH).

DH is another intriguing dynamical characteristic of glassy systems. It refers to the coexisting fast and slow-
moving regions (Fig. 4a). Moreover, they move in time: a fast-moving region can become slow-moving at later
times and vice versa. A four-point correlation function that characterizes the DH is [6, 113, 117–119]

χ4(t) = N
[〈

Q̃(t)2
〉

−
〈
Q̃(t)

〉2]
. (7)

where Q̃(t) is defined in Eq. (2). χ4(t) increases at short times, attains a peak value, χp
4 , and then decays again

(Fig. 4b). The time when χ4(t) has the peak defines another relaxation time, τpeak. In general, τpeak is proportional
to τ . χp

4 is proportional to the average volume of the fast- or slow-moving regions. As the system approaches the
glass transition point, χp

4 increases, signifying DH grows.
Many variables can characterize the transport properties of a system: diffusivity, D , viscosity, η, or relaxation

time, τ . D and η of a liquid are related via the Stokes–Einstein (SE) relation, D = kBT/(cπRη) where c is a
constant that depends on dimension, and R is particle diameter [120, 121]. Using τ ∝ η/T [122], the SE relation
implies Dη =constant or Dτ =constant. However, as shown in Fig. 5, this relation breaks down in the supercooled
temperature regimes in the presence of DH [115, 121]. This violation is another characteristic of glassy systems
and is found to be directly related to the growing DH.

A steep increase of η (or τ) is a defining feature of glasses. However, η for different systems will grow at different
rates. C. A. Angell showed that the plots of log10 η as a function of Tg/T give different curves for various systems
(Fig. 6). The curves meet at Tg/T = 1 by definition since a specific value of η defines Tg. This plot is known as
the Angell plot [123–125]. We can categorize various systems as strong or fragile glasses based on the position of
the curves in this plot. An Arrhenius behavior, i.e., η ∼ exp[C/T ], where C is a constant, will follow a diagonal
straight line. The systems for which the curves are close to the Arrhenius plot are known as strong glasses, while
the systems for which they are away from the Arrhenius plot are known as fragile glasses. Note that the ‘strong’
and ‘fragile’ distinctions are not mechanical. The behavior of the curves for the fragile glasses is known as super-
Arrhenius. Likewise, if the curves are on the other side of the Arrhenius line, they are sub-Arrhenius. For most
equilibrium glassy systems at high enough densities, with a few exceptions [103, 126, 127], the plots are either

Fig. 6 The Angell plot of
log(η) as a function of
Tg/T . Systems whose
curves are close to the
Arrhenius line are known as
‘strong’ glasses, and away
from it, in the lower half,
are known as ‘fragile’
glasses. The super- and
sub-Arrhenius behaviors are
also marked. Adapted with
permission from Ref. [123]
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Fig. 7 Auto-correlation
function for glasses under
aging. After a sudden
quench to a low-T , a glassy
system evolves toward
equilibrium. The two-point
correlation function, Ck(t,
tw), now depends on the
waiting time, tw. Ck(t, tw)
are obtained from the
mode-coupling theory for
aging, different curves
represent various tw (as
given in the legend).
(Adapted with permission
from [8])

Arrhenius or super-Arrhenius. [1, 104, 124, 128]. The fragility index, K , of a system can be defined via

τ = τ0 exp
(

1
K(T/TK − 1)

)
, (8)

where τ0 is a microscopic time scale. One can fit the above expression with simulation or experimental data and
obtain K . K measures the steepness of the growth of viscosity (or relaxation time) with decreasing T as the system
approaches glass transition. Systems with larger values of K are more fragile systems.

Finally, we discuss another feature of glassy systems, known as aging. Note that the definition of Tg is motivated
by practical considerations than any genuine phase transition. Below a particular time scale, it becomes impractical
to keep the system in equilibrium; Tg is the T that corresponds to this time scale. Below Tg, the system is out of
equilibrium and continues to evolve. After a sudden quench around Tg, the system evolves toward the equilibrium
state. This non-stationary nature of the state is known as aging: the system properties depend on the age or
waiting time, tw [8, 129–131]. For example, the two-point auto-correlation function, Ck(t, tw) = 〈ρk(t)ρ−k(tw)〉,
depends on both times, t and tw, and not the time-difference alone. Figure 7 shows Ck(t, tw) as a function of
(t − tw) for different values of tw; as tw increases, the decay of Ck(t, tw) becomes slower.

Note that, traditionally, the nonequilibrium phase below Tg is called glass, whereas the equilibrium phase above
Tg is called super-cooled liquid. However, Tg has no thermodynamic significance. As we discussed earlier, many of
these properties can also appear because of some other reasons, such as systems close to ordinary phase transition
or external impurity. Therefore, we should look at several of these aspects to characterize glasses. We list some
of these characteristics in Table 1 for quick references. We now discuss active glasses starting with some of the
experiments that started this field.

3 Experimental results: active glasses

We start by reviewing some of the experimental results that motivated this field. The systematic effort to reveal
glassy dynamics in biological systems began in the early 2000s, around the same time when many of the crucial
concepts of equilibrium glasses, such as the dynamical heterogeneity and various static and dynamic length scales,
just started to evolve [5, 6]. Many experimental works have revealed the glassy dynamics in diverse biological
systems (see Fig. 8 for some representative results). For the constraint of space, we will be brief here and refer
the reader to some excellent reviews [101, 132] for a more exhaustive list of the experimental works. We aim to
highlight the diversity of systems showing glassy dynamics. The list is enormous: cellular cytoplasms, collections
of cells and tissues, synthetically designed systems, crowded environments of various organisms—from ants to
humans, etc. These experimental results have immensely enriched the field of glassy dynamics.

In the year 2001, the group of Jeffrey J. Fredberg coated ferrimagnetic microbeads with synthetic peptide,
bound them to integrin receptors on the surface of human airway smooth muscle cells and showed via rheological
measurements that “the cytoskeleton may be thought of more properly as a glassy material existing close to a
glass transition” [9]. In a series of subsequent seminal works, they showed that cell cytoplasm has many glass-like
properties. For example, a firmly anchored bead with the cytoskeleton of a living cell shows caging and sub-diffusive
MSD at intermediate times [10, 133, 134]. The elastic moduli of the cytoskeleton with frequency vary as a power
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law, but with an exponent smaller than 3/4 that is expected for a reconstituted F-actin system. The exponent 3/4
in a dense system of semiflexible polymers has an entropic origin (see Appendix A for the details of the argument).
A smaller value of the exponent for the elastic behavior implies the system is closer to a glassy system [135]. Much
like an ordinary glassy system [1], the cytoskeleton fluidizes under oscillatory shear, shows aging behavior, and
the distribution of particle displacement is non-Gaussian [10, 11]. These results shook the traditional thoughts
about cell cytoplasm, where only specific signaling mechanisms were assumed to be consequential. Instead, the cell
interior is now visualized as a complex chemical space of soft material where biochemistry, molecular crowding,
and various physical forces are inseparable [134].

Over the years, many experiments established that the cell cytoplasm of diverse systems shows glassy behavior:
for example, the dynamics inside the Hela cells [136], the light-induced active motion of intracellular chloroplasts
that becomes glassy under dim light [137], or the pH-induced reversible adaptation between a fluid-like and a
solid-like states [138]. Despite the similarities of their glassy behavior with equilibrium glasses, the cell cytoplasm
is inherently different. Various active forces are quintessential in these systems and lead to fundamental differences.
For example, unlike in equilibrium glasses, the MSD becomes super-diffusive at long times [10]. The system prop-
erties are highly ATP (Adenosine Tri-Phosphate)-dependent. The bacterial cytoplasm also shows characteristics of
glassy systems that can vary with the degree of ATP supply [72]. The cytoplasm of an osmotically compressed cell
behaves like a strong glass, and the fragility decreases as the ATP supply increases [87]. More recently, Nishizawa
et al. [12] studied the transport properties in diverse systems, both in vitro and living cytoplasm, and showed
that this behavior of decreasing fragility with increasing metabolic activity (higher level of ATP) is more generic.
The conventional control parameters of glassy dynamics are T , density, and physical interactions. But given these
fascinating discoveries of glassiness in active systems, this picture now has to change to include activity as a crucial
control parameter. Activity will drive the system out of equilibrium. When the departure from equilibrium is sub-
stantial, one must resort to new tools. But, when this departure is slight, and there is a separation of time-scale,
“the fluctuation-dissipation ideas can still be applied: the slowly changing overall state of the system is considered
to be a small perturbation” [139]. In this limit, we can use linear-response like ideas to extend the equilibrium
theories of glassy dynamics for active systems [10, 140–144].

We have till now discussed the glassy dynamics inside the cell. However, biology is organized at different levels
and different length scales. We now discuss some experiments showing glassy dynamics in another length scale,
in aggregates of cells. Most experimental systems of cellular collectives are confluent, i.e., the cells fill the entire
space. The packing fraction remains constant at all times. By contrast, the packing fraction in particulate systems
can vary and be a control parameter. One clarification on terminology will be beneficial here. The terms—jamming
and glass—are distinct, with entirely different physics [102–104, 145]. The first is a zero-temperature, zero-activity
phenomenon, whereas glassiness signifies competition between energy barriers and thermal or active agitation.
Most biological systems are active. Strictly speaking, the solid-like slow dynamics should be called glassy dynamics.
However, these terms are often used imprecisely in this field [101, 107, 146], and jamming and glassy dynamics
are often interchangeably used while referring to solid-like slow dynamics.

