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Abstract Cellular membranes span a wide range of spatio-temporal scales from sub-microsecond dynamics
of lipid molecules and intra-membrane proteins to multi-minute deformations of the whole cell. Since
no single simulation method would cover all these scales, there exists a variety of membrane modeling
techniques, each presenting unique advantages for addressing a diverse range of scientific questions. This
review focuses on current advances in mesoscopic models that represent membranes as two-dimensional
surfaces with selected mechanical properties. Two categories of approaches are considered, including fluid
membrane (e.g., lipid bilayer) and polymerized membrane (e.g., red blood cell) models. Both particle-
based and continuum models for these two classes of membranes are discussed. To illustrate the potential
of these models, several examples from recent simulation studies are presented, including equilibrium and
non-equilibrium membrane structures, membrane remodeling, and deformation in fluid flow. Finally, we
briefly discuss further developments related to these membrane models.

1 Introduction

Membranes are key components of every biological cell, since they serve as physical boundaries between different
organelles inside the cell, internal cell compartments, and cells within a tissue, and play a crucial role in a variety
of biological processes [1]. Therefore, understanding the behavior and properties of cellular membranes is essential
for gaining insights into cellular functions, such as signal transduction [2, 3], cell morphology [4, 5], and motility [6,
7]. Biological membranes primarily consist of phospholipid molecules, with a variety of embedded proteins (e.g.,
membrane channels, receptors) [8, 9]. There also exist a variety of synthetic membranes made of polymeric materials
such as block copolymers, dendrimers, etc. [10–12]. Despite significant advances in microscopy techniques during
the last decade, which often allow detailed observations of the behavior of biological and artificial membranes,
theoretical and computational approaches remain as important tools for studying membranes to complement
experiments or go even beyond experimental capabilities [13–19].

The field of membrane modeling includes a diverse range of simulation techniques [13–17, 20], each offering dis-
tinct advantages for addressing specific scientific questions. At the atomistic level [15, 21–26], molecular dynamics
simulations provide a detailed representation of atomic structure of individual lipid molecules, such that a rel-
atively small membrane patch (∼ μm2) over short time scales (∼ μs) can be simulated. Simulations of larger
length and time scales with atomistic resolution are still substantially limited by rapidly growing computational
costs. To overcome this limitation, coarse-grained models of membranes have emerged, where individual lipids are
represented by a few particles [27–33]. Coarse-grained models of membranes are computationally cheaper than
the atomistic models, but they partially or fully lose molecular specificity. The next level of abstraction going
away from the molecular description corresponds to models, which represent membranes as two-dimensional (2D)
surfaces with specific mechanical properties such as bending rigidity, shear elasticity, and the resistance to area dila-
tion [34–41]. This class of simulation techniques includes meshless membrane models [34, 36, 42–45], triangulated
network approaches [35, 37, 41, 46–50], and continuum models [38–40, 51–54].

a e-mail: adasanna@iisermohali.ac.in (corresponding author)
b e-mail: d.fedosov@fz-juelich.de

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-024-01177-4&domain=pdf
mailto:adasanna@iisermohali.ac.in
mailto:d.fedosov@fz-juelich.de


Eur. Phys. J. Spec. Top.

In this review, we focus on the approaches that represent membranes as 2D surfaces [34–41]. These techniques
allow modeling of membranes at the cellular scale, enabling simulations of single cells or vesicles as well as multi-
cellular suspensions [13, 14, 55–58]. Specifically, we consider two distinct classes of membranes: (i) fluid membranes
and (ii) polymerized membranes. Examples of fluid membranes include lipid bilayers and some polymer-based
membranes [8, 10–12]. Fluid membranes can flow, such that they allow the motion of intra-membrane inclusions
(e.g., lipids, proteins) and can be thought of as 2D fluidic surfaces [59, 60]. The main mechanical properties of fluid
membranes can be characterized by the bending rigidity, membrane viscosity, and nearly zero area dilation [27,
32, 61–63]. In contrast, polymerized membranes generally contain a cross-linked network of proteins or polymers,
with examples of a cytoskeletal network supporting lipid bilayer in the cell [62, 64, 65] and synthetic capsules
[66–68]. Thus, polymerized membranes are elastic and possess a non-zero shear elasticity [69, 70], in addition to
the bending rigidity and the resistance to area dilation.

We present several mesoscopic models of fluid and polymerized membranes, and illustrate them using a selection
of recent applications. For fluid membranes, we discuss examples of active vesicles [71–80], protein-driven vesicle
fission [81–86], and membrane shape remodeling through curvature-inducing proteins [87–96]. For polymerized
membranes, we focus on red blood cells (RBCs), and discuss membrane fluctuations [97–107], deformation of
RBCs in flow [108–124], and the adhesion of malaria parasite to RBCs [125–132]. These examples illustrate that
the existing methods for membrane modeling are quite mature, and have a wide range of the applicability to a
variety of cellular-scale problems.

