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Abstract We present new closed-form expressions for certain improper integrals of Mathematical Physics
such as certain Ising, Box, and Associated integrals. The techniques we employ here include (a) the Method
of Brackets and its modifications and suitable extensions to obtain the Mellin–Barnes representation.
(b) The evaluation of the resulting Mellin–Barnes representations via the recently discovered Conic Hull
method via the automated package MBConichulls.wl. Finally, the analytic continuations of these series
solutions are then produced using the automated package Olsson.wl, based on the method of Olsson. Thus,
combining all these recent advances allows for closed-form evaluation of the hitherto unknown B3(s), B4(s)
and related integrals in terms of multi-variable hypergeometric functions. Along the way, we also discuss
certain complications while using the Original Method of Brackets for these evaluations and how to rectify
them. The interesting case of C5, k is also studied. It is not yet fully resolved for the reasons we discuss in
this paper.

1 Introduction

The evaluation of integrals appearing in various branches of mathematics, and mathematical physics continues to
be of great importance. In many instances, one has to resort to numerical methods to evaluate them. On the other
hand, analytical methods are of great importance in their actual evaluation, and in some instances, can also be of
use to benchmark and test numerical packages as well. Of particular note are Feynman Integrals, which are the
basic building blocks of computations in the Standard Model, as well as in effective theories, and also in Beyond
the Standard Model investigations. As the needs and demands of precision increase, the number of mass scales
as well as the number of loops also increases very rapidly. Therefore, in the recent past, a new subject that goes
under the rubric of Feynman Integral Calculus has come into being, see Smirnov [1]. Furthermore, other techniques
such as Mellin-Barnes [2] and recently developed CH method [3–5] are of importance. Another technique that is
of importance based on the Ramanujan Master Formula [6] that has become popular is the Method of Brackets
[7–13]. This has been advocated as a method of evaluating Feynman integrals. However, in practice, there are
some technical obstructions to their use [14]. All the above said it is important to understand the basic features
of this method. The present work is an attempt in that direction. It must be pointed out that research of the
type reported here is of fundamental and pioneering importance and would be of consequence to the development
of numerical packages to test their stability and consistency with it. Furthermore, they also help unite disparate
subjects of mathematical physics. Such research may be considered as research at the frontier in the year 2023.

A long list of such integrals is already compiled in Gradshyteyn and Ryzik [15]. Recently there have been attempts
to provide a derivation of a large number of these integrals, specifically the improper integral with limits from 0 to
∞ using the Original Method of Brackets (OMOB) [7–13]. On the other hand we would like to emphasize that the
results presented in this work are part of a long series of investigations. Part of our other investigations have been on
multi-variate hypergeometric functions which led us to develop several packages and MATHEMATICA implementation
[16–18] many of which are pioneering in their scope and ambit, as well as the potential for application to diverse
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physical problems. The present work is an illustration of this capability, in particular, of combining some of them,
rather than using them in isolation.

We turn to the study and evaluation of other improper integrals that appear in Mathematical Physics, such
as the Ising integrals and the Box integrals. We aim to express them in terms of elegant closed-form expression
or in terms of known functions of mathematical physics, especially the hypergeometric functions [19, 20]. In the
recent past, several tools have also been developed to facilitate tasks of symbolic evaluation of these integrals.
Our results here have been facilitated by the recent development of tools and advances in various theoretical
treatments. For instance, the recently proposed solution to the problem of finding the series solution of the N -
dimensional Mellin-Barnes (MB) representation [3–5], using what has been termed as the Conic Hull Mellin Barnes
(CHMB) method. This has also been automated as the MATHEMATICA package MBConichulls.wl [21, 22]. The
series representation hence obtained, in general, can be written as hypergeometric functions or their derivatives.
Independently, the issue of finding the analytic continuations (ACs) of the multivariable hypergeometric function
using the method of Olsson [16, 23], which has also been automated as a MATHEMATICA package Olsson.wl
[17] have been addressed recently. In this work, we show how these tools together, which were primarily directed at
solving Feynman integrals, are of sufficient generality to find their use in the evaluation of the integrals considered
here.

We will consider the Ising integrals which have been studied in the Ising model [24–27] and also have been in the
context of OMOB [8]. Apart from the evaluation with these newly developed tools, we will also consider certain
complications while doing similar evaluations with the OMOB [28]. One of them is the use of regulators for the
evaluation of the Ising integrals. This arises in the case of Ising integrals C3, 1 and C4, 1. For the case of C4, 1,
it is further complicated due to the use of two regulators, which, when the proper limiting procedure is applied,
will give the final result. However, we point out that such a procedure is complicated and thus use the Modified
Method of Brackets (MMOB) [29] to get the MB-integral. This MB integral can then be evaluated without any
introduction of such regulators and thus provides an efficient way to deal with these integrals. Using a similar
procedure, we attempt to evaluate the elusive C5, k integral. However, we hit a roadblock for the same, as the
resulting series does not converge and would require a proper analytic continuation procedure. At present, we find
this task beyond the reach of the tools at hand, though we provide a possible way to achieve the same. Yet such
results still shed some light on the form that these integrals can be evaluated to. All the results are provided in
the ancillary MATHEMATICA file Ising.nb .

Box integrals [30–33] are another interesting integrals where such techniques can be applied to get new results.
They do carry a physical meaning in the sense that they provide the expected distance between two randomly
chosen points over the unit n-cube. We consider the two special cases of them, namely the Bn(s) and the Δn(s).
We use the same techniques and derive the closed form results for already known B1(s) and B2(s) and new
evaluation for B3(s) and B4(s) for general values of s. The results are in terms of multi-variable hypergeometric
function. These evaluations further require the use of an analytic continuation procedure which has been done
using Olsson.wl . All the results are provided in the ancillary MATHEMATICA file Box.nb . These results for
box integrals can then be further used to evaluate the Jellium potential Jn, which can be related to box integral
Bn(s) [31, 34]. Finally, we give a general MB integral for Bn(s), which can be used to find the closed form result
for all values of n and s using MbConicHull.wl . With all this, we find new connections between the Box integrals
and the multivariable hypergeometric functions. All our calculations rely heavily on MATHEMATICA as we try
to achieve the symbolic results for all the problems.