In a pioneering work, Angelini et al. [13] showed that the dynamics in a confluent monolayer of Madin–Darby
canine kidney (MDCK) cells is similar to that in a glassy system. The self-diffusivity within the monolayer exhibits
non-Arrhenius behavior, and the system shows dynamic heterogeneity, hallmarks of glassy dynamics. Park et al.
[14, 147] demonstrated that a confluent monolayer of human bronchial epithelial cells (HBEC) also shows sub-
diffusive MSD, stretched exponential slow relaxation, and dynamical heterogeneity, much like a glassy system.
Garcia et al., via the study of the HBEC confluent monolayer, established that the system exhibits a long-range
velocity correlation, similar to self-propelled systems in the dilute regime [15]. Malinverno et al. [16] showed that a
confluent human mammary epithelial cell monolayer also shows glassy characteristics; they further demonstrated
that the system fluidizes when a particular cortical functional protein, RAB5A, is over-expressed [148]. Different
confluent monolayers, such as HBEC and MDCK monolayers, the Drosophila wing disk, etc., also show similar
glass-like behavior [17, 132, 149–154]. Schötz et al. [35] revealed that Zebra-fish embryonic explants have glassy
properties, such as anomalous diffusion, caging behavior, non-Gaussian particle displacements, etc. Mongera et al.
[18] showed the existence of a positive stress gradient from posterior to anterior during the vertebrate body axis
elongation in Zebrafish embryos. It correlates with the fluid-like behavior in the posterior zone and the solid-like
glassy behavior on the anterior side. A fluid cannot support stress, whereas a solid can. They have shown that
active stress fluctuations fluidize the tissue in the posterior zone, and “cell rearrangements and movements are
all consistent with the tissue behaving as a disordered, glassy material” [18]. Thus, one common theme appears
via all these experimental results. Irrespective of the detailed cell types, a confluent monolayer can exhibit glass
transition and such dynamical behavior is relevant for several biologically significant processes.

We now discuss some examples of glassy dynamics at various other length scales. Bacterial colonies can exist in
different phases, such as liquid, glassy, active nematic, etc. As the number density increases, the dynamics within
the colony shows a crossover from a swarming state to a slowed-down glassy state [20, 59]. The aggregation of
macroscopic insects such as fire ants also shows remarkable similarities with a glassy system [21–23, 155–157].
Research on disease-spreading mechanisms reveals that glassy dynamics of the adaptive immune response to
antigens prevent autoimmune diseases [158]. Very recently, several works have also shown that the biomolecular
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Fig. 8 Representation of some experimental results on active glass. a The van Hove function for particle displacements in
a particular direction, Gs(x, t), is non-Gaussian for the cytoplasmic fluid. Taken with permission from [10]. b The Angell
plot representation of viscosity in the cytoplasm. [Taken with permission from [12]]. The fragility decreases as activity
increases. c The velocity snapshot of a cellular monolayer shows dynamical heterogeneity. Taken with permission from [13].
d The overlap function, Q(t), of a dense active system of Brownian particles shows glassy characteristics. [Adapted with
permission from [26]]

condensates, i.e., the phase separated dense region of intracellular proteins [159, 160], also show glassy behaviors
[161–164].

Most biological systems are too complex to be amenable to a detailed theoretical treatment. However, we can
study different aspects individually by defining simpler model systems with specific characteristics; this has proved
immensely powerful in physics and provides deeper insights into complex problems. Synthetically designed model
systems mimic various active systems; e.g., symmetric and asymmetric rod-shaped particles on a vibrated disk
represent active systems of SPPs [54, 62, 76, 77]. Arora et al. [61] have designed an experimental system consisting
of 3d -printed prolate ellipsoids on a vertically vibrated plate. Asymmetric friction and a hole along the principal
axis of the ellipsoid can precisely control particle activity. The experiments confirm the re-entrance phenomenon
of glassy dynamics and the disappearance of glassy dynamics at high enough activity. Synthetic Janus particles
with two different surfaces can self-propel in certain fluids [64, 80, 165]. Klongvessa et al. [26, 166] studied the
glassy dynamics in a system of gold Janus particles half-coated with platinum. They showed that the overlap
function exhibits two-step relaxation with a plateau at intermediate times, implying caging of the particles. The
plateau gets longer and the system becomes non-ergodic with increasing density [166]. The relaxation dynamics
shows complex stretched exponential relaxation with decreasing activity. In a recent work, Arora et al [167] have
introduced a fascinating system to mimic the dynamics of a cellular monolayer. They take a thin paper clip, glue
the two ends to form a ring, place the 3d -printed active particles inside this paper ring, and place the entire system
on a vertically vibrated plate. This system represents a single synthetic cell. Placing several of these “cells” on the
plate, they mimic a cell monolayer. Remarkably, this system reproduces several static and dynamic properties of
a cellular monolayer. However, in comparison with biological systems, one has immense control over this synthetic
system. Specifically, the results of Ref. [167] demonstrate that the jamming transition and the glassy properties of
epithelial systems come from geometric constraints.
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The above examples show that glassy dynamics is prevalent in various biological systems at different length
scales. These examples have immense practical importance. All these aspects make active glass a fascinating
scientific problem. Nonetheless, due to the inherent complexity of these systems, it is not clear if the mechanisms
governing the glassy dynamics in different systems are related. A theoretical approach can help in addressing
these questions. However, developing a theory for such systems is non-trivial and challenging; as is often the case,
numerical simulations can greatly help in such a scenario. We now discuss the simulation studies that have provided
crucial insights to understand the glassy dynamics in active systems.

4 Simulation studies of active glassy systems

As biological systems are immensely complex, simulations have provided crucial insights into their glassy dynamics.
We will first discuss the particle-based model systems of SPPs and then the confluent models of epithelial tissues
in Sect. 4.4.

Theoretical implementation of activity in the form of SPPs can be of many different forms; the essential idea
is to break the detailed balance such that the active noise is no longer related to dissipation via the fluctuation-
dissipation relation [54, 62, 168]. Thermal noise is δ-correlated over time. One straightforward way to implement
activity is to use a colored noise correlated over time. The correlation time of the active noise is known as the
persistence time τp. This persistence time is a crucial aspect of active forces. There exist many possible ways to
implement activity in the form of self-propulsion. We will only discuss some of the most well-known forms.

4.1 Different models of self-propulsion

There are mainly three different classes of activity (or self-propulsion or motility): (1) active Brownian particles
(ABP), (2) run-and-tumble particles (RTP), and (3) active Ornstein-Uhlenbeck process (AOUP). The models are
designated by a self-propulsion force, f0, and a persistence time, τp. The behaviors with respect to f0 for all three
models are similar, however, they differ when studied as a function of τp. This difference comes from the details
of their implementation [49, 50]. We provide a brief discussion about these models.

(1) The Brownian motion refers to the erratic motion of a particle as a result of random kicks by particles of
the bath. The equation of motion for the active Brownian particle is

ṙi(t) = f0n̂i(t) +
√

2DT ζi(t); φ̇i(t) =
√

2DRξi(t) (9)

where ri(t) is the position of the ith particle at time t , n̂i = (cos φi, sinφi), f0 is the self-propulsion force [64,
169], ζi and ξi are Gaussian white noises with zero mean and unit variance: 〈ζi, α(t)ζj, β(t′)〉 = δijδμ, νδ(t − t′),
where μ and ν designate different components of the thermal force, and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′). DT and DR are
translational and rotational diffusivities. We have set the friction coefficient to unity. Setting f0 = 0 provides the
equations of motion for passive particles. Note that this form of activity keeps the magnitude of self-propulsion
constant at each time step.

(2) The run-and-tumble particle (RTP) dynamics was originally proposed to describe the dynamics of E. coli
bacteria [170]. The particles move with a constant speed of v0 and reorient after a persistence time τp. The
reorientation event is tumble; τp has a Poisson distribution. The long-time properties of ABPs and RTPs are
similar. For the active glassy dynamics, the active force, f(t), for both ABPs and RTPs can be written as

〈f(t)〉 = 0; 〈fi, μ(t)fj, ν(t′)〉 = f2
0 exp

[
−|t − t′|

τp

]
δijδμ, ν . (10)

One can derive this form of the active noise statistics as a coarse-grained form of the microscopic random kicks in
the form of shot noise [171].

(3) Finally, several works have also included activity as an active Ornstein–Uhlenbeck process (AOUP) [39,
45, 172]. Considering low Reynolds number scenario, we can ignore the acceleration term and write down the
over-damped equation of motion for the particles as,

ṙi = ξ−1
0 [fi +

N∑
j( �=i)=1

Fij ];

τpḟi = −fi + ζi. (11)

123



Eur. Phys. J. Spec. Top.