2 Fluid membrane models

Fluid membranes are represented by fluidic 2D surfaces with a non-zero bending rigidity. Different simulation
approaches include dynamically triangulated membrane models [35, 46, 133–136], meshless membrane models [34,
36, 42–45], and continuum models [51, 52, 137–141].

2.1 Dynamically triangulated membrane model

A fluid membrane can be modeled by a dynamically triangulated network of Nv linked vertices [46, 133]. The links
are represented by a tethering potential [46, 78, 142] as

Uatt(r) =

{
kb

exp [1/(lc0−r)]
lmax−r if r > lc0

0 if r ≤ lc0
, (1)

Urep(r) =

{
kb

exp [1/(r−lc1 )]
r−lmin

if r < lc1
0 if r ≥ lc1

, (2)

where kb is the bond stiffness, lmin and lmax are the minimum and maximum bond lengths, and lc1 and lc0 are the
potential cutoff lengths. Thus, membrane vertices can move freely in the range [lc1 , lc0 ].

Bending elasticity is represented by the Helfrich curvature energy [61, 63, 143] as

Ubend = 2κc

∮
A

(c̄ − c0)2dA + κk

∮
A

KdA, (3)

where κc is the bending modulus, c̄ = (c1 +c2)/2 is the local mean curvature, c0 is the spontaneous curvature, A is
the total membrane area, κk is the Gaussian (or saddle splay) modulus, and K = c1c2 is the Gaussian curvature.
Note that the surface integral over the Gaussian curvature K is constant for closed surfaces (e.g., vesicle) due
to the Gauss–Bonnet theorem [144], so that the Gaussian term in Eq. (3) is often neglected in simulations. The
bending energy without the Gaussian curvature contribution is discretized on a triangulated network [35, 145] as

Ubend =
Nv∑
i=1

2κc(c̄i − c0i)
2A

Nv
= 2κc

Nv∑
i=1

σi

⎡
⎣ 1

2σi
ni ·

⎛
⎝∑

j(i)

σij

rij
rij

⎞
⎠ − c0i

⎤
⎦
2

, (4)

where c̄i and c0i are the mean and spontaneous curvatures at vertex i with an area A/Nv, ni is a unit normal of the
membrane at vertex i , and σi =

(∑
j(i) σijrij

)
/4 is the area of dual cell of vertex i . j (i) stands for all neighboring

vertices linked to the vertex i , σij = rij [cot(θ1) + cot(θ2)]/2 is the length of the bond in dual lattice with angles
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θ1 and θ2 being the two angles opposite to the shared bond vector rij . More details about discretization of the
Helfrich curvature energy, including other discretization strategies, can be found in Refs. [46, 145–151].

Furthermore, local triangle area conservation is imposed by a soft harmonic potential given by

Uloc. area =
kl
2

Nt∑
i=1

(Ai − A′)2

A′ , (5)

where kl, A′ = A/Nt, and Ai are the local-area conservation coefficient, desired and instantaneous local areas,
respectively. The sum runs over all Nt = 2(Nv − 2) triangles within the network. When necessary, a constraint on
the total vesicle volume V can be employed as

Uvol =
kv(V − V0)

2

2V0
, (6)

where kv is the volume-constraint coefficient and V0 is the desired total volume.
The membrane model with a fixed network connectivity cannot represent membrane fluidity where its vertices

diffuse within the membrane plane. To model membrane fluidity, bonds shared by each pair of triangles are
flipped. The flipping procedure is performed with a time frequency ν, i.e., every few time steps. During the
flipping procedure, every bond in the membrane network is attempted to be flipped with a probability ψ, where
the acceptance of bond flipping follows a Monte-Carlo algorithm. In the Monte-Carlo algorithm, changes in the
tethering (i.e., ΔUatt + ΔUrep) and local area (i.e., ΔUloc. area) energies due to attempted bond flipping are
computed, and the bond flipping is accepted with a probability exp [−(ΔUatt + ΔUrep + ΔUloc. area)/kBT ]. Note
that a change in the bending energy is often omitted due to simplicity, as bond flipping has a negligible effect on the
local membrane curvature. The resulting membrane fluidity for selected parameters ν and ψ can be characterized
by a 2D membrane viscosity, see Refs. [142, 152] for details.

2.2 Meshless membrane model

Another fluid membrane model is the one-particle-thick meshless membrane model [45]. In this model, a membrane
consists of a collection of particles with position vectors ri and orientation vectors ni, which are subject to pairwise
interactions. The interaction potential for a pair of membrane particles i and j is given by [45]

U(rij , ni, nj) =
{

uR(r) + [1 − φ(r̂ij , ni, nj)]ε, r < rmin,
uA(r)φ(r̂ij , ni, nj) rmin < r < rc,

(7)

where rij = ri − rj , r = |rij |, and r̂ij = rij/r. The repulsive (uR) and attractive (uA) potentials are defined as

uR(r) =ε

[(rmin

r

)4

− 2
(rmin

r

)2
]
, uA(r) = − ε

[
cos

(
π

2
(r − rmin)
(rc − rmin)

)]2ζ

, (8)

where ε is the strength of the potentials, rmin is the cutoff of repulsive forces, rc is the total cutoff of interactions,
and ζ is an exponent. The interaction strength φ(r̂ij , ni, nj) for different relative orientations is given by

φ(r̂ij , ni, nj) = 1 + μ[a(r̂ij , ni, nj) − 1], (9)

a(r̂ij , ni, nj) = (ni × r̂ij) · (nj × r̂ij) + sin (θ0)(nj − ni) · r̂ij − sin2 (θ0), (10)

where θ0 determines spontaneous angle between two particle orientations, and μ weighs the energy penalty when
the angle between two particle orientations departs from θ0.