The paper is structured as follows: In Sect. 2 using an example given in [9], we point out the problem in the
OMOB and discuss the alternative to surpass this problem. We then, in Sect. 3, proceed to the evaluation of Ising
integrals up to n = 4 while contrasting our method with the method used before to achieve the same in [8]. In Sect.
4 we attempt to solve the C5, k integral and point out a general integral C5, k(α, β) which gives C5, k as a special
case. Though we point out that it is not the final result, a proper analytic continuation procedure is required to
get C5, k from it. We then evaluate box integral Bn(s) for n = 3, 4 in Sect. (5). The new results for Δn(s) and Jn

with the above new results are also provided. Finally, we conclude the paper with some conclusions and possible
future directions in Sect. 6. In appendix C, we provide the table for all the MATHEMATICA files that we give
and the packages required which are available in GitHub.

2 Method of brackets revisited

We will first illustrate the OMOB using a simple example of integral evaluation as given in [9]. We will first
evaluate the integral by directly using the OMOB and then describe the difficulty in applying the method directly.
We will then propose a possible resolution to carry out evaluations for such cases, and then illustrate the alternative
method to do the same.
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We consider the following integral

H1(a, b) =
∫ ∞

0

K0(ax)K0(bx) dx (1)

The integral is introduced to facilitate the evaluation of another integral, which is given by putting a = b

H(a) =
∫ ∞

0

K2
0 (ax) dx (2)

We can express K0(x) using the following series expansion:

K0(ax) =
∑
n1

φn1

a2n1Γ(−n1)
22n1+1

x2n1 (3)

where φn = (−1)n

Γ(n+1) .
This expansion uses a divergent series, and we can express the result in the form of an integral representation

as

K0(bx) =
1
2

∫ ∞

0

exp
(

−t − b2x2

4t

)
dt

t
(4)

Using the OMOB, we get:

K0(bx) =
∑

n2, n3

φn2, n3

b2n3x2n3

22n3+1
〈n2 − n3〉 (5)

Substituting the bracket series in Eq. (1), we get

H1(a, b) =
∑

n1, n2, n3

φn1, n2, n3

a2n1b2n3Γ(−n1)
22n1+2n3+2

〈n2 − n3〉〈2n1 + 2n3 + 1〉 (6)

Now, we need to solve the bracket equations, which involve 2 equations but 3 variables. Evaluating this we get
following 3 series, Tiwhere niis the free variable:

T1 =
1
4a

∑
n

φnΓ(−n)Γ2

(
n +

1
2

)(
b

a

)2n

T2 =
1
4a

∑
n

φnΓ(−n)Γ2

(
n +

1
2

)(
b

a

)2n

T3 =
1
4a

∑
n

φnΓ(−n)Γ2

(
n +

1
2

)(
b

a

)2n

(7)

Using the rules of the OMOB, all the three series of Eq. (7) have to be discarded as they are divergent.
A solution to such a problem, as implemented in [9], is to regularize the singularity. This amounts to modifying

the bracket 〈n2 − n3〉 → 〈n2 − n3 + ε〉. With this modification, when n1 is a free variable, one gets the series that
contains Γ(−n), which is diverging and is thus discarded. While for the other cases, one gets two series with ε
parameter (in the form of Γ(−n + ε) and Γ(−n − ε)). In these series, when the proper limiting procedure is done,
along with the condition a = b to ease the calculation, they give the result for the integral of Eq. (2). Thus, the
original integral of Eq. (1) we started with still remains elusive, as the calculation is much more involved (the
limiting procedure) within this present framework.

An alternative to the above evaluation, free from choosing the regulator and doing the tedious limiting procedure,
is to use the MB representation derived using the MMOB [29]. Using it, we get the following MB representation
for the integral given by Eq. (1)
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H1(a, b) =
1
4

c+i∞∫

c−i∞

dz

2πi
a−2z−1b2zΓ(−z)2Γ

(
1
2
(2z + 1)

)2

(8)

The above MB integral can be readily evaluated in MATHEMATICA to give the following result

H1(a, b) =
π
√

a2

b2 K
(
1 − a2

b2

)

2a
(9)

where K (x ) is the complete elliptic integral of the first kind. Thus we get the value of the original integrals, Eq.
(1) we started with.

For the special case of a = b, using K(0) = π
2 we get

H1(a, a) = H(a) =
π2

4a
(10)

So we see that for the simple cases, too, using the MB representation to evaluate these integrals provides an
efficient way to evaluate these integrals.

3 Ising integrals

In this section, we will analyze the integrals of the “Ising class.” Ising models are extensively used to study the
statistical nature of ferromagnets [35–37]. The model accounts for the magnetic dipole moments of the spins. The
n-dimensional integrals are denoted by Cn, Dn, En, where Dn is found in the magnetic susceptibility integrals
essential to the Ising calculations.

Dn =
4
n!

∫ ∞

0

· · ·
∫ ∞

0

∏
i<j

(
ui−uj

ui+uj

)2

(
∑n

j=1(uj + 1/uj))2
du1

u1
· · · dun

un
(11)

The integral Dn provides great insights into the symmetry breaking at low-temperature phase and finds great
use in Quantum Field Theories and condensed matter physics. However, it is difficult to evaluate these integrals
computationally and analytically. On the other hand, the Cn (Cn = Cn, 1) class integrals which are closely related
to the Dn class, are easier to tackle and can produce closed-form expressions.

The general Ising integrals Cn, k is defined as

Cn, k =
4
n!

∫ ∞

0

· · ·
∫ ∞

0

1
(
∑n

j=1(uj + 1/uj))k+1

du1

u1
· · · dun

un
(12)

The above expression can also be expressed as the moments of power of Bessel Function K0 as

Cn, k =
2n−k+1

n! k!
cn, k :=

2n−k+1

n! k!

∫ ∞

0

tkKn
0 (t)dt (13)

We will now analyze the special case of the Cn, k family with k = 1 using the Method of Brackets [7, 8, 25]
and Mellin–Barnes representations. After this, each general integral with Cn, k will be treated using the same
procedure. The C1, k and C2, k integrals are easily tractable, and the results for them have been given just for
completeness’ sake. The problem occurs when one considers Cn, k for n ≥ 3. Below we use the MMOB [29] and
show that for the evaluation of the integrals requiring the use of regulators, it is better to use the MMOB and
solve the corresponding integral using the CHMB method. The main utility of the method is that the limiting
procedure is automatically taken care of while finding the residue in the case of CHMB, which is at times difficult,
especially when there is more than 1 regulator, as in the case of C4, k.
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3.1 C1, k

For n = 1, we have

C1, k =
4
1!