Fig. 9 a Relaxation
becomes slower as activity
decreases in a hard-sphere
model of ABP. The decay of
Fs(q, t) becomes slower, but
there is no corresponding
growth in the peak of χ4(q,
t). [Taken with permission
from [36]]. b DH increases
with decreasing activity in
a model active system.
[Taken with permission
from [37]]. c Relaxation
time, τ , and fragility K
decreases as τp increases in
model 1. Adapted from Ref.
[50]. d τ and K increases as
τp increases in model 2.
Reproduced from Ref. [39]
with permission from the
Royal Society of Chemistry

where Fij is the inter-atomic conservative forces of the system and fi is the force due to self-propulsion. τp is the
persistence time of self-propulsion. ζi is a Gaussian white noise with zero mean and variance of 2ξ0T

sp
effδijδ(t − t′).

T sp
eff is the single-particle effective temperature, similar to f2

0 , and denotes the strength of the active noise. ξ0

denotes the friction and can be set to unity. The active noise correlation in this case becomes

〈fi(t)〉 = 0; 〈fi, μ(t)fj, ν(t′)〉 =
T sp

eff

τp
exp

[
− |t − t′|

τp

]
δijδμν , (12)

where μ and ν denote spatial components of the active force.
Although other forms of activity are also possible (see Sect. 4.3), these two forms of activity, encompassing three

distinct models of self-propulsion, describe most of the active systems. Their forms are motivated by different
biological systems. In the first set of models, generally, there are two types of molecules, A and B. Active forces
are effective when A’s are attached to the B’s. There is an attachment-detachment dynamics and τp refers to the
time scale A remaining attached to B. Naturally, when τp → 0, there is no active force; this is easy to verify from
Eq. (10). This type of activity is known as model 1 or the SNTC (Shot Noise Temporal Correlation) model [49,
50]. By contrast, when activity machinery is internal to the particles, τp refers to the time of rectilinear motion
in a particular direction. In this case, activity strength is maximum and the system follows equilibrium Brownian
dynamics when τp → 0; the activity strength decreases as τp increases. Equation (11) implements this scenario;
this type of activity is known as model 2 or AOUP [49, 50]. Simulation studies have revealed that although the
effects of f0 are similar within both models, the behavior as a function of τp differs [38, 39, 49, 50].

4.2 Simulations of active glasses of SPPs

We now summarize some simulation works exploring glassy dynamics in dense active systems of SPPs. Many
“intuitive” results may prove wrong in active systems. Considering activity as a driving force, it may seem plausible
that the glass transition is entirely suppressed due to activity, much like a glass under steady shear [1, 100]. In 2011,
Henkes, Fily, and Marchetti showed that a system shows glassy behavior even in the presence of activity [173].
Though the detailed behavior depends on the specific model and the parameters [100], most simulations show that
active driving delays the glass transition. For example, one can reach the universal random close packing fraction
(RCP) of 0.64 in a hard-sphere model by introducing activity in the system. Reference [36] implemented activity via
the ABP model discussed above. As shown in Fig. 9a, the introduction of activity fluidizes the system, i.e., Fs(k, t)
decays faster as activity increases; this allows to equilibrate the system even close to RCP. Surprisingly, the higher-
order susceptibility, χ4(k, t), shows no increase in peak height, even when relaxation time τ increases (Fig. 9a).
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This result contrasts the behavior in equilibrium glasses [1]. Using a slightly different variant of activity belonging
to the class of model 2, Berthier showed that a two-dimensional system of self-propelled hard disks undergoes a
nonequilibrium glass transition [37]. A comparison with mode-coupling theory (MCT) inspired power law behavior
for τ as a function of packing fraction φ provides φc, the critical value of φ where τ diverges: τ ∼ (φc−φ)−γ , where γ
is an exponent. Similar to Ref. [36], φc increases with increasing activity. However, there are crucial differences too.
Unlike the results in [36], this work suggests a “re-entrant” behavior and growing dynamic correlations manifested
by the increasing DH (Fig. 9b) [37]. This re-entrance behavior, that is non-monotonic nature of τ as a function of
τp, has been revealed by several other works [42, 174, 175]. However, it is not clear if such non-monotonic behavior
is a generic feature of active systems with persistent noise or only appears in specific models of activity.

The effects of activity on the glassy dynamics depend on the details of the active noise. We will discuss two
studies by different groups to highlight this. The group of Dasgupta et al. used a model of self-propelled particles
of ABP belonging to the class of model 1 discussed above [38]. Figure 9c shows that τ and fragility K decrease
as τp increases. Whereas Berthier, Szamel, and Flenner presented simulation studies of an active system with
model 2 type of activity [39]. They found “a very different qualitative picture of the glass transition in systems of
self-propelled particles” [39]: τ and K increase as τp increases (Fig. 9d). The reason behind these opposite effects
of activity in these studies is that the behaviors with respect to τp are different in the two models. These two
examples highlight the significance of the detailed forms of activity [49, 50].

There are several differences between active glasses and passive glasses. The active systems of anisotropic particles
show large swirls or vortices [176]. Activity governs the scale of these vortices and can become system-spanning
as the system approaches glass transition. Activity can either promote or suppress glassy behavior depending on
the region of parameter space [42]. Interestingly, the active glassy phase correlates well with the two-point static
density correlation function [42]. This result implies MCT of glassy dynamics should be able to address various
features of active glasses. We will show later that this assertion of Berthier et al. is indeed correct.

Fily, Henkes, and Marchetti have studied the glassy dynamics and phase separation of active systems within
the same framework [177]. The phase separation in these systems with repulsive interaction is a novel effect of
activity alone. This effect should be there in the dense regime as well. The re-entrance behavior in these systems
affirms this effect [37, 42, 61]. However, this re-entrance in active systems must be distinct from that in equilibrium
systems since the effective attractive interaction has a lifetime (changes after τp). Exploration of this behavior in
detail will provide critical insights into the effects of activity on glassy dynamics. We emphasize that τp is the
main activity parameter: the system behavior at small and large τp can be different. This aspect seems relevant
even for the aging behavior [8] in active glasses [178, 179].

In a recent work, Paul et al. [180] have shown that activity has non-trivial effects on the DH. How can we compare
the DH of various active systems with varying parameters? Since the relaxation dynamics remains equilibrium-
like at a suitably defined Teff, one can choose systems with constant τ but varying activity and compare their
DH to illustrate the role of activity. Figure 10a, b show the visual effects of activity on DH as depicted by the
cooperatively rearranging region (CRR) (defined as the regions where particles have moved more than the average
particle displacement). The cooperative regions grow significantly in size in the presence of activity even if τ remains
the same. Another way to quantify the effect of activity on DH is by measuring the four-point susceptibility, χ4(t),
as shown in Fig. 10c (simulations) and Fig. 10 d (active-IMCT prediction). Notice the dramatic increase of peak
height with increasing activity in the simulation results, and the active-IMCT predictions corroborate the same
[180]. The DH length scale, ξD, plays a central role in various theories of glassy dynamics. In equilibrium systems,
ξD remains of the order of a few molecular/particle diameters. Thus, the dramatic growth of DH, and consequently
large ξD, in active glasses can be beneficial to test different theoretical predictions more easily.

Since activity drives the system out of equilibrium, measuring ξD in these systems is nontrivial. Reference
[180] measured ξD via four different ways to ensure the applicability of the methods in a nonequilibrium setup
(see Figs. 10e–g for a schematic representation). More recently, similar equilibrium methods of probing ξD using
elongated probe particles have been extended to these active systems with remarkable agreement among them [181].
Figure 10h shows ξD as a function of scaled temperature (T −TC)/TC , where TC is the MCT critical temperature.
Activity also affects ξD at short times [182]; this might be due to the effect of activity on the phonons. Activity
seems to strengthen the long wavelength fluctuations so much that the Debye–Waller factor in these solids diverges
as a power-law instead of a logarithm in system size [84].

We have, till now, discussed the simulation results for the two models of activity discussed in Sect. 4.1. However,
the term “activity” is quite broad and can have many different forms. We next discuss some simulation results
based on some of these different forms of activity.

4.3 Several other forms of activity

As we emphasized earlier, there can be many forms of activity; we now present some such examples. Physicists
got interested in the problem of active matter from the seminal paper by Vicsek et al. [81], who proposed a
minimal model for the ordering transition in two dimension. Since active systems are out of equilibrium, the

123



Eur. Phys. J. Spec. Top.

Fig. 10 a Visual representations of growing Dynamic heterogeneity in the system by color coding the set of most mobile
particles, often termed as cooperatively rearranging regions (CRR) in the literature for passive systems, b shows the
same for an active system. Enhanced heterogeneity is evident from the visual representation itself. c Four-point dynamic
susceptibility, χ4(t) as a function of increasing activity parameter f0, keeping the relaxation time of the system the same as
depicted in the inset by the decay of the two-point density correlation function Q(t). The dramatic growth of χ4 peak with
increasing activity correctly captures the enhanced DH. d χ4(t) obtained from active-IMCT also shows similar behavior as
in simulation. Inset: As the relaxation time is fixed, Q(t) overlaps. Within active IMCT, the parameter λ is chosen such
that Q(t) overlaps for all values of f0s with that for f0 = 0. e Schematic representation of the block analysis method for a
finite system size. f We can use the non-Gaussian nature of the van-Hove function to obtain ξD. g Scaling analysis of the
four-point structure factor at the time scale τ , S4(q, t = τ) also gives ξD. h Active-IMCT calculation accurately captures
the essential physics behind the phenomena of enhanced DH due to activity. Adapted with permission from Ref. [180]

Mermin–Wagner theorem does not rule out any ordering transition in two-dimension [82]. The main ingredient of
the model is an alignment interaction where each particle tries to align with the average direction of its neighbors
with an uncertainty (noise). This system shows flocking, which is an orientational ordering transition, in spatial
dimension two as the strength of the noise decreases [81, 183]. Many studies have also implemented the alignment
interaction in different ways [184–189]. Motivated by experiments [24], Lam et al. proposed a two-dimensional
model of self-propelled hard disks with a coupling between the velocity and the polar axis of the particles [190].
Numerical integration at low density reveals the presence of the alignment interaction. A hidden Vicsek-like
alignment interaction seems to be a generic feature of many self-propelled active systems [85]. However, there are
differences: the flocking transition in the original Vicsek model is continuous, whereas Lam et al. find it is discrete.
It is unclear if this distinction is significant in the dense regime since the glassy state avoids flocking transition.
Similar types of indirect implementation of the alignment interaction have appeared in several other works [150,
173].