Particle positions are integrated using the Langevin equation (14), while the time evolution of particle orienta-
tions follows the Lagrange equations with constraint forces,

Iin̈i = −∂Ui

∂ni
+ λini, λi =

∂Ui

∂ni
· ni − Iiṅi · ṅi, (11)

where Ii is the moment of inertia, Ui =
∑

j U(rij , ni, nj), and λi is the Lagrange multiplier.
There also exist other meshless models of membranes [34, 36, 42–44]. The model in Ref. [43] has considered

dipole-like interactions between oriented particles in order to support their sheet-like assembly. In Ref. [36], moving
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least-squares method was used to implement the curvature energy in the membrane model. One of the main
advantages of meshless membrane models in comparison to dynamically triangulated network models is the ability
of spontaneous membrane break-up (e.g., vesicle fission, budding), which does not require additional conditions
and assumptions. For dynamically triangulated networks, break-up conditions have to be defined to maintain the
proper triangulation of newly formed membrane components.

2.3 Continuum models of fluid membranes

Continuum models of fluid vesicles also employ the Helfrich bending energy [61, 63, 143] in Eq. (3). One of the
common procedures is to apply a variational formulation, in which a variational derivative of Eq. (3) is taken to
derive membrane forces [148, 149]. If δx is a small virtual displacement of a surface, the work performed by the
forces is given by Δf b · δx. For the whole membrane, the work from external forces is obtained as

δWe =
∫

A

Δf b · δxdA. (12)

In equilibrium, the change in energy should vanish such that δU = δUbend − δWe = 0. The evaluation of δUbend

results in the Euler–Lagrange equation [120, 144, 163]

Δf b = −2κc

[
ΔA(c̄ − c0) + 2(c̄ − c0)(c̄2 − K + c0c̄)

]
n, (13)

where ΔA is the Laplace–Beltrami operator [144], and n is the normal to the surface. Then, an equilibrium
shape of a membrane can be found for Δf b = 0. For hydrodynamic simulations, Δf b is defined by instantaneous
deformation through the forces exerted by the fluid on the membrane. Other methods employ thin shell theory
[140, 164, 165] to derive the Euler–Lagrange equation by computing derivatives of the energy density with respect
to metric and curvature tensors. However, these formulations lead to the same results [149, 164]. Other constraints
(e.g., area and volume conservation) can be included through additional terms to U using Lagrange multipliers,
which modify the Euler–Lagrange equation. For example, the total surface area constraint can be implemented by
adding σ

∫
A

dA to U with the Lagrange multiplier σ, representing effective membrane tension [144, 149, 151, 164].

2.4 Comparison of different models

There exist differences between different models; however, when used properly, they should lead to the same
results, because only physical properties of membranes should govern their behavior. In this respect, advan-
tages/disadvantages of different models can be rather subtle, and generally appear at the computational and
algorithmic levels, representing for instance numerical accuracy, ease of implementation and parallelization, and
computational cost. As an example, the dynamically triangulated model implements membrane fluidity by flipping
the bonds. As a result, the viscosity of the membrane is controlled by the frequency of bond flips, which has an
upper limit, so that this model may have difficulties to represent low membrane viscosities. In contrast, the mesh-
less membrane model naturally incorporates membrane fluidity as its particles are not connected by bonds and
interact via only pair potentials. However, the meshless model is likely computationally expensive for situations,
where a large membrane viscosity is required, since strong dissipative interactions between the particles would be
required. Another drawback of the meshless membrane model is that the implementation of membrane volume
conservation is more difficult than for the dynamically triangulated model.

Fig. 1 A sketch summarizing fluid and polymerized membrane models. A fluid membrane (e.g., lipid bilayer) can be
modeled using dynamically triangulated surface with bond flips that introduce fluidity and by the meshless model. The
fluid membrane is characterized by the bending rigidity κc and membrane viscosity μm. The triangulated membrane model
with a fixed bond topology represents a polymerized membrane (e.g., lipid bilayer with a cytoskeleton beneath it). The
polymerized membrane is characterized by the shear modulus μ0 as well as by κc and μm for fluid membranes
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Fig. 2 3D simulations of
vesicles enclosing active
particles [71, 78]. (Left) A
low volume fraction of
active particles generally
leads to multiple tether-like
protrusions, resembling an
astrocyte-like shape.
(Right) A large volume
fraction of self-propelled
particles induces global
shape changes, which may
resemble cell division

Differences between the models are partially summarized in Fig. 1, which illustrates fluid and polymerized
membrane models. Both the dynamically triangulated model with bond flips and the meshless model represent
fluid membranes, while a triangulated surface model with a fixed bond topology represents a membrane with a
non-zero elasticity (e.g., a RBC membrane which contains a cytoskeleton). Nevertheless, different models can also
share some physical characteristics, for instance, the bending rigidity which is generally required for both fluid
and polymerized membranes.

