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Abstract We performed a wavelet analysis of oscillatory dynamics in brain activity of patients with obstruc-
tive sleep apnoea (OSA) (N = 10, age 52.8± 13 years, median 49 years; male/female ratio: 73), compared
with a group of apparently healthy participants (N = 15, age 51.5±29.5 years, median 42 years; malefemale
ratio: 87), based on the calculation of patterns from electroencephalographic (EEG) signals of ***nighttime
polysomnography (PSG) recordings. It was shown that there were no statistical differences in the number
and duration of nocturnal sleep stages in patients of the two groups. The distributions of the number N
and duration T of oscillatory wavelet patterns of EEG signals in bands Δfi = [i; i+2], where i takes values
from 2 to 38, have been estimated. Statistically significant differences in the characteristics of the distribu-
tions of the number and duration of patterns for the high-frequency bands Δf17 – Δf19 (32 – 38 Hz) are
shown. It is demonstrated that estimation of the coordinates of the height and the value of the maximum
point of the distribution of the considered quantitative characteristics of the patterns allows clustering
of the EEG processing results and demonstrates the separation of the nocturnal sleep characteristics of
OSA patients and healthy volunteers. Evaluation based on the Mann–Whitney U-test shows statistically
significant differences between N and T patterns assessed from nocturnal EEG recordings. The number
and duration of high-frequency patterns are significantly reduced in the EEG of OSA patients compared
to essentially healthy participants. It is possible that such a change in high-frequency activity is related to
known structural changes in the brain.

1 Introduction

The study of nocturnal sleep is currently a highly relevant task that is being addressed by a significant number
of researchers around the world, both as part of the development of interdisciplinary approaches [1–3] and clinical
research [4]. Neurological disorders [5, 6], cardiological diseases [7–9], pathological syndromes of endocrinological
[10, 11], and other disorders of the body are accompanied by various disturbances of night sleep in patients.
At the same time, the emergence of night sleep disorders contributes to the deterioration of both the course of
the main diagnosis, and the emergence of further associated syndromes. For example, the inverse amplification
loop of chronic pain syndromes and insomnia [12–14] has been well studied. At the same time, obstructive sleep
apnoea syndrome remains the most studied primary syndrome of nighttime sleep disturbance today [4, 15]. In this
case, when a person is horizontal during night sleep, there is a pathological decrease in the airways, which leads
to periodic oxygen deprivation. Apnoea can be caused by obesity, alcoholism, or damage to the cartilage andor
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tissues of the nose and throat [16–21]. However, obstructive apnoea can also be a primary condition related to
features of the structure of, for example, the oral cavity [22–24]. Obstructive sleep apnoea (OSA) syndrome is a
very severe, almost disabling human condition. Extreme fragmentation of sleep, disturbance of its structure and
duration does not allow the human central nervous system to rest sufficiently, which causes significant discomfort
and problems with the cognitive background of patients [25, 26]. In addition, regularly occurring states of oxygen
deprivation, as well as the lack of duration of deep slow and REM sleep stages leads to disturbances in the
functional activity of organism [27]. In particular, cardiovascular dynamics are very seriously affected, showing
both progressive arterial hypertension, rhythm disturbances, and other conditions [28, 29]. That said, obstructive
nocturnal sleep apnoea syndrome is very common, aided greatly by the prevalence of sedentary lifestyles, obesity
and other similar disruptions to normal behavioural habits in developed countries [30]. According to some studies,
the prevalence of obstructive nocturnal sleep apnoea can be as high as about 15–30% in males and 10–15% in
females [31].

Researchers are particularly interested in this syndrome when investigating it as a primary diagnosis. In other
words, a number of patients with normal body weight, no cardiac or neurological disease, etc., may have OSA, which
leads to subjective patient dissatisfaction with sleep quality and, without treatment, worsening of the objective
clinical status [25].