Another form of activity leads to conformational change. The cellular cytoplasm has many intrinsically disordered
proteins (IDP); they can actively change their shape by consuming energy [191]. Shape change can strongly affect
the dynamics. Oyama et al. included this aspect within a simple model where particles can have two different
diameters with a stochastic switch rate between the two [192]. The simulations show that the system fluidizes with
a small volume change accompanied by a change in fragility. Such effects can play crucial roles in the dynamics
of bacterial cytoplasm, where the force-generating motor proteins are different from those in Eukaryotic cells
[72]. In addition, metabolic activity can also play a critical role in the dynamics, both at the level of proteins,
where ATP (adenosine triphosphate) can modulate the interaction strength of IDPs, as well as at the cellular and
organism (bacteria) level, where ATP controls the level of self-propulsion. Thus, metabolic activity can be the
tuning parameter of glassy dynamics [12, 72].

We also highlight another form of activity, the attachment–detachment kinetics. One of the proteins that deter-
mine the mechanical properties of a cell is the actin filament: it is a long rod-like molecule. It is also a dynamic
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molecule, where monomers attach in one end and detach from the other end [52]. This form of activity can also
affect the dynamics. One can study another type of active system, initially proposed for the nonequilibrium absorb-
ing phase transitions [83, 193, 194]. In the 2d variant of the model, N disks are randomly placed on a plane. Two
disks are active if they overlap; otherwise, they are static. The active disks get a random displacement along the
axis connecting the two centers of mass. This model also shows long-range crystalline order in two-dimension [83].

Finally, one important form of activity comes in the form of cell division and apoptosis (death). These two
processes are crucial for the growth dynamics of any tissue. Pathogenic conditions appear whenever our body
loose control of these two processes. Sinha et al. [195] have analyzed spatially heterogeneous dynamics of cells
in an agent-based growing tumor [34] spheroid. As we will discuss further in Sect. 4.5, including these processes
within a simple model is nontrivial due to their immensely complex biological nature. Within the model of Ref.
[195], cells grow stochastically in a local pressure-dependent way and divide when they reach a critical size. They
implemented apoptosis via a random sudden removal of a cell. The inner cells in the tumor showed slow glass-like
sub-diffusive dynamics, whereas cells at the outer layer are super-diffusive. Several works have shown that cell
division and apoptosis cut off the glass transition and fluidize the system [55, 196]. These simulations are based
on particulate models; however, more realistic models to simulate tissue properties are the confluent models that
we discuss below.

4.4 Models of confluent systems

We have till now discussed the glassy dynamics in particulate systems of SPPs. However, tissues and epithelial
monolayers are fundamentally different from particulate systems. These cellular systems are confluent, that is cells
entirely cover the space. For concreteness of the discussion, we will focus on a monolayer of cells, extension to three
dimensions is straightforward. The packing fraction of a monolayer remains unity at all times; hence, it cannot be a
control parameter. In addition, the shape of the cells determines most physical behaviors [99]. Therefore, including
this information within the models is essential for a deeper understanding of these systems. Theoretical models for
these systems have been developed and are of great interest for the static and dynamic properties. Although cells
are three-dimensional objects, experiments show that the height of an epithelial monolayer at a particular stage of
development remains nearly the same [88]. Thus, a two-dimensional description of the monolayer is possible. We
will briefly introduce these models and summarize some simulation results for glassy dynamics in such systems.

A theoretical framework for static and dynamic properties of a cell monolayer has two distinct aspects. The
first is an energy function, H, describing the physical properties of a cell, and the second is a confluent model.
The cellular cytoplasm behaves like an incompressible fluid [52], and the cell height remains nearly the same in
a monolayer [88]. These two properties lead to an area constraint with a target area A0. The simplest way to
describe this constraint is an energy cost proportional to (Ai − A0)2, where Ai is the area of the ith cell in the
monolayer. The other contribution to the energy function comes from two distinct properties. For most practical
purposes, the mechanical properties of a cell come from the cell cortex, a thin layer of cytoplasm just below
the cell membrane. The cortex comprises long rod-like molecules known as actin filaments and force-generating
myosin molecules. Different cross-linking molecules also contribute to mechanical properties. These molecules try
to minimize the cell perimeter. In addition, various junction molecules connect the cortices of the two nearest
neighbor cells. Examples include E-cadherin, α-Catenin, β-Catenin, tight junction molecules, etc. They provide
adhesive, attractive interactions. Since they are present only at the periphery, their contribution in H must be
proportional to the perimeter. These two properties lead to an energy cost in H proportional to (Pi − P0)2 where
Pi is the perimeter of the ith cell and P0 is a constant, known as target area, that parameterizes the intercellular
properties. Thus, we can write H as

H =
N∑

i=1

[ΛA(Ai − A0)2 + ΛP (Pi − P0)2], (13)

where N is the total number of cells, ΛA and ΛP are elastic moduli related to area and perimeter constraints. A0

and P0 can vary for different cells, but we have kept them uniform for simplicity. We can rescale length by
√

A0,
and write Eq. (13) as

H =
N∑

i=1

[
λA(ai − 1)2 + λP (pi − p0)2

]
, (14)

where we have redefined the parameters as λA = ΛA, ai = Ai/A0, λP = ΛP /A0, pi = Pi/
√

A0, and p0 = P0/
√

A0.
A0 is the average area when we consider poly-disperse systems. This energy function can now be evolved at a
temperature T with various confluent models. In biological systems, T includes contributions from all possible
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Fig. 11 a Snapshot of a
configuration in cellular
Potts model, b snapshot of
a configuration in Vertex
model. c Schematic
representation of a T1
transition. Over time, cell 3
and 4 which were sharing
an edge move away, and cell
1 and 2 become the nearest
neighbors sharing a newly
formed edge under T1
transition. [T1 transition
snapshots are generated
from the Supplementary
Movie from Ref. [201]]

activities and the equilibrium temperature. Thus, interpretation of T remains unclear, and several definitions of
T exist: the ratio of correlation to response function [49, 141, 144], from Einstein relation [197], etc. Within the
theoretical models, T is treated at the same footing as an equilibrium temperature and provides good agreements
with experiments [14, 89, 94, 97, 147].

The energy function H gives the force on a cell, Fi = −∇iH. The detailed method to include self-propulsion or
motility depends on the particular model, we describe one particular method suitable for the Vertex model (see
below for the details). We first assign a polarity vector, n̂i = (cos θi, sin θi), where θi is the angle with the x -axis.
The motile force is fa = f0n̂i = ξ0v0n̂i. The friction coefficient ξ0 is generally set to unity. θi performs rotational
diffusion [40],

∂tθi(t) =
√

2Drηi(t) (15)

where ηi is a Gaussian white noise, with zero mean and a correlation 〈ηi(t)ηj(t′)〉 = δ(t−t′)δij . Dr is the rotational
diffusion coefficient, τp = 1/Dr.

Given the energy function, Eq. (13), and the model of activity, we now need a model for confluent systems for
simulations. Many such models exist: some are lattice-based, such as the cellular Potts model (CPM) on square
and hexagonal lattices [93–95, 97]; some are continuum models, such as the Vertex model and the Voronoi model
[88, 89, 198, 199]. There are also the phase field models [200] that combine both of these aspects. All these models
use the same energy function, Eq. (13); however, they can differ significantly in their implementation details. These
models represent cells as polygons and are inspired by the models of foams [93, 95, 198]. We now provide a brief
description of some of these models.

Cellular potts model (CPM): The CPM [93–95] is a lattice-based model. Each lattice site is associated with
an integer Potts variable (σ) from σ ∈ [1, N ], where N is the total number of cells. σ = 0 is usually reserved for
medium. There can be many lattice sites with the same σ. The set of lattice sites with the same σ represents a
cell. The dynamics proceeds via Monte Carlo simulation at temperature T using the energy function, Eq. (14). We
show a typical snapshot of the system from our simulations in Fig. 11a. Different cell sites can become disconnected
during the dynamics; this is fragmentation. Cells with high activity or T can exhibit such a scenario. However, it
is also possible to suppress cell fragmentation via some modified dynamical rules [96, 202].