A comparison of continuum and particle-based models can also be quite subtle. Continuum models generally
represent homogeneous physical characteristics of membranes, while particle-based models may have local varia-
tions in physical properties due to the discrete nature of membrane representation. Computational cost of different
models is difficult to compare, as it depends on the problem of interest and the method of implementation.

All membrane models can be integrated in time using several approaches. The simplest approach is Monte-Carlo
modeling, which aims at energy minimization of the system of interest, but cannot properly capture the dynamics
of this system. Without hydrodynamic interactions, dynamics of membranes can be modeled by the Langevin
equation,

mr̈i = −∇iUtot − γmṙi +
√

2γmkBTξi(t), (14)

where m is the particle mass, ∇i is the spatial derivative at the position of particle i , and Utot is the sum of all
interaction potentials. The friction coefficient γm mimics embedding of the membrane into a viscous fluid through
the free-draining approximation. ξi(t) is a Gaussian random process with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = 1δijδ(t−t′)
that represents membrane thermal fluctuations. The positions and velocities of all particles are integrated using
the velocity-Verlet algorithm [153].

When hydrodynamic interactions are necessary, the membrane model has to be coupled to a fluid. The fluid
can be modeled through a variety of different methods, which is beyond the scope of this review, but we refer an
interested reader to Refs. [154–159]. Coupling between the membrane and the fluid is often performed using the
immerse boundary method [160, 161], where the membrane discretization points move with the local fluid velocity,
and in response exert forces onto the fluid. Another way to implement this coupling is to introduce frictional forces
between the membrane and the fluid, which imposes the exchange of momentum between the membrane and fluid
models [41, 162].

3 Fluid membrane applications

3.1 Active vesicles

Bottom-up construction of synthetic cell-mimicking systems has made an enormous progress in recent years [166,
167]. Examples include vesicles with enclosed active particles [71–80], and growth and spontaneous division of
droplet-based or vesicle-based compartments [94, 168]. The main advantage of bottom-up synthetic systems is
a precise control of their composition, which allows to study different cell-mimicking processes in much simpler
systems in comparison to biological cells. Numerical simulations provide here a more detailed and controlled
representation of synthetic systems, leading to the understanding of their behavior [71, 73–79].

The behavior of an active vesicle system (see Fig. 2), where self-propelled particles (SPPs) are encapsulated
inside the vesicle and interact with the membrane through a purely repulsive potential, was studied in Refs. [71,
78]. The vesicle was modeled using the dynamically triangulated membrane model, see Sect. 2.1. This active
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Fig. 3 Vesicle shapes for different SPP propulsion strengths and moderate adhesive interactions. Particle structures change
from membrane-wrapped ring-like arrangements to membrane-wrapped (branched) tubular aggregates, as the propulsion
force is increased. Reproduced from Ref. [79] with permission from the Royal Society of Chemistry

Fig. 4 Filament
transitions from flat to
tilted [see (c)] states and
back drive membrane
budding. (a, b) Budding off
aided by the filament for
weak and strong membrane
deformations induced by
different adhesion
strengths. Reproduced from
Ref. [82] with permission
from Springer Nature

system exhibits a variety of dynamic non-equilibrium vesicle shapes, including bola-like shapes and structures
with multiple tether-like protrusions formed by single SPPs or their clusters, depending on the volume fraction of
enclosed SPPs and their propulsion strength. Furthermore, such active vesicles show strongly enhanced membrane
fluctuations, which is a clear signature of this non-equilibrium system [71, 72]. Despite the fact that this system
does not have an internal autonomous control, it can be thought of as a prototype of a cell-mimicking system or
soft microrobot.

Repulsive interactions between the vesicle membrane and SPPs constrain active particles to remain within the
vesicle. Already in this simple situation, most of the active particles are located near the membrane [71, 78]. This
is due to a so-called wall accumulation effect, which is related to the time of particle re-orientation governed by its
rotational diffusion [169–171]. Thus, after arriving at a wall with a direction toward the wall, a SPP requires some
time to re-orient away from the wall to be able to leave it. In addition to repulsive interactions, there are many
examples of particle-membrane attraction, which can result in partial wrapping of the particle by the membrane
[172–179]. Particle wrapping by the membrane is expected to lower the force required for tether formation, since
some fraction of elastic membrane-bending energy is already overcome through particle adhesion or attractive
interactions. Furthermore, attractive particle–membrane interactions will likely affect cluster formation and the
behavior of active vesicles.