∫ ∞

0

1
(u1 + 1/u1)k+1

du1

u1
(14)

The integral can simply be evaluated to give the general closed form:

C1, k =
√

π21−kΓ
(

k+1
2

)
Γ
(

k
2 + 1

) (15)

3.2 C2, k

For k = 1, we get:

C2, k =
4
2!

∫ ∞

0

∫ ∞

0

1
(u1 + 1/u1 + u2 + 1/u2)k+1

du1

u1

du2

u2
(16)

This evaluation using the MOB, for k = 1, gives:

C2, 1 = 1 (17)

The integral for the general value of k can also be evaluated to give the following closed form:

C2, k =
Γ
(

k
2 + 1

2

)4

Γ(k + 1)2
(18)

3.3 C3, k and C3, k(α, β, γ)

For k = 1, we get:

C3, 1 =
4
3!

∫ ∞

0

∫ ∞

0

∫ ∞

0

1
(u1 + 1/u1 + u2 + 1/u2 + u3 + 1/u3)2

du1

u1

du2

u2

du3

u3
(19)

We will illustrate the problem encountered in OMOB by writing the bracket series for the generalized case C3, k.
Taking k = 1will give us the result for C3, 1.

The following form of the integrand is motivated to maximize the number of brackets series in the expansion,
which in turn reduces the number of variables:

C3, k =
2
3

∫ ∞

0

∫ ∞

0

∫ ∞

0

(u1u2u3)k

(u1u2u3(u1 + u2) + u3(u1 + u2) + u1u2u2
3 + u1u2)k+1

du1du2du3 (20)

Expanding the denominator using the rules of MOB,

∑
{n}

φ{n}(u1u2)n1+n3+n4zn1+n2+2n3(u1 + u2)n1+n2
〈k + 1 + n1 + n2 + n3 + n4〉

Γ(k + 1)
(21)

Now, (u1 + u2)n1+n2 has to be further expanded as:

(u1 + u2)n1+n2 =
∑

n5, n6

φn5, n6u
n5
1 un6

2

〈−n1 − n2 + n5 + n6〉
Γ(−n1 − n2)

(22)

123



Eur. Phys. J. Spec. Top.

Combining the expansions, the C3, kintegral takes the form:

C3, k =
2

3Γ(k + 1)

∑
{n}

φ{n}
〈−n1 − n2 + n5 + n6〉

Γ(−n1 − n2)

× 〈k + 1 + n1 + n3 + n4 + n5〉〈k + 1 + n1 + n3 + n4 + n6〉
× 〈k + 1 + n1 + n2 + 2n3〉〈k + 1 + n1 + n2 + n3 + n4〉 (23)

Now, the rules of MOB demand that we solve the linear equations of the brackets, but that poses the problem of
giving rise to divergent terms like Γ(−n) and renders the whole procedure useless. To solve the issue, it is suggested
to introduce regulators. For the case of C3, k, one regulator is enough. In particular, ε (→ 0) is introduced in the
bracket as 〈k + 1 + n1 + n2 + 2n3〉 → 〈k + 1 + n1 + n2 + 2n3 + ε〉 which mimics the effect of introducing a factor
of uε

3 in the integrand. Now, with this “new” bracket series, the divergent terms take the form of Γ(−n − ε) and
are easier to work with. In the regime of OMOB, one requires the expansion of Γ(x) around integers to deal with
the problem, which increases the complexity of the task.

As n increases, the number of regulators increases monotonically and complicates the limiting procedure. On
the other hand, MMOB doesn’t call for any regulators and is very computationally friendly. Using the MMOB in
the above bracket series, we get the following MB representation for the C3, 1

C3, 1 =
1
3

c+i∞∫

c−i∞

dz

2πi

Γ(−z)4 Γ(1 + z)2

Γ(−2z)
(24)

This evaluates to

C3, 1 =
2
27

(
6i

√
3

(
Li2

(
1
4

− i
√

3
4

)
− Li2

(
i
√

3
4

+
1
4

))
+ π

√
3 log(4) − ψ(1)

(
1
3

)
+ ψ(1)

(
2
3

))
(25)

where ψ(1) is the polygamma function of order 1.
The generalized integral C3, k can be similarly obtained using the MMOB to give the following MB representation:

C3, k =
1

3Γ(k + 1)

c+i∞∫

c−i∞

dz

2πi

Γ(−z)4 Γ
(

1
2 (k + 2z + 1)

)2

Γ(−2z)
(26)

The above integral can be evaluated to give

C3, k =
2

3 k!
√

π G2, 3
3, 3

(
1
4

∣∣∣∣ 1, 1, 1
k+1
2 , k+1

2 , 1
2

)
(27)

where Gm, n
p, q is the Meijer-G function, which is given by following Mellin-Barnes representation [43].

Gm, n
p, q

(
a1, . . . , ap

b1, . . . , bq
| z

)
=

1
2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1 − aj + s)∏q

j=m+1 Γ(1 − bj + s)
∏p

j=n+1 Γ(aj − s)
zsds

A further generalization of C3, k integral namely C3, k(α, β, γ) is given in [8] where the following integral is
considered

C3, k(α, β, γ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

xα−1yβ−1zγ−1

(x + 1/x + y + 1/y + z + 1/z)k+1
dxdydz (28)

Using the MMOB, we get the following MB representation

C3, k(α, β, γ) =
1

3Γ(k + 1)

c+i∞∫

c−i∞

dz

2πi
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Γ(−z)Γ(−z + α − 1)Γ(−z − β + 1)Γ(−z + α − β)Γ
(

1
2 (k + 2z − α + β − γ + 2)

)
Γ
(

1
2 (k + 2z − α + β + γ)

)
Γ(−2z + α − β)

(29)

The result is given in the MATHEMATICA file Ising.nb and is found to be:

= − 1
3k!