Voronoi and Vertex model: In the Voronoi model [40, 91, 92], a set of points represent the centers of the
cells and are the degrees of freedom. The Voronoi tessellation of these points represents the cells. The cell area
and perimeter are those of the tessellated polygons. Dynamics is the evolution of these cell centers either via
Monte-Carlo (MC) or molecular dynamics (MD) at a T using the energy function, Eq. (14). On the other hand,
in the Vertex model [88, 89, 203, 204], vertices are the degrees of freedom. Figure 11b shows a snapshot of the
system, where the vertices are marked. Cell perimeter is defined by connecting the vertices with a straight line
(red lines in Fig. 11b or a line of constant curvature. Dynamics corresponds to evolving the vertices using the
energy function, Eq. (14) either via MC or MD.

In confluent systems, cellular movements, and hence tissue fluidization, proceed via a process known as the T1
transition. In the T1 transition, cells exchange neighbors. As shown in Fig. 11, two cells that share an edge move
away, and two other cells now share a newly formed edge. Thus, T1 transition is a neighbor exchange process where
the tissue remodels via topological rearrangements. Although the individual neighbor changes during the process,
the average number of neighbors remains constant. During T1 transitions, cells undergo significant deformations
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Fig. 12 a The decay of the
overlap function becomes
faster with increasing P0.
b MSD also increases as P0

increases. [Taken with
permission from Ref. [40]].
These results show that the
system fluidizes with
increasing P0.
c Sub-Arrhenius behavior
of τ in a Voronoi model.
[Taken with permission
from Ref. [91]].
d Sub-Arrhenius behavior
of τ in cellular Potts model.
[Taken with permission
from Ref. [96]]

and shape changes [41, 205]. One can control the tissue fluidization by controlling the rate of T1 transition [206].
This process is naturally included within the CPM and the Voronoi models. In the Voronoi model, as we take the
Voronoi tessellation at each time, the T1 transition automatically happens during the tessellation. However, in the
Vertex model, it is included externally: whenever an edge length becomes lower than a threshold value, �0, a new
edge is formed perpendicular to it, the connection between the two cells sharing the old edge is broken, and the
new edge is shared between two other neighboring cells. �0 has a crucial effect on the dynamics and controls the
rate of the process. The Vertex model has a rigidity transition, akin to the jamming transition [207]; however, this
transition is absent within the other models [96, 208]. Despite this difference, the qualitative dynamic and static
behaviors are similar for all three models. We now discuss some of the simulation works investigating the glassy
properties of the confluent models.

4.5 Glassy dynamics in confluent models

Glassy dynamics have been investigated via the confluent models both in equilibrium and in the presence of activity.
The dynamical behavior within all the confluent models is qualitatively similar. Unlike a system of foam at the
confluence, there are many T1 transitions in these systems. The distribution of energy barriers for a confluent
vertex model is exponential, ρ(E) ∼ e− E

E0 [41]. The dynamics of the system is glass-like, both for 2d and 3d
vertex models [35, 41]. In a seminal work, Bi, Yang, Marchetti, and Manning studied a self-propelled Voronoi
model and showed that it exhibits a glass transition “from a solidlike state to a fluidlike state” [40]. The self-
intermediate-scattering function shows two-step decay (Fig. 12a). The MSD grows ballistically at short times,
sub-diffusive at intermediate times, and diffusive at long times (Fig. 12b). From the long-time behavior of MSD,
one can define a diffusivity, Deff. Reference [40] represented the glass transition when Deff becomes lower than a
specific value, 10−3. The cell velocity in the presence of activity shows a swirl-like nature, similar to what one
finds in asymmetric particles of SPP [176]. Bi et al. showed that the glassy dynamics primarily depends on three
parameters: self-propulsion speed v0, τp, and p0. Similar results were also found in simulations of other models of
confluent systems, such as the Voronoi model [92, 208, 209] and the CPM [96, 210].

One intriguing property of the confluent systems is a readily-found sub-Arrhenius behavior (Fig. 12 c and d). If
we plot viscosity or relaxation time as a function of Tg/T , a straight line represents Arrhenius behavior (Fig. 6). As
discussed in Sect. 2, most equilibrium particulate models exhibit super-Arrhenius behavior. In contrast, confluent
systems readily show sub-Arrhenius behavior [96, 208, 209]. It seems that when the cells are not very stiff, such
that p0 is relatively large (� 3), the system shows sub-Arrhenius behavior, whereas, in the other limit, such that
p0 is relatively small, it shows super-Arrhenius behavior [96, 209]. However, the origin of this behavior remains
unclear.

In a recent study, Paoluzzi et al. [92] proposed a minimal model for an alignment interaction between the
directions of cell elongation and displacement. The strength of this alignment interaction, J , governs the glassy
behavior and dynamical heterogeneities by forming cooperative regions. J also seems to work as the inverse of an
effective temperature; the modified Vogel–Fulcher–Tammann formula in terms of J could capture the structural
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relaxation time. The glassy dynamics in this model seems qualitatively similar to other confluent systems. These
results suggest that the random first-order transition (RFOT) theory might be applicable for the glassy behavior
in these systems. RFOT theory has been phenomenologically extended for confluent cell monolayers, and the
predictions agree well with both equilibrium and active confluent model simulations [96, 98]. The simulation
results, such as the van-Hove function, Fs(k, t), χ4(t), velocity fluctuations, etc, agree well with experiments
[150–152, 211].

Close to the glass transition, where the relaxation time is big, the nature of the T1 transitions becomes significant.
The T1 transitions are naturally included within the CPM [93, 95, 96] and the Voronoi models [208, 209]. However,
it needs to be included externally with some rules within the Vertex model simulations [41, 89]. Although the
qualitative behaviors are similar within all the models, there is a crucial difference. A rigidity transition, akin to
the jamming transition, has been predicted within the Vertex model [207], but no such transition exists within the
Voronoi model [208] or the CPM [96]. The influence of this difference on the glassy dynamics remains unclear.

Most studies of the glassy behavior of confluent monolayers do not consider cell divisions and death (or apop-
tosis). But they are crucial for many biological systems and significantly affect the dynamics. Cell division and
apoptosis always fluidize a confluent tissue [55, 56, 212], but these studies were within particulate models. Cza-
jkowski et al. [213] addressed the question using the active Vertex model (AVM). Both cell division and apoptosis
are complex biological processes involving many concerted events of intricate natures. Thus, devising straight-
forward rules to include them within a theory remains challenging. Reference [213] chose simple rules for these
processes, dividing a randomly chosen cell with an arbitrary division plane at a rate similar to apoptosis. For
apoptosis, a0 and p0 are set to zero for a cell. Similar rules have also been used elsewhere [88], including by some of
us [99]. A comparable rate for the two processes ensures the conservation of the total number of cells. Contrasting
earlier studies [55, 196], Ref. [213] showed that glassy dynamics exist in a confluent system when the division
and death rates are low. Understandably, these processes will strongly affect the other cells in a confluent sys-
tem. Therefore, a thorough understanding of the rules of these two crucial processes and how they affect different
properties of a confluent system is imperative for a deeper understanding of static and dynamic properties of such
systems.

We have shown that there exists a large number of experimental and simulation results. However, given the
complexity of the systems, theoretical results have been relatively scarce. We now discuss some of these theories
that have helped us understand these results within a broader framework and bring out the unified features of the
systems.

5 Theoretical approaches

As discussed in the introduction, the fundamental mechanism of equilibrium glassy dynamics remains unknown.
Therefore, applying theories of equilibrium glasses to scenarios in the presence of activity is challenging. However,
given the importance of the problem and the presence of a vast amount of experimental data, even the approximate
theories are of vital importance for insights. The primary motivation here is to understand the role of activity in
systems significantly different from those that physicists usually deal with. Concurrently, these systems provide
an opportunity to extend the scope and extent of the original problem. Activity has many forms: the constituent
objects can change shape, divide, die, change interaction or valency, self-propel, etc. Significant theoretical devel-
opment has occurred in the last few years for systems of SPPs and confluent systems. Activity drives the system
out of equilibrium. Although the formal proofs fail and new properties emerge, this alone is not the primary dif-
ficulty. When “the departure from equilibrium is substantial, we must resort to different tools... But the situation
is different for systems that are only slightly out of equilibrium... In such systems, we can expect a separation,
by many orders of magnitude, between the microscopic time scale and the macroscopic time scale... The system
can then be considered to be essentially thermalized inside a metastable state, and so fluctuation-dissipation ideas
can still be applied” [139]. Even though hard to prove analytically, many nonequilibrium behaviors of disordered
systems can be explained within a fluctuation–dissipation relation (FDR) framework that is a generalization of
the Boltzmann statistics [139, 140]. Thus, the main question is how far active systems are from equilibrium. It
has been addressed for systems of SPPs, and it turns out not too far when τp is not too large [214]. The system
still obeys a generalized FDR at a Teff. On the other hand, we can write down the mode-coupling theory (MCT)
for a non-equilibrium system. We will first discuss this theory and then the generalization of random first-order
transition (RFOT) theory for active systems.