The effect of particle–membrane interactions on the dynamics of active vesicles has been investigated for several
attraction strengths, which induce slight attraction without significant wrapping, partial wrapping, and nearly
full wrapping of the particle by the membrane [79]. At low SPP activity, adhesive interactions dominate over the
propulsion forces, such that the vesicle attains near static configurations, with protrusions of membrane-wrapped
SPPs having ring-like and sheet-like structures [see Fig. 3a]. At moderate particle densities and strong enough
activities, active vesicles show dynamic highly branched tethers filled with string-like arrangements of SPPs [see
Fig. 3c], which do not occur in the absence of particle adhesion to the membrane [71, 78]. At large volume fractions
of SPPs, vesicles fluctuate for moderate particle activities, and elongate and finally split into two daughter vesicles
for large SPP propulsion strengths. The adhesion of SPPs to the membrane significantly alters the behavior of
active vesicles, and provides an additional parameter for controlling their behavior.

3.2 Vesicle fission driven by ESCRT-III proteins

The ESCRT-III (endosomal sorting complexes required for transport III) proteins can deform and cut membranes
of cells from the inside [180, 181]. ESCRT-III form spiral filament structures (see Fig. 4) that interact attractively
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Fig. 5 Remodeling of a membrane by curvature-inducing proteins. Red vertices represent membrane inclusions, which
induce a non-zero spontaneous curvature locally. The fraction of inclusions is 20%. From (A) to (C), the interaction
strength between inclusions is increased, promoting their clustering. A high local concentration of inclusions leads to the
formation of complex invaginations. Reproduced from Ref. [186]

with the membrane, and assist cells in division [181], membrane budding [81, 182], and the release of viral particles
[183]. ESCRT-III filaments can form helices and cones, indicating that this protein may adapt to local conditions
[184, 185]. In the model of Ref. [82], filaments can alternate between two geometrical states: (i) a ring flat (quasi-
2D) geometry leading to the formation of a spiral structure when bound to a membrane, and (ii) a helical structure
when bound to a tubular-like membrane surface. The membrane was modeled using the meshless membrane model
described in Sect. 2.2. When the flat ESCRT-III state transits toward 3D helical structure, the protein is able
to deform the membrane outwards from the inner side of the membrane, see Fig. 4. Interestingly, there is no
significant difference in the action of ESCRT-III, depending on the degree of particle wrapping by the membrane.
Figure 4 shows that particles with a weak adhesion (nearly no wrapping) and a strong adhesion (significant
wrapping) receive qualitatively similar assistance by the ESCRT-III protein and eventually bud off. Therefore, the
simulations suggest that filament transitions between these two states drive the budding process [82]. This model
not only explains membrane remodeling observed in a number of biological systems, but also proposes possible
ways of constructing active structures (e.g., self-assembled DNA origami) which would be able to remodel artificial
membrane systems.

3.3 Membrane shape changes through curvature-inducing proteins

Curvature inducing proteins within the membrane or upon their adhesion can completely remodel membrane and
vesicle shapes [87–96]. Figure 5 shows the remodelling of a membrane when the local concentration of curvature-
inducing proteins (marked by red vertices) becomes large enough [186]. The membrane was modeled using the
dynamically triangulated membrane model, see Sect. 2.1. The remodeling process can lead to the formation of buds
and long tubular membrane structures, which appear due to the segregation of inclusions between the curved and
flat membrane parts [88, 91, 92, 187]. Furthermore, local tension of the membrane can increase, affecting overall
properties of the membrane [89, 188]. In addition to the local concentration of curvature-inducing proteins, the
strength of local curvature they impose plays an essential role for the formation of complex membrane invaginations
[91, 187]. The segregation or clustering of proteins occurs due to the coupling between local membrane geometry and
the inclusion curvature, which results in attractive or repulsive membrane-mediated interactions between inclusions
[189–191]. A similar effect has also been found for particles adhered to the membrane [178, 192, 193]. These
simulations significantly advance our understanding of the underlying mechanisms of membrane remodeling both
in biological and artificial systems, and provide means for the controlled design of complex membrane structures
[88, 91, 194, 195].

4 Polymerized membrane models

In contrast to fluid membranes, polymerized membranes possess shear elasticity and lack membrane fluidity.
An important example of polymerized membranes is a RBC, whose membrane consists of a lipid bilayer with an
attached network of spectrin proteins [62]. The spectrin network supplies membrane elasticity that often dominates
over additional contributions from the lipid bilayer. Polymerized membranes are represented by solid-like elastic
surfaces, which can be simulated using network-based particle models [35, 37, 41, 47, 48, 50, 109, 196, 197] as well
as continuum models [14, 38–40, 53, 161, 198–200].
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4.1 Bead-spring model of a polymerized membrane

A polymerized membrane (e.g., RBC) can be modeled as a triangular network of springs with Nv vertices, Ne

edges, and Nt triangles. The total potential energy of the system is [37, 41, 109, 197]