π3/2 csc(πγ)2−γ−k−1
(
4γΓ

(
1
2
(k − α − β − γ + 4)

)

Γ
(

1
2
(k + α − β − γ + 2)

)
Γ
(

1
2
(k − α + β − γ + 2)

)
Γ
(

1
2
(k + α + β − γ)

)

× 4F̃3

(
1
2
(k + α + β − γ),

1
2
(k − α − β − γ + 4),

1
2
(k + α − β − γ + 2),

1
2
(k − α + β − γ + 2);

1
2
(k − γ + 2),

1
2
(k − γ + 3), 2 − γ;

1
4

)

− 4Γ
(

1
2
(k − α − β + γ + 2)

)
Γ
(

1
2
(k + α − β + γ)

)

Γ
(

1
2
(k − α + β + γ)

)
Γ
(

1
2
(k + α + β + γ − 2)

)

× 4F̃3

(
1
2
(k − α + β + γ),

1
2
(k + α + β + γ − 2),

1
2
(k − α − β + γ + 2),

1
2
(k + α − β + γ);

k + γ

2
,

1
2
(k + γ + 1), γ;

1
4

))
(30)

where 4F̃3(a1, a2, a3, a4; b1, b2, b3;x) =
1

Γ(b1)Γ(b2)Γ(b3)

∞∑
n=0

(a1)n(a2)n(a3)n(a4)n

(b1)n(b2)n(b3)n

xn

n!
and (a)n = Γ(a+n)

Γ(a) is the

Pochhammer symbol.

3.4 C4, k and C4, k(α, β, γ, δ)

For k = 1:

C4, 1 =
4
4!

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

1
(u1 + 1/u1 + u2 + 1/u2 + u3 + 1/u3 + u4 + 1/u4)2

du1

u1

du2

u2

du3

u3

du4

u4
(31)

If one proceeds with the OMOB as in the case of C3, 1, one is now required to use 2 regulators, namely ε and A
[8]. The result for C4, 1is then obtained by taking the limit ε → 0, A→ 1. The use of two regulators significantly
complicates the task of doing the limiting procedure. So we again proceed with the use of the MMOB. Using the
MOB, we get the following MB representation for C4, 1:

C4, 1 =
1
12

c+i∞∫

c−i∞

dz

2πi

Γ(−z)4 Γ(1 + z)4

Γ(−2z) Γ(2 + 2z)
(32)

This can be evaluated to give

C4, 1 =
7ζ(3)
12

(33)

The general case for n = 4can be simplified to the following MB representation:

C4, k =
1

12Γ(k + 1)

c+i∞∫

c−i∞

dz

2πi

Γ(−z)4 Γ
(

k+1
2 + z

)4

Γ(−2z) Γ(k + 2z + 1)
(34)
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Table 1 Values of C4, k for k = 0, . . . , 7

k C4, k

0
1
6
πG3, 3

4, 4

(
1

∣∣∣∣∣ 1, 1, 1, 1
1
2
, 1

2
, 1

2
, 1

2

)

1 7ζ(3)
12

2
1
48

πG3, 3
4, 4

(
1

∣∣∣∣∣ 1, 1, 1, 2
3
2
, 3

2
, 3

2
, 1

2

)

3 7ζ(3)−6
1152

4
1

2304
πG3, 3

4, 4

(
1

∣∣∣∣∣ 1, 1, 1, 3
5
2
, 5

2
, 5

2
, 1

2

)

5 49ζ(3)−54
368640

6
1

276480
πG3, 3

4, 4

(
1

∣∣∣∣∣ 1, 1, 1, 4
7
2
, 7

2
, 7

2
, 1

2

)

7 63ζ(3)−74
15482880

This can be evaluated to give the closed-form expression:

C4, k =
π 2−k−1

3Γ(k + 1)
G3, 3

4, 4

(
1
∣∣∣∣ 1, 1, 1, k+2

2
k+1
2 , k+1

2 , k+1
2 , 1

2

)
(35)

The given expression is of particular interest, as seen from its values when evaluated for any odd values of k . When
C4, kis evaluated for any odd k , it takes the form of aζ(3) + b function, where a and bare some rational numbers.
Some of the values are provided for reference in Table 1.

A further generalization of C4, kintegral namely C4, k(α, β, γ, δ) can be considered as follows

C4, k(α, β, γ, δ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

xα−1yβ−1zγ−1wδ−1

(x + 1/x + y + 1/y + z + 1/z + w + 1/w)k+1
dxdydzdw (36)

Using the MMOB, we get the following MB representation

C4, k(α, β, γ) =
1

12Γ(k + 1)

c+i∞∫

c−i∞

dz

2πi

Γ(−z)Γ(−z + γ − 1)Γ(−z − δ + 1)Γ(−z + γ − δ)Γ
(

1
2 (k + 2z − α − β − γ + δ + 3)

)
12Γ(k + 1)Γ(−2z + γ − δ)Γ

(
1
2 (k + 2z − α − β − γ + δ + 3) + 1

2 (k + 2z + α + β − γ + δ − 1)
)

× Γ
(

1
2
(k + 2z + α − β − γ + δ + 1)

)
Γ
(

1
2
(k + 2z − α + β − γ + δ + 1)

)

Γ
(

1
2
(k + 2z + α + β − γ + δ − 1)

)
(37)

The above integral can also be evaluated as before, and the solution has been provided in the accompanying
MATHEMATICA file Ising.nb.

We end this section by noting that given an integral, the evaluation of its MB representation obtained using the
MMOB [29] is more efficient than using the OMOB and its rules to evaluate the same. The regulators and the
limiting procedure in the OMOB are automatically taken care of in the evaluation of MB integrals while evaluating
the residue. Alternatively, this suggests that one can try to find a better rule that concerns the elimination of the
bracket for the OMOB so that one does not require regulators and the result is obtained with their use.
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4 An attempt at C5, k

Using the machinery developed so far, we now attempt to evaluate the C5integral in the same spirit. Using the
MOB, we get the following MB representation for C5, k

C5, k =
1

60Γ(k + 1)

c1+i∞∫

c1−i∞

dz1

2πi

c2+i∞∫

c2−i∞

dz2

2πi

Γ(−z1)4Γ(−z2)4Γ
(

1
2 (k + 2z1 + 2z2 + 1)

)
2

Γ(−2z1)Γ(−2z2)
(38)

Evaluation of the above integral, when done directly using the MBConicHulls.wl, would result in the divergent
series. A suitable way to approach such evaluation would be by taking two parameters that serve as the variables
for the series that appear and then evaluating the results with these parameters. For the C5, kintegral we have the
following evaluation

C5, k(α, β) =
1

60Γ(k + 1)

c1+i∞∫

c1−i∞

dz1

2πi

c2+i∞∫

c2−i∞

dz2

2πi
(α)z1(β)z2

Γ(−z1)4Γ(−z2)4Γ
(

1
2 (k + 2z1 + 2z2 + 1)

)
2

Γ(−2z1)Γ(−2z2)
(39)

We notice that the integral Eq. (39) has a more general structure than the integral Eq. (38) with the introduction
of the two parameters. The C5, kcan be obtained by putting α = β = 1. The evaluation of the Eq. (39) has been
done in the accompanying MATHEMATICA file Ising.nb.