5.1 Mode-coupling theory of active glasses

Mode-coupling theory is one of the most popular theories of glassy dynamics. It was developed in the early ’80 s by
Götze and others [2, 215, 216]. It provides an equation of motion for the intermediate scattering function, F (k , t).
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For a bulk system, the equation of motion is

∂2F (k, t)
∂t2

+
k2kBT

Sk
F (k, t) +

∫ t

0

dt′m(k, t − t′)
∂F (k, t′)

∂t′
= 0,

m(k, t) =
ρkBT

16π3

∫
d3q|Vq, k−q|2F (q, t)F (k − q, t), (16)

where k and q are wavevectors, Sk, the static structure factor, kB , the Boltzmann constant, and ρ, the density;
note that we have set the particle mass to unity. m(k , t) is known as the memory kernel, and Vq, k−q is the vertex
function: Vq, k−q = [q̂ · kck + q̂ · (k − q)ck−q] with q̂ being the unit vector and cq being the direct correlation
function. Equation (16) is an integro-differential equation that we can solve numerically. We can calculate the
other variables, such as τ and η, via F (k , t). The theory for particulate systems makes several predictions that
agree with simulations and experiments [2, 116, 215]. F (k , t) at high T (or low density) decays exponentially. As
T decreases, F (k , t) develops a two-step relaxation: it first relaxes toward a plateau and then toward zero at long
times, much like in simulations and experiments. As T decreases, the plateau length increases. Eventually, below
a particular temperature known as TMCT, F (k , t) remains stuck at the plateau and does not decay to zero: this
is a genuine phase transition, known as the non-ergodicity transition or the MCT transition. However, no such
transition exists in simulations or experiments, and all the predictions of MCT break down at this point. TMCT is
higher than Tg, so the breakdown of the theory happens at a relatively high temperature. The reason behind this
failure of MCT remains unclear.

Despite this failure, MCT has several fascinating features for which the theory remains immensely popular [2,
215]. Most simulations and colloidal experiments operate in a parameter space where MCT remains valid. In the
regime of validity, the MCT predictions agree well with simulations and experiments. Like a critical theory, MCT
predicts power law divergences for the time and length scales. The exponents are universal and independent of
system details. This particular feature of universality makes MCT a natural choice to apply for experimental data
of novel systems. MCT assumes that the statics is already known. From the static properties as input, the theory
provides the dynamics. One can also write down MCT for nonequilibrium systems [8]. We emphasize this specific
feature of the theory: the static properties alone provide the dynamics. In active glass simulations, it has been
shown that the dynamics is intimately related to the static properties [42]. Thus, we expect MCT to work well for
these systems.

Concurrent with this expectation, many different variants of MCT exist for active systems of self-propelled
particles [39, 43, 45–49, 217–220]. Kranz et al. obtained the MCT for the dynamics of a driven dissipative hard
sphere system [217]. This model represents synthetic active systems. The theory predicted that glass transition
persists even to a high degree of driving. Interestingly, the theory also predicted a weak dependence of MCT
exponents on the driving amplitude. The qualitative predictions seem to agree well with simulations of vibrated
disks [218]. In 2013, Berthier and Kurchan derived an MCT for active spin-glass systems of p-spin spherical spins
[43]. The structure of the theory for this system is similar to that of structural glasses. The authors first write down
the theory for a general nonequilibrium state and then demonstrate the conditions when the system resembles an
equilibrium system. They showed that “the main features of this equilibrium glass transition robustly survive the
introduction of a finite amount of non-thermal fluctuations driving the system far from thermal equilibrium” [43].
Szamel et al. [46] obtained an analytical theory for the steady state of an active system. The form of the theory
resembles that of equilibrium MCT. However, there are crucial differences: the direct correlation function in the
memory kernel is replaced by another that combines the velocity correlator, ω‖. This difference is a significant
departure from the usual MCT as the theory now requires the input of Sk and ω‖. Crucially, the spatial correlation
of velocities affects the memory kernel [45]. Feng and Hou presented an MCT for similar systems where activity
enters as AOUP [47]. Liluashvili, Ónody, and Voigtmann presented a mode-coupling theory for active systems based
on the integration through transients (ITT) approach [48]. ITT has been immensely successful for sheared glassy
systems [221, 222], then it is logical to apply this formalism to obtain MCT for active systems. The qualitative
predictions of the theory agree well with simulations [48]. Reference [223] used the projection operator formalism
to obtain the MCT for active systems that has very similar structure as that in Ref. [48] Note that the memory
kernels of Refs. [48, 223], and [47] do not include any velocity correlators and the structures are similar to the
equilibrium MCT; this contrasts the theory of Refs. [45, 46]. Unlike in equilibrium, different approaches to deriving
the active MCT do not lead to the same final theory. Perhaps, this is not surprising as the system is complex, and
the detailed theoretical approach is critical.

The steady state of an active system is out of equilibrium. As Berthier and Kurchan demonstrated for active
spin-glass systems [43], a general theory must be in terms of both the response and the correlation functions.
As a limiting case, one can write the MCT for the correlation function alone. In equilibrium, FDT ensures this
limit is unique. However, no such relation exists for active systems, and the approximation is nontrivial. Possibly,
this explains why so many different variants of MCT exist, and their detailed analysis may bring further insights
into various MCT approximations themselves. In Ref. [49], some of us derived an MCT for the steady state
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of an active glassy system of SPPs via a different route. They first wrote down the most generic theory for a
nonequilibrium system, applicable even under aging. Then they take the limit of infinite waiting time. In the
presence of activity, the system will reach a stationary state. One thus obtains the nonequilibrium MCT for the
steady state of active systems. Since there is no FDT-type relation within the derivation, the theory should be valid
for the general nonequilibrium steady-state. However, the price one pay is that the theory becomes in terms of both
the correlation and response functions [49]. The schematic version of the theory, throwing away the wavevector
dependence, is

∂C(t)
∂t

= Π(t) − (T − p)C(t) −
∫ t

0

m(t − s)
∂C(s)

∂s
ds, (17)

∂R̃(t)
∂t

= −1 − (T − p)R̃(t) −
∫ t

0

m(t − s)
∂R̃(s)

∂s
ds, (18)

where C (t) and R̃(t) are the correlation and the integrated response functions. m(t − s) = 2λ C2(t−s)
Teff(t−s) , p =

∫ ∞
0

Δ(s)∂R̃(s)
∂s ds, Π(t) = − ∫ ∞

t
Δ(s)∂R̃(s−t)

∂s ds, and λ is the control parameter. Δ(t) is the variance of active noise,
and Teff(τ) is defined via a generalized fluctuation-dissipation relation (FDR) for non-equilibrium systems [141–143]
as

∂C(t)
∂t

= Teff(t)
∂R̃(t)

∂t
. (19)

We emphasize the primary difference between the equilibrium MCT, Eq. (16), and the active MCT, Eq. (17):
whereas the former is in terms of the correlation function alone, the latter is in terms of both the correlation and
the response function. Using simple arguments, Ref. [49] derived an analytical expression for Teff that agrees well
with simulations [49, 141]. Furthermore, they obtained the scaling relations for the relaxation dynamics for both
types of active forces discussed in Sect. 4.1; the trend of fluidization as a function of τp are opposite within the two
models (Fig. 13 a and b). Consistent with most works, it seems that the relaxation dynamics remains equilibrium-
like at a Teff. However, as discussed above (Fig. 10), a recent work have shown that activity has nontrivial effects
on the dynamical heterogeneity (DH) [180]. Thus, although the relaxation dynamics is equilibrium-like, DH in a
glass-forming liquid has qualitatively different behavior. For example, the peak value of χ4(t) can vary for the
same system with varying activity and T but the same relaxation time. Thus, the DH length scale may have a

Fig. 13 a Non-equilibrium
mode-coupling theory
correctly predicts that the
system fluidizes when τp

increases for model 1 type
of activity. b The opposite
happens for the model 2
type of activity.
[Reproduced from Ref. [49]
with permission from the
Royal Society of
Chemistry.]. c Comparison
of active RFOT theory
(lines) with simulation data
(symbols) for model 1.
d Active RFOT also
predicts (dashed line) the
trend of fragility (K ) as a
function of self-propulsion
force, f0, and agrees
remarkably well with
simulation data (symbols).
[Taken with permission
from Ref. [50]]
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complex character in active glassy systems. Using two different models, Ref. [180] showed that the conclusions are
independent of system details. Consistent with existing results [217], this current study also found a weak activity
dependence of the MCT exponents [180] [see inset of Fig. 10(h)]. Although MCT, till now, has been extended for
particulate systems alone, very recently, some of us have applied MCT to the dynamics of confluent systems [224].
It seems that the unusual glassy dynamics of confluent systems might be an ideal candidate for the MCT-like
mechanism of glassiness.

5.2 Random first-order transition (RFOT) theory

The random first-order transition (RFOT) theory [225] is another popular theory of glassy dynamics. Through a
set of simple-looking arguments, RFOT theory makes many impressive predictions that agree well with simulations
and experiments [128, 225–228]. According to RFOT theory, a supercooled liquid comprise mosaics of local states.
The free energy of a typical mosaic of size R has two contributions: an energy cost from the interface with other
mosaics and an energy gain from the bulk. Therefore, the change in free energy is

ΔF = −ΩdfRd + SdγRθ,

where, Ωd and Sd are volume and surface of a unit hypersphere in dimension d , f is the free energy per unit volume,
and θ is an exponent. In general, θ ≤ d − 1. Minimizing the free energy gives the typical mosaic length scale ξ.
Now, relaxations within the RFOT theory are entropic. Therefore, we use f = TSc, where Sc is the configurational
entropy. The surface energy, γ is proportional to T , i.e., γ = ΞT .