U({xi}) = Ushear + Ubend + Uarea + Uvol, (15)

where {xi}i=1...Nv is the set of discretization points or membrane vertices. The first term Ushear represents in-plane
shear elasticity, the second term Ubend captures membrane bending rigidity, and the last two terms correspond to
the constraints of area and volume. The shear elasticity energy is the sum of spring energies within the triangulated
spring network given by [41, 109]

Ushear =
Ne∑
i=1

kBT�m
(
3x2

i − 2x3
i

)
4�p(1 − xi)

+
kp
�i

, (16)

where the first part is an attractive worm-like chain potential, while the second term is a repulsive potential. Here,
xi = �i/�m with the spring length �i and the maximum spring extension �m, �p is the persistence length, kp is the
repulsive coefficient, and kBT is the energy unit. Linear shear elastic modulus μ0 of such a network is given by
[37, 41, 197]

μ0 =
√

3kBT

4p�mx0

(
x0

2(1 − x0)
3 − 1

4(1 − x0)
2 +

1
4

)
+

3
√

3kp

4�30
, (17)

where x0 = �0/�m with �0 being the spring length from initial surface triangulation of the membrane.
The bending energy of a polymerized membrane is implemented through the Helfrich curvature energy in Eq. (3)

with an example discretization in Eq. (4). The area constraint reads

Uarea =
ka(A − A0)

2

2A0
+

Nt∑
i

kd
(
Ai − A0

i

)2
2A0

i

, (18)

consisting of constraint terms for the global and local area. Here, ka and kd control the total surface area of the
membrane and local area of each triangle, respectively. A is the instantaneous are of the membrane, A0 is the
desired area, Ai is the area of i -th triangle, and A0

i is the targeted area of the i -th triangle set from the initial
surface triangulation of the membrane. Note that the volume constraint is identical to that for fluid vesicles given
in Eq. (6).

In addition to the shear modulus μ0, Young’s Y and area-compression K moduli can be calculated as [37, 41,
197]

Y =
2Kμ0

K + μ0
, K = 2μ0 + ka + kd. (19)

In practice, macroscopic properties (e.g., μ0, Y ) of the membrane are selected, from which all other parameters
of the involved potentials can be deduced. This model has primarily been used for simulations of single RBCs in
flow [37, 41, 109, 113–115, 118, 119, 201–203] as well as blood flow with numerous RBCs [110, 116, 204–208].

4.2 Continuum model of a polymerized membrane

In the continuum approach, the membrane surface is represented as a moving Lagrangian mesh, which implements
a desired strain energy function. One of the popular strain energy functions for RBCs is given by [209–211]

Wm =
Es

4

[(
λ2
1 + λ2

2 − 2
)2

+ 2
(
λ2
1 + λ2

2 − λ2
1λ

2
2 − 1

)]
+

Ea

4
(
λ2
1λ

2
1 − 1

)2
, (20)

where λ1 and λ2 are the in-plane principle values of strain, Es is the shear modulus, and Ea is the area-dilation
modulus. There also exist other strain functions to describe membrane elasticity [62, 209, 212, 213]. Numerical
implementation of membrane elasticity can then be performed through elastic stresses computed as derivatives of
the strain energy function Wm [210, 211, 214].
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Fig. 6 (a) Simulation model mimicking an experimental setup in Ref. [106], where a single RBC with four attached beads
is shown. All beads are subject to a harmonic trap illustrated in (b). The three beads with the cross-mark are held fixed,
while the forth bead can be moved to perform measurements. (c) A sketch to illustrate the application of active forces on
membrane vertices. Red arrows indicate active forces on selected membrane points, while green arrows represent equal and
opposite forces acting on nearby fluid particles. (d) Apparent response for both active and passive cases measured from
simulations and compared with the experimental data. Reproduced from Ref. [106] with permission from Springer Nature

Incorporation of the bending rigidity in continuum approaches also generally follows the Helfrich’s formulation
[61, 63, 143] in Eq. (3), for which different discretization strategies can be employed [46, 145–151]. Continuum
models of capsules and RBCs have been exploited in various studies, including their dynamics in shear [120, 121,
123, 203, 210, 215–221] and capillary [117, 222, 223] flows, and blood flow in microchannels [112, 224–226] or
microvascular networks [227–229].

5 Polymerized membrane applications

5.1 RBC membrane fluctuations

Flickering or fluctuations of a RBC membrane can be observed experimentally [99, 102, 104, 230–232], and are
thought to arise from thermal agitation within the surrounding environment. Many previous works [102–104,
232] have employed the measurements of membrane flickering to extract elastic moduli and dissipation of a RBC
membrane. Note that the theoretical models [97, 98] used for the interpretation of experimental measurements are
based on the assumption of equilibrium thermal fluctuations.