We also note that though we have a result for integral (39), the result is not convergent for the value of interest
α = β = 1. Proper analytic continuation techniques have to be used to achieve this goal. At present, with the form
of series that we obtain, the task is not achievable using Olsson.wl . With the form of series at hand we believe
that it can be written as a derivative of ‘some’ hypergeometric function. Then Olsson.wl can be used to find the
ACs of this hypergeometric function so that it converges for α = β = 1, and then the derivative can be performed
to get the final result.

5 Box integrals

For dimension n, we define the box integral as the expected distance from a fixed point q (can be origin also) of
point r chosen randomly and independently over the unit n-cube, with parameter s,

Bn(s) =
∫ 1

0

· · ·
∫ 1

0

(
(r1)2 + · · · + (rn)2

)s/2

dr1 · · · drn (40)

Δn(s) =
∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)2 + · · · + (rn − qn)2

)s/2

dr1 · · · drndq1 · · · dqn (41)

For certain special values of parameter s, the above integrals give the following interpretation:

1. Bn(1): It gives the expected distance from the origin for a random point of the n-cube.
2. Δn(1): It gives the expected distance between two random points of the n-cube.

Due to the physical significance of the box integrals and also their use in the electrostatic potential calculations,
we wanted to evaluate these integrals and give closed-form expressions using the Method of Brackets that has been
implemented throughout the paper.

Using the quadrature formulae for all complex powers [30, 31, 34, 38, 39], we use the functions:

b(u) =
∫ 1

0

e−u2x2
dx =

√
π erf(u)

2u
(42)

d(u) =
∫ 1

0

∫ 1

0

e−u2(x−y)2dy dx =
√

π u erf(u) + e−u2 − 1
u2

(43)
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which gives us the relation:

Bn(s) =
2

Γ(−s/2)

∫ ∞

0

u−s−1bn(u) du (44)

Δn(s) =
2

Γ(−s/2)

∫ ∞

0

u−s−1dn(u) du (45)

5.1 Bn(s)

Now, for the method of brackets to be operational, we need integrals of the form with limits from 0 to ∞. We
need to make an Euler substitution. The following substitution has been found to be the most efficient:

x → a

1 + a
(46)

which makes the integral

b(u) =
∫ 1

0

e−u2x2
dx =

∫ ∞

0

e−u2( a
1+a )2 1

(1 + a)2
da (47)

b(u) =
∫ ∞

0

∞∑
n=0

1
n!

(
−u2a2

(1 + a)2

)n

1
(1 + a)2

da (48)

Substituting this back in Bn(u) and applying MMOB, it is obtained that Bn(s) has a pole at s = −n and we
finally get:

B1(s) =
1

s + 1
, s �= −1 (49)

B2(s) =
2

s + 2 2F1

(
1
2
, −s

2
;
3
2
;−1

)
, s �= −2 (50)

The first two cases were easy to handle. The first non-trivial evaluation is that of B3(s). We found two different
results for the same by using two different methods. Firstly we consider the following representation of B3[31]:

B3(s) =
3

3 + s
C2, 0(s, 1) =

6
(3 + s)(2 + s)

∫ π/4

0

((
1 + sec2 t

)s/2+1 − 1
)

(51)

The above can interestingly be evaluated in MATHEMATICA using Integrate command. Using it, we get the
following evaluation for the B3(s)integral

B3(s) =
6

(s + 2)(s + 3)

(
iF1

(
1;

1
2
, −s

2
; 2; 2, −2

)
− 2

s+1
2

s + 1
F1

(
1
2
(−s − 1);−1

2
, −s

2
;
1 − s

2
;
1
2
, −1

2

)

− i 2F1

(
1, −s

2
;
3
2
;−1

)
+ 2s/2

2F1

(
1
2
, −s

2
;
3
2
;−1

2

)

−
√

π

4Γ
(
1 − s

2

) 2F1

(
−s

2
− 1

2
, −s

2
; 1 − s

2
;−1

)
Γ
(

−s

2
− 1

2

)
− π

4

)
(52)

where F1(a; b1, b2; c;x, y)is the Appell F1function which is defined for |x|< 1 ∧ |y|< 1 as:

F1(a; b1, b2; c;x, y) =
∞∑

m, n=0

(a)m+n(b1)m(b2)n

(c)m+nm!n!
xmyn (53)

where (q)nis the Pochhammer symbol.
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The Eq. (52) requires the evaluation of the Appell F1 outside its region of convergence. Such evaluation requires
the use of analytic continuation of F1, which has been done by Olsson [40].

Though we got the result using MATHEMATICA , it doesn’t provide many insights so as to aid the computations
of other Bn(s). So we proceed to a more systematic evaluation of the B3(s)so that the results can be generalized
to other values of n. Using the MMOB [29] we get the following Mellin-Barnes integral for the B3(s)

B3(s) =

c1+i∞∫

c1−i∞

c2+i∞∫

c2−i∞

Γ(−z1)Γ(−z2)Γ(2z1 + 1)Γ(2z2 + 1)Γ(s − 2z1 − 2z2 + 1)Γ
(− s

2 + z1 + z2

)
Γ
(− s

2

)
Γ(2z1 + 2)Γ(2z2 + 2)Γ(s − 2z1 − 2z2 + 2)

dz2

2πi

dz1

2πi
(54)

We evaluate the above integral using the MBConicHulls.wl package [21]. The evaluation gives the following result:

B3(s) = − π

2(s2 + 5s + 6)
+

√
π
(
(s + 2) 2F1

(
1
2
, − s

2
− 1

2
; 3
2
; −1

)
+ 2F1

(− s
2

− 1, − s
2

− 1
2
; − s

2
; −1

))
Γ
(− s

2
− 1

2

)
Γ(s + 2)

2(s + 3)Γ
(− s

2

)
Γ(s + 3)

+
1

1 + s
F 2:1:1

1:1:1

⎡
⎣ −1 − s

2
,

−s

2
:

1

2
;
1

2
1 − s

2
,

1

2
:

1

2
;

∣∣∣∣∣ − 1, −1

⎤
⎦ (55)

Where F 2:1:1
1:1:1 (x, y)is the KdF function which converges for |√x|+|√y|< 1. So to evaluate it at (−1, −1), one needs

its analytic continuations. In the MATHEMATICA file Box.nb, we provide a systematic derivation of the analytic
continuation for the same so that it converges at (−1, 1).