The basis of the RFOT theory is a crucial assumption that Sc goes to zero at a finite temperature TK . In
1948, Walter Kauzmann plotted the “differences in entropy between the supercooled liquid and crystalline phases”
[229], equivalent to Sc, for different materials. When extrapolated, the curves for various systems go to zero at a
finite temperature [229]. This surprising result led to the speculation of a finite-temperature phase transition in
glassy systems. The phase transition is characterized by a vanishing Sc at TK . Then we can expand Sc around
TK : Sc = ΔCp

(T−TK)
TK

, and obtain

ξ =
[ Γ
T − TK

] 1
d−θ

, (20)

where Γ = SdTKθΞ
ΩddΔCp

. Relaxation dynamics within RFOT theory involves the relaxation of the mosaics. The barrier
height for a region of length ξ is proportional to ξψ, where ψ is another exponent. Considering the propor-
tionality constant given by the thermal energy scale, kBT , and assuming a barrier crossing scenario, we obtain
τ = τ0 exp(Δ0ξψ

T ), where Δ0 = kBT . The values of the exponents continue to be debated; one possible choice is
ψ = θ = d/2 [128, 226]. Substituting Eq. 20 in the expression of τ and simplifying, gives

ln
( τ

τ0

)
=

SdTθ

ΩddT

Ξ
Sc

=
Γ

T − TK
, (21)

where we have set kB to unity. The predictions of the theory agree well with simulations and experiments.
The RFOT theory of glass is deceptively simple. Some of its assumptions have deep and profound roots and

remain unclear to date [128]. Yet, the final expressions of the theory are surprisingly simple and easy to compare
with experiments [227, 228]. This feature makes an extension of the RFOT theory for active systems, even if
approximate, quite attractive to analyze the data for even more complex systems. Of course, the approximations
are nontrivial, but such extensions have provided crucial insights and allowed a platform to think about an exciting
problem for fascinating discoveries. We now discuss such extensions of the theory for active glasses.

Active RFOT theory for systems of SPPs: The RFOT theory of equilibrium glasses has been extended
for systems of SPPs [50]. Active systems can be considered at an effective equilibrium at a suitable Teff when τp

is not too large [44, 144, 214]. Nonequilibrium MCT shows that Teff is the same as the equilibrium T at short
times and goes to a higher value, determined by activity, at long times. The transition from T to the higher value
happens at τp. Moreover, Teff explains the relaxation dynamics [49]. These results suggest an effective equilibrium
extension of RFOT theory for active systems is possible, at least when τp is not too large. Reference [50] extended
the RFOT theory treating activity as a small perturbation and using linear-response-like ideas.

Within RFOT theory, the glassy properties are manifestations of a genuine phase transition at TK , where the
configurational entropy vanishes. Notice the behavior of τ , Eq. (21): the surface energy appears in the numerator
and Sc in the denominator. Since the latter vanishes and the former does not, the critical properties will be
dominated by the behavior of Sc close to TK . If the surface energy has no anomalous behavior, one can assume
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Ξ remains unaffected by activity. However, in active systems, surface energy can have nontrivial behavior. For
example, Ref. [230] numerically studied a model of suspended self-propelled particles and reported a negative
interfacial tension. The interfacial tension is not the same as the surface energy of RFOT theory, but they are
related [227]. If the interface tension is negative, one must be careful about the surface term for active systems.
However, in a more recent theoretical work, Hermann et al. challenged the results of Ref. [230] and analytically
showed that the interfacial tension in active systems is actually non-negative [231]. Negative surface tension will
make interfaces unstable; the non-negative value is consistent with the observation of stable interfaces in phase-
separated active systems [231].

Reference [50] assumed that the activity correction to the surface energy term is negligible and focused on the
configurational entropy. When the activity is small, one can expand Sc around its passive value using a Taylor
series expansion. The effect of activity is parametrized as a potential δΦ on top of the passive system potential Φ,
thus Sc(Φ + δΦ) � Sc(Φ) + ∂Sc

∂Φ |δΦ=0δΦ + . . . = Sc(Φ) + κaδΦ + . . .. Then, the expression of relaxation time from
the length scale after minimizing the free energy becomes

ln
( τ

τ0

)
=

E

T − TK + TKκaδΦ
ΔCp

, (22)

where E is a constant [50]. Therefore, activity shifts TK to a lower value (compared to the passive case) where
τ diverges. δΦ is the effective potential due to activity. Within some simplifying mean-field assumptions, we can
calculate this contribution for both types of activity discussed in Sect. 4.1. Reference [50] showed that one gets
δΦ = f2

0 τp/(γ + kτp) for model 1. Substituting it in Eq. 22, we get

ln
( τ

τ0

)
=

E

T − TK + Hf2
0 τp

1+Gτp

, (23)

where H = TKκa/(γΔCp) and G = k/γ are constants. On the other hand, one obtains δΦ = T sp
eff/(γ + kτp) for

model 2, and this gives the relaxation time as

ln
( τ

τ0

)
=

E

T − TK + HT sp
eff

1+Gτp

. (24)

The expressions of H and G remain the same as earlier. T sp
eff is analogous to f2

0 . The strength of the noise in
model 2 changes with τp, leading to opposing behaviors within the two models as a function of τp. For example,
τ and fragility decrease as τp increases in model 1 (Fig. 13c, d, whereas they increase as τp increases in model
2. The theoretical results agree remarkably well with simulation data for both models when τp is small, where
an effective FDT is valid [139, 214]. The theory helped rationalize some contrasting results [38, 39] in the active
glass literature. This work also highlights that the precise nature of activity is crucial. The theory has recently
been extended [232] to higher activity regime. Recently, Ref. [233] tested some of the crucial approximations of
the original active RFOT theory [50]. Specifically, Ref. [233] has computed ξ in a model active glass-forming liquid
using detailed FSS analysis of τ as well as block analysis methods and tested the prediction of active RFOT theory
(Eq. 20). Interestingly, they find that the exponent θ depends on the strength of activity in a systematic manner,
much like the MCT exponents [180, 217]. Similarly, the exponent ψ that relates τ with ξ also depends on the
strength of activity. However, the combination of the exponents that defines the T -dependence of the relaxation
dynamics becomes independent of activity. This result explains why relaxation dynamics remain equilibrium-like
[50, 100, 141] despite the non-trivial dependence of activity on the dynamics.

RFOT theory for confluent systems: As discussed in Sect. 4.4, the confluent systems and particulate models
are fundamentally different. Usually, we neglect the particle shapes in most scenarios of physics problems. However,
cell shapes are crucial as they determine many biologically significant properties [234–239]. Some of us have recently
shown that we can statistically describe the cell shape variability in a confluent monolayer [99]. Moreover, the
dynamics of the monolayer also depends on the cell shape variability. Many experiments have explored the glassy
dynamics in such systems [14, 16, 17, 147, 148, 150, 154]. Simulations of the models discussed in Sect. 4.4 have also
provided crucial insights [35, 40, 41, 92, 208, 209]. However, analytical theories for such systems are rare. In 2021,
some of us phenomenologically extended RFOT theory to understand the glassy dynamics in confluent cellular
monolayers [96]. One fundamental parameter in these systems is the target perimeter p0, representing the inter-
cellular interaction potential (Eq. 14). Since interactions determine both the surface energy and the configurational
entropy [240], we can express them in terms of p0 by expanding the interaction potential around a chosen p0.

Reference [96] showed that the dynamics can have two distinct regimes: the low-p0 regime, where the dynamics
depends on p0, and the large-p0 regime, where the dynamics is independent of p0. Note that an object with a given
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area has a minimum perimeter, pmin. When there is no restriction on the shape, this pmin is 2
√

π corresponding to
a circle of unit area. However, there is a constraint on shape for confluent systems as circles cannot fill space. The
space-filling regular shape in two-dimension is a hexagon; pmin is 3.722 for a hexagon with unit area. On the other
hand, there is no restriction on the maximum value of the perimeter. For a system with irregular objects, pmin

is slightly higher and depends on the degree of irregularity. The low-p0 regime corresponds to when p0 < pmin,
and the large-p0 regime corresponds to when p0 > pmin. In the low-p0 regime, cells cannot satisfy the perimeter
constraint in Eq. (14), and the dynamics depends on p0. Expanding the potential around a reference p0 value, pref

0 ,
and simplifying, we obtain for the low-p0 regime,

ln
(

τ

τ0

)
=

k1 − k2(p0 − pref
0 )

T − TK + κc(p0 − pref
0 )

(25)

where k1, k2 and κc are constants [96]. Various constants in Eq. (25) can be obtained by fitting the analytical
form with one set of data. Once these constants are determined, one can compare the theory with simulation
results. The theory agrees well with simulation data of confluent systems. As discussed earlier, one of the striking
features of the confluent systems is the readily-found sub-Arrhenius relaxations [91, 209]. This simple extension of
the RFOT theory can also capture this behavior. One of the novel predictions of the theory is the super-Arrhenius
relaxation at very low p0; this is also consistent with simulations [96, 209]. The distinctive potential governed by
the perimeter constraint, the second term in Eq. (14), is essential for the sub-Arrhenius behavior.