Even though a number of studies [99, 102, 104, 233] have long suggested that RBC flickering may contain active
non-equilibrium processes, only recently it was shown that RBC membrane fluctuations indeed contain active
contributions [106]. This study consists of optical tweezers experiments, an analytical model, and simulations
mimicking the experimental setup [106]. The setup involved the attachment of four beads to a RBC, as illustrated
in the Fig. 6a, where the three trapped beads were used to hold the cell, while the fourth probe bead has been
employed for measurements. In particular, the probe bead was subjected to a sinusoidally varying force, to measure
the response function shown in Fig. 6d. Another measurement is the power spectral density which is derived
from monitored fluctuations of the probe bead. In equilibrium, these two measurements are related through the
fluctuation–dissipation theorem, which becomes invalid out of equilibrium. This is illustrated in Fig. 6d where a
discrepancy in the apparent response is obtained for these two measurements at low frequencies, confirming the
presence of non-equilibrium processes. A bead-spring network model [see Sect. 4.1 and Fig. 6a] has been used
to quantify elastic properties of the RBC membrane and the strength of active stresses. In this model, active
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Fig. 7 RBC snapshots in
shear flow (left)
accompanied by similar
images from continuum
(Yales2Bio [199])
simulations (right). The
snapshots are shown for
various shear rates, ranging
from 10 s−1 to 850 s−1. At
small shear rates, tumbling
and rolling of RBCs is
observed, whereas
intermediate shear rates
result in rolling or tumbling
stomatocytic shapes. At
high shear rates, polylobe
shapes are observed,
including trilobes and
hexalobes. Re-used with
permission from Ref. [116]

forces were added to randomly selected membrane vertices [see Fig. 6c], which acted in the normal direction to
the membrane. For momentum conservation, equal and opposite forces were applied to nearby fluid particles. The
simulation data in Fig. 6d aligns well with the experimental measurements, and further supports the presence of
non-equilibrium processes within a RBC membrane. Note that the exact source of active contributions to RBC
flickering remains unknown, with several suggestions such as active remodeling of the spectrin network, the activity
of membrane channels, and curvature-inducing intra-membrane components [234–237].

5.2 RBC deformation in flow

To better understand RBC behavior in blood flow, it is essential to study RBC dynamics under different flow
conditions which span the wide range of microcirculatory characteristics. RBC deformation in response to fluid
stresses is important not only for the characterization of single cell behavior under dilute conditions [37, 41, 114,
120, 123, 203, 216, 217, 220, 221], but also for understanding changes in blood viscosity, and blood-flow resistance
in the microvasculature [112, 116, 205, 206, 224–226]. Figure 7 compares various RBC morphologies at different
shear rates in shear flow between experiments and simulations [116]. With increasing shear rate, RBCs transit
from tumbling and rolling biconcave discocytes, to rolling stomatocytes, and multilobar morphologies at shear rates
beyond approximately 1000 s−1. These dynamic changes in RBC shapes can be connected to the shear-thinning
characteristics of blood viscosity, which decreases with increasing shear rate. Experimental observations have also
been supported by continuum and particle-based models of RBCs with quantitatively consistent predictions [116].

In large enough vessels, the behavior of RBCs is similar to that in shear flow, as the local shear rate on the scale of
RBC size can be considered constant. In capillaries, whose diameter is comparable with the RBC size, several other
shapes appear, including parachutes and slippers [108, 109, 111, 115, 117–119, 201, 202]. Parachutes are nearly
symmetric stomatocyte-like shapes that develop due to the curvature of the flow profile [109, 115, 118]. Slippers are
non-symmetric shapes, located off-center of the capillary due to the instability of parachute shapes under certain
conditions [115, 118, 119]. For channels with a rectangular cross-section, parachute shapes loose axisymmetry and
resemble crescent shapes [117]. Note that the transitions between different shapes in microchannels depend on
various parameters such as channel size, flow rate, RBC membrane elasticity, and the viscosity contrast between
cell cytosol and suspending plasma [115, 117–119].
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Fig. 8 (a) Snapshots
showing a merozoite
interacting with a RBC
from experimental
observations (top) and
simulations (bottom).
(b) Parasite displacements
on the RBC membrane
measured from
experimental data and
simulations. Re-used with
permission from Ref. [131]

5.3 Adhesion of malaria parasites to erythrocytes

Merozoite, a malaria parasite during the blood stage of infection, invades RBCs to multiply inside the cells and
facilitate further disease progression [238]. After merozoite adhesion to a RBC membrane, the invasion process
can only start when a direct contact between the parasite’s apex (i.e., a small region at the merozoite surface) and
the membrane is established [125, 239]. Since initial adhesion of the parasite likely has an arbitrary orientation,
it is hypothesized that adhered parasites can re-orient themselves to form the apex-membrane contact. Recent
experiments report that RBC invasion starts approximately 10−20 seconds after the initial merozoite attachment
[128, 240], during which RBC membrane often shows strong deformations and the parasite actively moves at the
membrane.