For general Bn(s)we get the following MB-representation

Bn(s) =
1

Γ
(− s

2

)
c1+i∞∫

c1−i∞
· · ·

cn−1+i∞∫

cn−1−i∞

(
n−1∏
p=1

dzp

2πi

)(∏n−1
i=1 Γ(2zi + 1)

)
Γ
(
s − 2

∑n−1
j=1 zj + 1

)
Γ
(∑n−1

k=1 zk − s
2

)
(∏n−1

l=1 Γ(2zl + 2)
)
Γ
(
s − 2

∑n−1
m=1 zm + 2

) (56)

Using the Eq. (56) we obtain following representation for B4(s)

B4(s, α, β, γ) =
1

Γ
(− s

2

)
c1+i∞∫

c1−i∞

c2+i∞∫

c2−i∞

c3+i∞∫

c3−i∞
Γ(−z1)Γ(2z1 + 1)Γ(−z2)Γ(2z2 + 1)Γ(−z3)Γ(2z3 + 1)Γ(s − 2z1 − 2z2 − 2z3 + 1)

Γ(2z1 + 2)Γ(2z2 + 2)Γ(2z3 + 2)Γ(s − 2z1 − 2z2 − 2z3 + 2)

× Γ
(
−s

2
+ z1 + z2 + z3

)
(α)z1(β)z2(γ)z3

dz1dz2dz3

(2πi)3
(57)

The above integral can be again evaluated readily using the MbConicHull.wl package. For the case of B4(s),
due to the occurrence of a 3-variable hypergeometric function, the region of convergence analysis is difficult. In
the OMOB all the series which converges in the same region of convergence are kept together. For 3 or more
variables this analysis becomes complicated and is not always straightforward [19]. Here the CHMB method plays
an important role in that it clubs the series converging in the same region of convergence together without prior
knowledge of their region of convergence. The evaluation has been provided in the file Ising.nb .

5.2 Δn(s)

We now move on to the evaluation of Δn integrals (41). Instead of directly doing the evaluation of the δn(s)
integral, we refer to [31], to exploit the relation between Bn(s) and Δn(s). A few instances of the same are as
follows:

Δ1(s) = 2
1

(s + 1)(s + 2)
(58)

Δ2(s) = 8
2

s
2+1(s + 3) + 1

(s + 2)(s + 3)(s + 4)
+ 4B2(s) − 4(s + 4)

s + 2
B2(s + 2) (59)
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Δ3(s) =24

(
(s + 5)

(
2

s
2+3 − 3

s
2+2

)
+ 1

)
(s + 2)(s + 4)(s + 5)(s + 6)

+
24

s + 2
B2(s + 2)

− 24(s + 6)
(s + 2)(s + 4)

B2(s + 4) − 12(s + 5)
s + 2

B3(s + 2) (60)

+
4(s + 6)(s + 7)
(s + 2)(s + 4)

B3(s + 4) + 8B3(s) (61)

where B2(s) and B3(s) are given by Eqs. (50) and (55). The results for Δ4 and Δ5 are provided in the appendix
B.

5.3 Jellium potential

As an application of the evaluations done in the previous section, we refer to one more application of such
evaluations, the Jellium potential [34]. It arises in the problem of electrostatics. The problem concerns finding the
electrostatic potential energy of an electron (having charge -1) at the cube center, given an n-cube of uniformly
charged jelly of total charge +1. For the problem, usually one takes the radial potential at a distance r from the
electron as Vn(r) as follows

V1(r) := r − 1/2,
V2(r) := log(2r),

Vn(r) := 2n−2 −
(

1
r

)n−2

, n > 2 (62)

The n-th Jellium potential is defined as

Jn := 〈Vn(r)〉r∈[−1/2, 1/2]n (63)

All the Jn can be written as a box integral up to an offset. The final result is

Jn = 2n−2(1 − Bn(2 − n)), n > 2 (64)

Using the result for Bn, J3 can be readily evaluated to:

J3 =
π

2
+ 2 − 6 tanh−1

(
1√
3

)
(65)

6 Conclusion and discussion

We show that using the MMOB [29] for the evaluation of improper integral with limits from 0 to ∞ combined with
tools to evaluate such MB integrals such as MbConicHull.wl results in more efficient evaluation of the integrals
considered here. This method is particularly helpful to evaluate the integrals when using OMOB; one requires the
use of ’regulators’ and a proper limiting procedure to evaluate these integrals. The choice of these regulators is
somewhat arbitrary, and at times more than one regulator has to be used, which further complicates the process.
With these tools at hand, we then re-evaluate the Ising integral, which had been already evaluated in [8] but with
regulators. We further make an attempt to evaluate the sought-after integral C5, k with all these techniques. We
are, though, able to evaluate a more general integral C5, k(α, β) which, when properly analytically continued, will
give the result for C5, k. At present, we are unable to do so with the techniques at hand. However, we believe
that the result can be written as a derivative of some multi-variable hypergeometric function. Continuing further
we evaluate the B3(s) and B4(s) and give a general MB representation for Bn(s). For the case of B3(s), we
use Olsson.wl to find the ACs of the hypergeometric functions that appear in the solution. For B4(s), similar
techniques would work. It is important to note that though the OMOB and the evaluation of MB representation
will give essentially the same number of series, grouping them in the same ROC is not an easy task. For the case of
3 or more variables, the problem of finding the ROC is still a problem yet to be solved in an efficient manner. This
problem is essentially removed in the case of applying the CHMB method, where such grouping is automatically
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done without prior knowledge of the ROC. As a byproduct of these evaluations, we get the result for associated
box integrals Δn(s) and Jellium potential Jn. We through these evaluations also discover the relations between
these integrals and multivariable hypergeometric functions. We would like to emphasize again that the present
work is an illustration of combining various techniques and automatizations [17, 21] together which are developed
as a part of a long series of investigations, rather than using them in isolation.