One of the main tools for studying nocturnal sleep in such disorders is polysomnographic studies, the result
of which is a set of physiological signals in digital form, characterising the patient’s state during sleep. Classical
polysomnography (PSG) includes the recording of six symmetrical channels of electroencephalography (EEG),
eye electrical activity (electrooculogram, EOG), chin muscle activity (electromyogram, EMG), electrocardio-
gram (ECG), leg and arm motor activity signals, nasal, thoracic, and abdominal respiratory signals and video
recordings of nocturnal sleep. Figure 1, a shows a conventional scheme of performing nocturnal polysomnography.
After recording the entire data set, the physician-somnologist, relying on the methods of visual (qualitative) and
quantitative amplitude and frequency analyses of the entire data block, performs the transcription of the PSG
by constructing a hypnogram. The hypnogram represents the division of the entire night’s sleep into a series
of accepted stages—slow sleep (N1, N2, N3), rapid eye movement sleep (rapid eye movement sleep, REM) and
awakenings [32]. The hypnogram is standardly constructed using a time window of about 30 s and may include a
system for automatic diagnosis of the various stages, however, always under the control of a clinical expert.

N
Fp1 Fp2

C3 C4

O1 O2

A1 A2

Fig. 1 a Layout of sensors for polysomnography, b scheme of electrodes arrangement for recording nocturnal EEG record-
ings during polysomnography. Electrode designations are given in standard international notation
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At the same time, polysomnography is a typical example of a set of poorly structured digital data of different
nature. The poorly structured nature of these data is primarily reflected in the very weak criteria for distinguishing
between sleep stages. For example, distinguishing between N1 and REM sleep stages is still a very difficult task
for automatic systems [33]. In addition, the difference in expert judgements of hypnograms after control by clinical
experts can also reach the order of 15 – 20 % differences in the duration of the stages and the moments of their
onset [34]. Note that, according to the generally accepted opinion, the erroneous nature of such hypnograms leaves
them correct from the point of view of clinical practise and use in scientific research.

Second, the substantial heterogeneity of characteristics of different signals used in PSG analysis also compli-
cates digital processing. For example, myograms, oculograms, electrocardiograms and electroencephalographs have
significantly different scales of oscillatory activity. It is more usual in terms of physical approaches and digital pro-
cessing to perform separate analyses for groups of signals of similar nature. For example, such analysis of ECG
and photoplethysmogram has allowed us to recognise different scenarios of cardiovascular activity in patients
with [35] obstructive breathing disorders. The study of brain electrical activity during nocturnal sleep has also
attracted considerable attention from researchers around the world [1–3, 36]. Note that brain activity attracts
much attention both from general considerations of the relevance of research in the field of neuroscience, and from
the applied aspects of the convenience of conducting PSG. In particular, the ability to automatically establish a
diagnosis based solely on the recording of EEG signals would both reduce the cost of the study and complement
standard PSG with an important additional tool to support medical decision making.

In the presented work, we demonstrate the results of EEG activity pattern assessment in patients with obstructive
sleep apnoea syndrome and healthy participants. This assessment allows us to distinguish a patient with obstructive
apnoea without constructing a hypnogram and analysing the full set of polysomnography signals.

2 Materials and methods

The study analysed EEG signals recorded during nocturnal polysomnography recordings. Six symmetrical
EEG channels recorded in the left and right hemisphere leads, Fp1, C3, O1 and Fp2, C4, O2, respectively, were
used for the study. The names of the leads are given according to the international standard [37], and the electrode
locations are shown in Fig. 1b.

All polysomnographic recordings were obtained from two groups of patients. The first group included participants
with no subjective health problems and no objectively diagnosed clinical diagnoses. The group of patients with
obstructive nocturnal sleep apnoea syndrome included only patients with respiratory disorders with the exclusion
of patients with abnormalities in cardiovascular activity and other diseases. Fifteen participants were included in
the group of essentially healthy participants (age 51.5±29.5 years, median 42 years; malefemale ratio: 87) and ten
participants were included in the OSA patients’ group (age 52.8±13 years, median 49 years; malefemale ratio: 73).

All polysomnographic recordings were processed in a standardised manner to construct hypnograms. Table 1
summarises the statistical characteristics of all stages of nocturnal sleep as well as nocturnal awakenings. In the
OSA group of patients, the average number of awake periods was slightly increased due directly to the specifics
of the diagnosis. However, no statistically significant differences were found in the duration and number of sleep
stages between apnoeic patients and essentially healthy participants. The Mann–Whitney U-test [38] was used to
evaluate group differences hereafter.