On the other hand, if p0 is large, the cells can satisfy the perimeter constraint and the second term in Eq. (14)
becomes zero. Therefore, we expect the dynamics should be independent of p0. Via a straightforward calculation,
Ref. [96] obtained in this regime,

ln
(

τ

τ0(P0)

)
=

Ξ
T − TK

. (26)

Note that the high-T dynamics is still p0-dependent, i.e., τ0 will depend on p0. But, the glassy aspects are
independent of p0. The theory agrees with simulation data in this regime as well.

The above theory does not contain cellular motility. However, motility is crucial in many systems. For example,
over-expressing various oncogenes can fluidize a confluent cell monolayer from a solid-like state [16]. This behavior
has direct consequences for health and diseases. In a recent work, Ref. [98] has included self-propulsion within
the RFOT theory framework of confluent systems and investigated the effects of motility on the glassy dynamics
in these systems. There is a novel coupling between activity and confluency that leads to an effective rotational
diffusivity, Deff

r , different from the intrinsic rotational diffusivity of activity. Deff
r controls the relaxation dynamics

in these systems.

6 Conclusions and future perspectives

Active glasses have immensely enriched the field of glassy dynamics. The fact that a seemingly similar mechanism is
relevant in the progression of cancer [14, 34, 151, 241], healing of wounds [15, 154], development of embryos [18, 19],
transport in cell cytoplasm [12, 72], and movement of molecules in dense aggregates [1] is fascinating and surreal
[100, 101, 147]. These observations have motivated scientists from diverse fields to think about glassy dynamics. It
extends the scope and extent of the equilibrium problem. However, there are also challenges. A quantitative and
coherent understanding demands theoretical progress. Compared with the usual equilibrium particulate models of
physics, these systems are immensely complex. The term ‘activity’ has many forms: self-propulsion, confluency,
change of conformation, division, apoptosis, modulation of interaction, differentiation, attachment-detachment
kinetics, etc. Each of these processes is a biological marvel. But, for theoretical progress, we must learn how to
formulate simple rules for mathematical description of these processes and eventually develop an analytical theory.
The field of biological physics has shown that such exercises, though not straightforward, are possible [52–54].

Active systems are, by definition, out of equilibrium. For such systems, it is unclear if the well-known tools of
equilibrium statistical physics are still applicable. The research of the last decades has shown that the scenario is
not entirely hopeless. In the regime of low activity, generalized fluctuation–dissipation-like relations remain valid
[52, 139, 144, 214], and many aspects of the equilibrium glassy dynamics survive [43, 49, 100]. However, one must
exercise caution when outside the comfort zone of equilibrium [85, 230, 242]. As shown earlier, while obtaining
MCT for the same system via different approaches, the final form of the theory varies [39, 45–49, 220]. This
variation is possibly due to the complex nature of the systems where the slight differences in the approximations
in various approaches are significant, even though all the variants seem to agree reasonably well with simulations.
A detailed comparison of these theories and finding the reasons behind the differences can bring deeper insights
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about the theory itself. On the other hand, the final analytical forms of the RFOT theory, obtained in a regime
of linear response, are simple, although several assumptions of the theory remain unclear. Understanding these
assumptions for active systems will be crucial for further understanding.

Several features make active systems qualitatively different from equilibrium systems: the long-range velocity
correlations [45, 54, 86], giant number fluctuations [17, 77], ordering transition (flocking) in spatial dimension
two [62, 81], motility-induced phase separation [85, 242, 243], etc. The long-range velocity correlation survives
in the dense regime. However, numerical measurements show the T -dependence of this correlation is relatively
weak (compared to the relaxation time); this suggests that the velocity correlation remains unrelated to the
glassy aspects [39, 100]. Although giant number fluctuation shows up in confluent systems [17], it is unclear if it
can survive in glasses. On the other hand, flocking and phase separation are avoided in glass-forming systems.
Nevertheless, the vestige of these processes can still significantly affect the glassy dynamics.

Although active systems are more complex than equilibrium systems, we can still use activity as a probe
to gain crucial insights into the equilibrium problem. In this context, we discuss the specific aspect of dynamical
heterogeneity (DH). Despite decades of research, a quantitative understanding of DH remains elusive. MCT predicts
a divergence of the DH length scale, ξD. However, in simulation or experiments of passive glassy systems, ξD

increases by a mere factor of 5 or so. Tests of the critical properties, where the predictions are applicable when
ξD → ∞, with such a tiny increase, in reality, is hard. By contrast, active systems in the presence of self-propulsion
can show massive growth in ξD [180]; thus, it is easier to test theoretical predictions. Moreover, the self-propelled
systems are amenable to detailed theoretical treatments [43, 49, 180] with nonequilibrium formalism. Therefore,
these systems can bring critical insights into the theories of glassy dynamics in general.

The theoretical works for active glasses to date are mainly focused to particulate systems. However, many
biologically significant processes where glassiness is vital occur in systems of cellular aggregates. For such systems,
the shape of the particles is crucial [99, 151, 234, 237–239]. Moreover, many of them are also confluent, i.e., there is
no inter-particle gap in the system [88]. The constraint of confluency is a challenging mathematical problem [244];
thus, developing theories for such systems is demanding. Most insights about these systems come from simulations
of model systems [40, 88, 89, 96]; only some phenomenological extensions of RFOT theory exist to understand
the effects of the control parameters [96]. Analytical frameworks, including some aspects of cellular shape, will be
influential and valuable.

In conclusion, the dynamics in many biological systems, at varying length scales, show glassy behavior. Charac-
terizing a glassy system is non-trivial: several characteristics must exist [1]. The systematic exploration of glassy
dynamics in biological systems dates back around two decades [9] when several of the primary glassy characteris-
tics just started to be revealed [5, 6, 119]. Theoretical development in this direction is much more recent, about
a decade old [14, 41, 43, 46]. Note that the equilibrium problem of glassy dynamics remains unsolved, and the
field continues to evolve. Active glasses enrich this field with fascinating systems, new control parameters, and
different levels of complexity. Theoretical understanding of these systems becomes even more challenging. How-
ever, theories can add value in revealing patterns, trends, and new phenomena. Physics mainly concerns finding
the general, universal properties of various systems. Finding the generic principles within the world of biological
complexity is not straightforward, but worth pursuing, as “life out of equilibrium is typically richer than in equi-
librium” [83]. Crucially, a quantitative understanding of the dynamics of these systems has far-reaching impacts
and consequences.
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Appendix A: Frequency-dependence of the elastic moduli for a dense system
of semiflexible polymers

We briefly describe the scaling argument for the frequency-dependence of the elastic moduli of a system of semi-
flexible polymer following Refs. [245] and [246]. Consider a dense system of semiflexible polymer, each with a
relaxed length L0 and equilibrium length L, at temperature T . The energy, E , per unit length of a polymer is

E =
1
2
κb(∇2u)2 +

1
2
τe(∇u)2, (A1)

where κb is the bending modulus and τe is the extension (or compression) restoring force, u(x ) is the transverse
deviation at position x . We neglect any internal stretching of the polymer, and thus, the elastic moduli must be
entropic in nature. We denote the full contour length as L∞, when κb = ∞ or τe = ∞. For fixed contour length,
we have L∞ − L � 1

2

∫
dx(∇u)2. We take a Fourier transform of u(x ) as

u(x) =
∑

q

uq sin(qx), (A2)

where q = nπ/L with n = 1, 2, 3, . . .. Using the equipartition theorem and Eq. (A1), we obtain

L∞ − L � kBT
∑

q

1
κbq2 + τe

. (A3)

Keeping the linear-order term for τe and performing the sum over q , we obtain

L = L∞ − kBTL2

6κb
+

kBTL4

90κ2
b

τe. (A4)

The second term gives the contraction due to thermal fluctuations, and the third term gives the relationship
between the applied tension and extension δL:

τe ∼ κ2
b

kBTL4
δL. (A5)

Now, consider a chain segment of length Lc between two cross-links. For the system under external shear of
strain θ, the extension of this segment in the linear regime will be proportional to Lc, i.e., δL ∼ θLc. If ξp is the
characteristic mesh size of the polymer, on average, there will be 1/ξ2

p polymer per unit area. Therefore, the stress,
σ, due to the shear strain is σ ∼ κ2

b/(kBTξ2
pL3

c)θ. Thus, the elastic modulus is given as

G′ ∼ κ2
b

kBTξ2
pL3

c

. (A6)

Let us consider the time-dependent fluctuation, h(x , t) of the segment of length Lc. The transverse dynamics is
governed by the total bending energy,

Ubend =
1
2
κb

∫
dq

2π
q4|hq(t)|2, (A7)

via the Langevin equation

γ⊥
∂hq(t)

∂t
= −κbq

4hq(t) + η⊥, (A8)

where hq(t) is the spatial Fourier transform of h(x , t), γ⊥ is the friction for the transverse motion and η⊥ is the
noise. From the above equation, we get the characteristic relaxation frequency ωq as

ωq =
κb

γ⊥
q4. (A9)
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For the length segments, q ∼ 1/Lc and higher q ’s do not contribute as the polymer has no intrinsic extension.
On the other hand, for oscillatory shear with frequencies ω > ωq, relaxation time is set by ω. Therefore, we use
1/Lc ∼ q ∼ ω1/4 in Eq. (A6), and obtain

G′ ∼ ω3/4. (A10)

Thus, for an equilibrium system of semiflexible polymers, such as a reconstituted F-actin system, elastic moduli
vary with frequency as a power law with the exponent 3/4.
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