As a future direction, it would be interesting to modify the rules of the OMOB so that the final evaluation of
the bracket series doesn’t require regulators. For the case of C5, k(α, β) evaluated in the present work, one can try
to find a way to evaluate the ACs. One way toward this direction is to write the final result as a derivative of a
hypergeometric function and then find the ACs of it using Olsson.wl . After finding the ACs, the derivative can
be taken to get the final result which converges in the appropriate region. We also note that a similar process can
be used to evaluate C6, k, which also gives a 2-fold MB integral. Finally, it would be interesting to derive the result
for the various Box integrals Bn(s), Δn(s) and Jellium-potential Jn from the results given here. The result in the
present work matches numerically with those results; it would still be interesting to see how they can be obtained
from the present work by using various reduction formulas of multivariable hypergeometric functions.
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A Ruby’s formula

Ruby’s formula is another interesting physical problem where the OMOB can still be used. We provide an evaluation
of a general integral of which Ruby’s formula is a special case in this Appendix to highlight the application of the
OMOB when regulators are not required. Ruby’s formula gives the solid angle subtended at a disk source by a
coaxial parallel-disk detector [41]. It is given as follows

D =
Rd

Rs

∫ ∞

0

J1(kRd)J1(kRs)
e−kd

k
dk (66)

where Rd and Rs are the radii of the detector and the source, respectively, d is the distance between the source
and the detector, and J1(x) is the order one Bessel’s function of the first kind. We now consider the generalization
of integral (66), as discussed in [42]. We will use the MOB to evaluate the integral and show that it reproduces
the result, along with two ACs.

S =
∫ ∞

0

kle−kd
N∏

j=1

Jaj
(kRj) dk (67)

we can again apply the method of brackets by using the series expansion of the functions

Jaj
(kRj) =

1
2aj

∞∑
nj=0

φnj

(kRj)2nj+aj

22njΓ(aj + nj + 1)

e−kd =
∞∑

np=0

φnp
knpdnp

putting the series expansion in the above integral, we get

S =
∫ ∞

0

∞∑
np=0

φnp
knp+ldnp

N∏
j=1

1
2aj

∞∑
nj=0

φnj

(kRj)2nj+1

22njΓ(aj + nj + 1)
dk (68)
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we can simplify the above by noting that

N∏
j=1

1
2aj

∞∑
nj=1

φnj

(kRj)2nj+aj

22njΓ(aj + nj + 1)
=

∞∑
n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, Nk
∑N

j=1(2nj+aj)

2
∑N

j=1(2nj+aj)

∏N
j=1(Rj)(2nj+aj)

∏N
j=1 Γ(aj + nj + 1)

putting above value in Eq. (68) gives

S =
∫ ∞

0

∞∑
np=0

φnp
k(np+l+

∑N
j=1(2nj+aj))dnp

∞∑
n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, N

2
∑N

j=1(2nj+aj)
×

∏N
j=1(Rj)(2nj+aj)

∏N
j=1 Γ(aj + nj + 1)

dk (69)

Using the method of brackets, Eq. (69) can be written as

S =
∞∑

n1=0

· · ·
∞∑

nN=0

∞∑
np=0

φ1, 2, ···, N , p〈(np + l + 1 +
N∑

j=1

(2nj + aj))〉 dnp

2
∑N

j=1(2nj+aj)

×
∏N

j=1(Rj)(2nj+aj)

∏N
j=1 Γ(aj + nj + 1)

(70)

where φ1, 2, ···, N , p = φn1φn2 · · · φnN
φnp

The solutions to Eq. (70) are determined using the solution to the linear equation.

np + l + 1 +
N∑

j=1

(2nj + aj) = 0 (71)

above equation has (N + 1) variables. There are (N + 1) different ways to write solutions to the above equation,
taking N free variables each time.

Out of (N+1) solutions, the solution with np as the dependent variable gives the Lauricella function of N
variables, as we will show. The rest of the solutions give the series representation that is the analytical continuation
of the earlier.

Denoting the solution to Eq. (71) by n∗
i with ni being the dependent variable.

The solutions to equation Eq. (71) can be written as

n∗
p = −(l + 1) −

N∑
j=1

(2nj + aj); a = 1

n∗
i = − (np + l + 1)

2
−

N∑
j=1, i�=j

(nj) −
N∑

j=1

(aj

2

)
; a =

1
2

a is the coefficient of the dependent variable if the set of linear equations obtained from brackets are written in
the form an+b=0

where n is the dependent variable, and b includes all the free variables and the constants.
Denoting the solution of Eq. (70) by Si obtained by using n∗

i (i = 1, 2, · · · , N , p).
(I) With np as the dependent variable
We write the solution to Eq. (70) as

Sp =
1
a

∞∑
n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, NF (n1, n2, · · · , nN , n∗
p)Γ(−n∗

p) (72)

where F (n1, n2, · · · , nN , np) =
dnp

∏N
j=1(Rj)

(2nj+aj)

2
∑N

j=1(2nj+aj) ∏N
j=1 Γ(aj+nj+1)

.
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Putting the values, we get

Sp =
∞∑

n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, N

d−(l+1)−∑N
j=1(2nj+aj)

∏N
j=1(Rj)(2nj+aj)

2
∑N

j=1(2nj+aj)
∏N

j=1 Γ(aj + nj + 1)
Γ
(
(l + 1) +

N∑
j=1

(2nj + aj)
)

(73)

Using Legendre’s duplication formula

Γ
(

2
( l + 1

2
+

N∑
j=1

(
nj +

aj

2

)))

=
2

(

l+
∑N

j=1(2nj+aj)

)

Γ
(

l+1
2 +

∑N
j=1

(
nj + aj

2

))
Γ
(

l
2 + 1 +

∑N
j=1

(
nj + aj

2

))
√

π
(74)

putting above value in Eq. (73) and simplifying gives

Sp =
∞∑

n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, N

d−(l+1)−∑N
j=1(2nj+aj)

∏N
j=1(Rj)(2nj+aj)

2
∑N

j=1(2nj+aj)
∏N

j=1 Γ(aj + nj + 1)

×
Γ
(

l+1
2 +

∑N
j=1

(
nj + aj

2

))
Γ
(

l
2 + 1 +

∑N
j=1

(
nj + aj

2

))
√

π

(75)

this equation can be written in compact form as follows

Sp =
1√
π

(2
d

)l(1
d

)
Γ
( N∑

j=1

aj

2
+

l + 1
2

)
Γ
( N∑

j=1

aj

2
+

l

2
+ 1

) N∏
j=1

(Rj

d

)aj

×
∞∑

n1=0

· · ·
∞∑

nN=0

(−1)
∑N

j=1 nj
∏N

j=1

(
Rj

d

)2nj

∏N
j=1

((
aj + 1

)
nj

Γ(nj + 1)
)

×

(∑N
j=1

aj

2 + l+1
2

)
(
∑N

j=1 nj)

(∑N
j=1

aj

2 + l
2 + 1

)
(
∑N

j=1 nj)∏N
j=1 Γ(aj + 1)

(76)

(a)mis the Pochhammer symbol
which exactly matches the series representation obtained in [42] with ROC

N∑
i=1

|Rj |< d

The above series corresponds to the Lauricella function of N variables.