For each EEG recording, the mean number N and duration T of oscillatory patterns in consecutive frequency
ranges presented in Table 2 were calculated. These quantities were evaluated based on skeleton analysis of the
continuous wavelet transform in a time window Δt = 30 s [39–42]. As a result of the calculations performed, the
entire nocturnal EEG signal recording was characterised by an array of values NΔt and TΔt. The number of values

Table 1 Statistical characteristics of sleep for two groups of patients

Healthy Apnoea

Mean Standard
deviation

Median Q1 Q3 Mean Standard
deviation

Median Q1 Q3

Awake 14.6 9.3 12.8 8.2 20.3 21.4 18.4 17.2 12.4 22.1

Stage N1 10.2 5.8 8.7 5.6 14.7 8.0 3.8 7.1 5.4 10.7

Stage N2 47.8 9.4 48.6 43.2 54.1 46.3 14.8 44.8 39.5 51.5

Stage N3 19.9 12.0 23.3 8.7 28.9 15.2 9.3 15.5 7.0 23.0

Stage REM 9.7 4.6 9.6 6.7 13.6 10.6 5.3 11.7 6.9 15.3
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Table 2 Characteristics of frequency bands for assessing the integral characteristics of EEG signals, where # is sequence

number of frequency bands, fk
1 and fk

1 are minimal and maximal values of band #, Δfk is band length

# fk
1 fk

2 Δfk # fk
1 fk

2 Δfk # fk
1 fk

2 Δfk

Δf1 1 2 1 Δf8 14 16 2 Δf15 28 30 2

Δf2 2 4 2 Δf9 16 18 2 Δf16 30 32 2

Δf3 4 6 2 Δf10 18 20 2 Δf17 32 34 2

Δf4 6 8 2 Δf11 20 22 2 Δf18 34 36 2

Δf5 8 10 2 Δf12 22 24 2 Δf19 36 38 2

Δf6 10 12 2 Δf13 24 26 2 Δf20 38 40 2

Δf7 12 14 2 Δf14 26 28 2

in these arrays was determined by the total duration L of the nightly recording. We could characterise each of
the study participants by the distribution of magnitudes of the number N and duration T of patterns in any
of the 20 bands, according to Table 2. Colour schemes were used to represent the laws of distribution of these
characteristics of all 25 patients in each frequency range, where different colours correspond to the frequency of
observation of a certain value of a numerical EEG parameter. In these schemes, all EEG channels of each patient
were plotted on the OX axis and the observed values for the number N or duration T of patterns were plotted on
the ordinate axis, as shown in Figs. 2 and 3.

The distributions constructed possessed a shape with a pronounced single maximum and some finite width, as
conventionally demonstrated in Fig. 4g. In considering such distributions, the coordinates (X ; Y ) of the maximum
value of each of the distributions (Fig. 4g) were detected. The detected coordinates (X ; Y ) in each of the EEG
channels recorded in the two groups of study participants were plotted on the corresponding planes defined by the
frequency bands Δf1 – Δf20.

For further analyses, we used averaging of N and T – arrays calculated for each of the EEG signals recorded for
the study participants. This approach allowed statistical analysis of group differences in the calculated quantitative
characteristics for healthy volunteers and OSA – patients.

3 Results

Figures 2a, b and 3a, b show typical results of constructing distributions of the number N and duration T of
oscillatory patterns in the frequency ranges Δf11 and Δf18 for all 25 participants of the study, respectively. It
can be clearly seen that relatively slow oscillations whose frequency belongs to the Δf11 region do not show any
differences for the group of healthy volunteers (highlighted in green in the figures) and OSA patients (red). The
maximum number of N patterns is observed between 1.9 and 3.2 in both patient groups. In the low-frequency
region, the number of N patterns of OSA patients changes more frequently from the first and second nights of
recordings compared to the group of healthy volunteers, namely 50 % of OSA patients and 40 % of volunteers.

At the same time, high-frequency activity in the Δf18 band shows visually prominent differences between the
two groups considered. The maximum values of the probability distribution for healthy participants fall in the
1.9 – 4.0 value zone, whilst those for apnoeic patients are observed in the region of 1.0 – 3.0 patterns. A similar
pattern is observed for all frequency bands with numbers # 17 –19. Thus, the differences in the number of
patterns detected in windowed EEG analysis in the presence of obstructive breathing disorders are concentrated
at frequencies greater than 30 Hz.