Recent simulation study [131] has considered the re-orientation (or alignment) process, and the role of membrane
deformations, see Fig. 8a. The adhesion of a rigid parasite to RBC membrane was modeled through discrete bind-
ings, whose dynamics is governed by kinetic association/dissociation rates. Weak adhesion may not be sufficient
to keep contact between the merozoite and the membrane, while strong adhesion leads to an arrest of the adhered
parasite without visible motion. For intermediate adhesion strengths, the adhered parasite exhibits kinetic-rate
dependent motion, whose characteristics are calibrated by the experimental measurements [128, 240] and shown
in Fig. 8b. After the calibration of adhered parasite dynamics, the alignment time of the merozoite agreed well
with the mean alignment time measured experimentally. The alignment process is an intricate balance between
membrane deformation and parasite dynamics, which was quantified by simulations [130–132]. Interestingly, sim-
ulations suggest that no additional active processes are required for the efficient parasite alignment. Furthermore,
simulations have shown that the alignment time drastically increases for cells with an increased membrane stiffness
which is directly relevant to the fact that malaria progression is poor for some blood disorders such as sickle-cell
anemia [241]. An accompanying study has looked into the effect of different parasite shapes, and showed that the
natural egg-like shape of a merozoite results in favorable alignment timescales in comparison to other possible
shapes [132].

6 Conclusions

In this review, we have focused on the models which represent membranes as 2D surfaces and allow membrane
modeling at the cellular scale. Two distinct classes of models have been considered, including fluid membrane
and polymerized membrane models. Numerical implementation of these models can proceed through a variety
of approaches, including particle-based simulation techniques and continuum modeling approaches. These models
are already powerful enough to capture the behavior of complex membrane systems, which has been illustrated
through a number of recent simulation studies.

Despite many successful developments and applications of the 2D surface models of membranes, these approaches
fully sacrifice atomistic details. As a result, these models cannot directly capture chemical specificity of different
molecular components of the membrane. Some of the molecular effects can be incorporated phenomenologically
into these models, as it is done for the modeling of curvature-inducing proteins [88, 91, 92, 187]. To accurately
simulate real membrane systems, a direct mapping between atomistic and thin-surface membrane models would
be desirable, which is the topic of several recent studies [196, 242–244].
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As we move toward the modeling of realistic biological systems, another important aspect of membrane models is
the incorporation of active non-equilibrium processes. Several models have considered the presence of active stresses
within the membrane, which are supposed to mimic certain non-equilibrium processes [106, 245–247]. Despite the
fact that these active membrane models are very useful for the elucidation of relevant physical mechanisms, they
do not provide a direct connection to the underlying non-equilibrium processes. This motivates the development
of more complex models, where the existing membrane approaches are combined with the explicit modeling of
other relevant components. Examples include vesicles with active particles [71, 73–79] discussed in Sect. 3.1,
a double-layer model of RBCs with the explicit representation of both lipid bilayer and spectrin cytoskeleton
[196, 248, 249], and membranes with the explicit modeling of internal cytoskeletal structures [250]. Furthermore,
several membrane models implement reaction-diffusion equations to represent the spatio-temporal distribution of
molecular components, which may control local active stresses or curvature [90, 247, 251]

In conclusion, mesoscopic 2D-surface models of membranes are very versatile and suitable for modeling cellular-
scale phenomena. They play a crucial role in the characterization of many biological and artificial membrane
systems. However, to achieve the necessary computational efficiency for studying cellular processes, these models
sacrifice the ability to resolve nanoscale phenomena such as lipid heterogeneity and phase separation. Their con-
tinuous development and integration with other models highlight their importance, and bring us closer to realistic
and comprehensive models of biological cells and cell-mimicking artificial systems.

Data availability statement No data are associated with this manuscript.
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82. L. Harker-Kirschneck, B. Baum, A. Šarić, Changes in ESCRT-III filament geometry drive membrane remodelling and

fission in silico. BMC Biol. 17, 82 (2019)
83. M. Lenz, D.J.G. Crow, J.-F. Joanny, Membrane buckling induced by curved filaments. Phys. Rev. Lett. 103, 038101

(2009)
84. G. Fabrikant, S. Lata, J.D. Riches, J.A.G. Briggs, W. Weissenhorn, M.M. Kozlov, Computational model of membrane

fission catalyzed by ESCRT-III. PLoS Comput. Biol. 5, e1000575 (2009)
85. J. Agudo-Canalejo, R. Lipowsky, Domes and cones: adhesion-induced fission of membranes by ESCRT proteins. PLoS

Comput. Biol. 14, e1006422 (2018)
86. O. Daumke, A. Roux, V. Haucke, BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892

(2014)

123



Eur. Phys. J. Spec. Top.
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174. A. Šarić, A. Cacciuto, Mechanism of membrane tube formation induced by adhesive nanocomponents. Phys. Rev. Lett.

109, 188101 (2012)
175. M. Raatz, R. Lipowsky, T.R. Weikl, Cooperative wrapping of nanoparticles by membrane tubes. Soft Matter 10,

3570–3577 (2014)
176. Q. Yu, S. Othman, S. Dasgupta, T. Auth, G. Gompper, Nanoparticle wrapping at small non-spherical vesicles: curva-

tures at play. Nanoscale 10, 6445–6458 (2018)
177. A.H. Bahrami, R. Lipowsky, T.R. Weikl, The role of membrane curvature for the wrapping of nanoparticles. Soft

Matter 12, 581–587 (2016)
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