Sp =
1√
π

(2
d

)l(1
d

)( 1∏N
j=1 Γ(aj + 1)

)
Γ
( N∑

j=1

aj

2
+

l + 1
2

)
Γ
( N∑

j=1

aj

2
+

l

2
+ 1

) N∏
j=1

(Rj

d

)aj

× Fc

(( N∑
j=1

aj

2
+

l + 1
2

)
,
( N∑

j=1

aj

2
+

l

2
+ 1

)
(1 + a1), · · · , (1 + aN );−

(R1

d

)2

, · · · , −
(RN

d

)2
) (77)

where Fcin the above equation is the Lauricella function for N variables.
(II) With ni as the dependent variable

123



Eur. Phys. J. Spec. Top.

We write the solution to Eq. (70) as

Si =
1
a

∞∑
n1=0

· · ·
∞∑

nN=0

φ1, 2, ···, (i−1), (i+1), ···, N , p

F (n1, n2, · · · , n∗
i , · · · , nN , np)Γ(−n∗

i ) (78)

putting the values, we get

Si =
1
2

∞∑
n1=0

· · ·
∞∑

ni−1=0

∞∑
ni+1=0

· · ·
∞∑

nN=0

∞∑
np=0

φ1, 2, ···, (i−1), (i+1), ···, N , p

dnp

( ∏N
j=1, j �=i(Rj)(2nj+aj)

)
(
2

∑N
j=1, j �=i(2nj+aj)

)( ∏N
j=1, j �=i Γ(aj + nj + 1)

)

×
(

1(
Γ(ai − (np+l+1)

2 − ∑N
nj=1, i�=j(nj) − ∑N

j=1

(aj

2

)
+ 1

)
)

(
(Ri)−(np+l+1)−∑N

j=1, i�=j(2nj)−
∑N

j=1 aj+ai

)

×
(

1

2−(np+l+1)−∑N
j=1, i�=j(2nj)−

∑N
j=1 aj+ai

)

(
Γ
(np + l + 1

2
+

N∑
j=1, j �=i

(nj) +
N∑

j=1

(aj

2

)))

(79)

Eq.(79) gives series representation for all values of i = 1, 2, · · · , N and is the most general form of all the
analytically continued series.

Δn Relations

Δn can be expressed in terms of Bnas has already been shown in the Subsect. (5.2). Here, the relations for Δ4

and Δ5 are provided:

Δ4(s) = 64

(
3 · 2

s
2+3 + 2s+6 − 3

s
2+4

)
(s + 7) + 1

(s + 2)(s + 4)(s + 6)(s + 7)(s + 8)

+
96

(s + 2)(s + 4)
B2(s + 4) − 96(s + 8)

(s + 2)(s + 4)(s + 6)
B2(s + 6) +

64
s + 2

B3(s + 2)

− 96(s + 7)
(s + 2)(s + 4)

B3(s + 4) +
32(s + 8)(s + 9)

(s + 2)(s + 4)(s + 6)
B3(s + 6) + 16B4(s)

− 88(s + 6)
3(s + 2)

B4(s + 2) +
8(s + 8)(6s + 43)
3(s + 2)(s + 4)

B4(s + 4)

− 8(s + 8)(s + 9)(s + 10)
3(s + 2)(s + 4)(s + 6)

B4(s + 6) (80)

Δ5(s) = 160
1 + (9 + s)

(
26+s/2 + 210+s − 54+s/2 − 2 · 35+s/2

)
(2 + s)(4 + s)(6 + s)(8 + s)(9 + s)(10 + s)

+
320

(2 + s)(4 + s)(6 + s)
B2(6 + s) +

320
(2 + s)(4 + s)

B3(4 + s)

− 320(10 + s)
(2 + s)(4 + s)(6 + s)(8 + s)

B2(8 + s)
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Table 2 Description of various MATHEMATICA files provided and the packages used

Files provided Description

Ising.nb Contains the evaluation of the Ising integrals C3, k, C4, k, C5, k(α, β) and C6, k(α, β)

Box.nb Contains the evaluation of the Box integrals B3(s) and B4(s)

MbConicHull.wl Package required to evaluate multidimensional MB integrals. Used in the

evaluation of C5, k(α, β), C6, k(α, β), B3(s) and B4(s)

MultivariateResidues.m Used by the package MbConicHull.wl internally

Olsson.wl Package required for finding the ACs. Used for the case B3(s)

ROC2.wl Package required for finding the region of convergence of the 2-variable hypergeometric
series.

− 480(9 + s)
(2 + s)(4 + s)(6 + s)

B3(6 + s) +
160

2 + s
B4(2 + s)

− 880
3

(8 + s)
(2 + s)(4 + s)

B4(4 + s) +
80
3

(10 + s)(55 + 6s)
(2 + s)(4 + s)(6 + s)

B4(6 + s)

− 80
3

(10 + s)(11 + s)(12 + s)
(2 + s)(4 + s)(6 + s)(8 + s)

B4(8 + s)

+ 32B5(s) − 200
(7 + s)
6 + 3s

B5(2 + s) +
4
3

(9 + s)(291 + 35s)
(2 + s)(4 + s)

B5(4 + s)

− 8
3

(10 + s)(11 + s)(47 + 5s)
(2 + s)(4 + s)(6 + s)

B5(6 + s)

+
4
3

(10 + s)(11 + s)(12 + s)(13 + s)
(2 + s)(4 + s)(6 + s)(8 + s)

B5(8 + s) (81)

C MATHEMATICA files

Here, we give a list of the MATHEMATICA files and packages that we provide, which contains the derivation of
the various results of the paper (Table 2).
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