Note that the plotted distributions vary markedly for some channels in power (red luminance level) and even in
the immediate boundaries of maximum values. Such a picture, for example, is observed for channel C3 recorded
on the second night in patient # 6, as shown in Fig. 2a. This situation appears to be related to some common
alterations of the repeat recording—possibly due to technical interference. In particular, the recordings of the
second night of patient # 6 show significant changes in the number of patterns already for all channels in band Δf18.

The duration of oscillatory patterns in the groups of healthy participants and patients shows similar dynamics.
For slow oscillatory modes, the duration of oscillatory patterns does not change much when moving from healthy
to OSA patients (Fig. 3a). The maximum values of the duration distribution of T patterns in the Δf11 band are
observed for values of 0.5 – 0.6 s and 0.1 – 0.3 s. The maximum values of the frequency of observation of each of
the T durations of the patterns fluctuate in the region 0.0032 – 0.0036.

Analysis of the high-frequency band Δf18 demonstrates slightly different characteristics of the durations of
oscillatory patterns in the patients’ EEG, as shown in Fig. 3b. First of all, the probability distribution exhibits
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Fig. 2 a and b: Map distributions of the number N of oscillatory wavelet patterns in the frequency bands Δf11 and Δf18,
respectively. On the vertical axis are the 25 participant numbers, where the green colour shows the numbers of healthy
volunteers and the red colour shows OSA patients. The horizontal axis corresponds to the numerical value of the N number
of patterns. The colour shows the frequency of observation of the corresponding N for every participant, the colour scale is
given on the bottom in the figure
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Fig. 3 Map distributions of the duration T of oscillatory wavelet patterns in the frequency bands Δf11 and Δf18, a and
b, respectively. On the vertical axis are the 25 participant numbers, where the green colour shows the numbers of healthy
volunteers and the red colour shows OSA patients. The horizontal axis corresponds to the numerical value of the N number
of patterns. The colour shows the frequency of observation of the corresponding N for every participant, the colour scale is
given on the bottom in the figure
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Fig. 4 a, b, c and d, e, f Maps of the location of the maximum density distribution characteristics of the number N and
duration T of patterns, respectively. The maps are constructed for frequency bands Δf17, Δf18 and Δf19 (top, middle
and bottom rows, respectively). g Scheme for determining coordinates X and Y from the probability density distribution
plot of quantity N and duration T . The green colour corresponds to the data obtained in the group of healthy participants
and the red colour corresponds to the data in the group of apnoea patients
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significantly superior values for the frequency of observations (0.0044 – 0.0052). Second, the duration of patterns
in the high-frequency region possesses a pronounced single maximum, the coordinates of which decrease when
moving from healthy participants (green patient numbers) to OSA patients (red patient numbers). Third, the
distribution of pattern durations is “higher” in the OSA patient group, corresponding to the darker red colour in
the map demonstrated in Fig. 3b.

Further analyses focus on the estimates of oscillatory patterns computed in the high-frequency bands,
Δf17 −− Δf19. As demonstrated in Fig. 4, the simplest visualisation of the spread of the magnitude of the
distribution and the value of the number and duration of patterns for the maximum value of the corresponding
distributions in six of the EEG channels shows different clouds corresponding to healthy volunteers (green dots)
and OSA patients (red dots).

Group analysis of the number and duration of patterns calculated for all six EEG signals in the ranges Δf17,
(Fig. 5a and d), Δf18, (Fig. 5b and e) and Δf19, (Fig. 5c and f) shows the presence of statistically significant
differences between the groups of healthy and OSA patients. The level of differences is shown using asterisks by
Mann–Whitney U-test [38]. In these high-frequency EEG bands, the activity recorded in the groups of apnoea
patients and healthy participants is significantly different. We found maximum differences when analysing the
number of patterns in the range Δf18.

Fig. 5 a, b, c and d, e, f Diagrams of the distribution of the number N and duration T of patterns, respectively. The green
colour corresponds to the data obtained in the group of healthy participants and the red colour corresponds to the data
in the group of apnoea patients. All diagrams depict the following statistical characteristics of third numerical parameters:
the first and the quartiles (25 – 75%, inside the box); the median and the mean (transverse line and point inside the box,
respectively); 1.5 interquartile range (shown by whiskers) and outliers represented by asterisks
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4 Discussion

In the presented work, we develop a method for nonlinear processing of polysomnography components. By esti-
mating the number and duration of oscillatory patterns on the basis of continuous wavelet analysis, we calculated
quantitative characteristics for each EEG signal recorded during polysomnography. For numerical and statistical
analysis of the characteristics of brain electrical activity, we propose to use the evaluation of the entire polysomno-
graphic recording, without dividing it into sleep stages and moments of nocturnal awakenings. This approach allows
us to estimate brain activity independently of the construction of the hypnogram. In other words, automatic anal-
ysis based on the evaluation of the number and duration of wavelet patterns in the high-frequency region of 32–38
Hz will allow us to detect the presence of apnoea independently of the expert judgement of a clinical somnologist.
Such systems may find application in home primary diagnostics of patients’ respiratory system pathologies. The
development of such systems is currently underway in various centres and is aimed at independent diagnosis and
unification of the work without exception of the clinical doctor to make a diagnosis [43].

The demand for such independent systems is due to some peculiarities of polysomnographic studies. Today
polysomnography is the gold standard of sleep research, but at the same time, it suffers from several limitations.
In practise, the process of correct start-up of a PSG installation is complicated and time-consuming. Until now,
the installation of all sensors and the initial setup of the system by a qualified technician takes up to an hour
and is quite expensive. Clinical PSG is still very bulky, even in the case of wireless sensors, which interferes with
the patient’s usual sleep. In addition, the whole hospital environment is often stressful for patients. Due to all
these aspects, the result of PSG is to analyse sleep on only one of the nights, which does not take into account
the intraindividual variability of sleep parameters [44] observed even when assessing the apnoea–hypopnoea index
[45]. In addition, the definition of sleep stages itself suffers from low reliability and lack of agreement between
different experts. For example, a study by Rosenberg and Van Hout using the AASM ISR dataset demonstrated
that the level of agreement on sleep stage estimates was less than 83 % based on hypnogram estimates from over
2,500 experts [34]. Note that the concordance of estimates varied significantly across stages, being highest for
the REM sleep stage (90.5%) and lowest in stages N3 and N1 (67.4% and 63.0%, respectively). Moreover, expert
estimates vary considerably in the case of different sleep pathologies, as well as the conduct of the study in different
clinical centres [34, 46]. Thus, the development of methods and systems for independent numerical evaluations of
biomedical signals recorded during human sleep is a very promising area of development for information systems
and sleep medicine.

At the same time, differences in high-frequency brain activity could be demonstrated for both the duration and
the number of patterns in the EEG oscillatory structure. In other words, in the region of frequencies exceeding the
standard beta oscillation band (17 – 30 Hz), not only quantitative changes during apnoea but also a qualitative
transition of the structure to a different state was demonstrated. The combined analysis of the Figs. 4 and 5
suggests that the clustering of sleep, associated to OSA, is significant compared to normal sleep. At the same time,
brain EEG studies during sleep often capture oscillatory activity up to the theta [47–49] and beta [50] bands.
This research position is particularly motivated by the direct search for correlations between EEG and heart
rate, the most susceptible to respiratory disturbances. However, it is well known that obstructive disturbances of
normal breathing during sleep lead to structural changes in the brain, which has been shown in numerous magnetic
resonance imaging studies [51–53]. In such a case, the fundamental changes in cortical activity at high-frequency
bands may well be a consequence of such structural abnormalities. It is important to note that, as shown in the
patient descriptions, these differences in high-frequency EEG activity cannot be directly attributed to changes
in nocturnal sleep patterns and the presence of a large number of waking episodes of OSA patients, since no
significant differences in the sleep of the study participants were observed (see Table 1).

5 Conclusion

The presented work demonstrates quantitative differences in the analysis of brain electrical activity of participants
in a clinical overnight sleep study. The observed significant differences in the oscillatory pattern of brain electrical
activity are concentrated in the high-frequency region (32 – 38 Hz). The quantitative characteristics of the patterns
in OSA patients are significantly reduced compared to those calculated in healthy volunteers. Analyses of OSA
patients and essentially healthy participants demonstrate different clusters in the density estimation space of the
number and duration distributions of oscillatory patterns for high-frequency bands.
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