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Abstract The analytic continuations (ACs) of the double variable Horn H1 and H5 functions have been
derived for the first time using the automated symbolic Mathematica package Olsson.wl. The use of
Pfaff–Euler transformations have been emphasised in deriving AC to cover regions which are otherwise
not possible. The corresponding regions of convergence (ROC) are obtained using its companion package
ROC2.wl. A Mathematica package HornH1H5.wl, containing all the derived ACs and the associated ROCs,
along with a demonstration file of the same is made publicly available in this URL: https://github.com/
souvik5151/Horn_H1_H5.git.

1 Introduction

Feynman integrals are an integral part of the precision calculations in quantum field theory [1]. They occur in the
higher-order terms of the perturbation theory. Apart from this, they are also interesting from a mathematical point
of view. Interest in Feynman integrals has also been motivated by processes at the LHC. In this quest to obtain the
analytic properties, it was observed that hypergeometric functions and Feynman integrals are intimately related
[2]. There are various ways to obtain and explore these hypergeometric connections of Feynman integrals. A general
technique to evaluate these Feynman integrals, thus giving rise to multi-variable hypergeometric functions (MHFs),
is that of using the Mellin–Barnes (MB) representation. Some of the classic results using it are results for general
N -point one loop integrals [3–5]. Such evaluations give rise to the N -variable hypergeometric function of the Horn
type. On the same front, a recently developed method of conic hull Mellin–Barnes (CHMB) [6–9], a generalised
technique for finding the series representation of N -fold MB integrals, also gives a solution of Feynman integrals in
terms of MHFs. Another method which achieves the same, and can be shown to be equivalent to the MB method,
is that of the negative dimensional integration method [10–16]. In some cases, the hypergeometric representation of
Feynman integrals can be obtained using the integration of the Feynman parametric integral [17–25] and without
the use of any other specialised techniques. Recently, functional relations were used to evaluate one-loop Feynman
integrals (see [26] and references within) in terms of MHFs. Feynman integrals can also be realised as the GKZ
hypergeometric system [27–29]. These MHFs also appear in some physical processes too like Appell F3 that appears
in the calculation of one loop four-photon scattering amplitude [30, 31]. Apart from this, the evaluation of the
pentagon integral [32] in certain Regge limit gives rise to Appell F4 and Kampé de Fériet functions. To give a few
more examples, two-loop massive sunset diagram [33, 34], three-loop vacuum diagram [24], one-loop two, three
and four-point scalar functions [22, 35, 36] are also evaluated in terms of MHFs.

The theory of hypergeometric functions and their analytic continuations (ACs) in one and more than one
variable is now a highly explored subject for over a century and is of fundamental importance in many branches
of mathematical physics [37–43]. The one variable Gauss 2F1 function has been generalised to two variables in
[44], which are now known as Appell F1, F2, F3 and F4 functions. Another ten double variable hypergeometric
functions G1, G2, G3 and H1, H2, . . . , H7 are introduced by Horn [45]. These 14 Appell–Horn functions form
the set of distinct, second-order complete hypergeometric functions in two variables. More general higher-order
functions, namely the Kampé de Fériet functions, frequently appear in the study of analytic continuations of these
functions [38]. Using the detailed transformation theory of two-variable hypergeometric functions, it was found
by Erdélyi [46] that all the second-order, two-variable hypergeometric functions, except F4, H1 and H5, can be
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related to F2 via the transformation formulae. The Appell F2 has been studied by Olsson [47] and recently have
also been studied in [48], where a large number of ACs and their numerical implementation in Mathematica have
been developed. The Appell F4 was treated by Exton [49], and these results were further modified in [50]. It was
also pointed out by Exton that H1 and H5 should be investigated in a similar way [49]. A recent study for the
determination of the solution of the PDEs of various Appell and Horn functions along with that of H1 and H5

have been done in [51]. Some properties of the H1 and H5 have recently been studied in [52–56].
In all of the above examples, both mathematical and physical, it is thus important to obtain the ACs of the

obtained MHFs. Mathematically, such ACs are important to obtain the solutions of the associated system of partial
differential equations around various singular points. In physical applications, they are important so as to evaluate
these functions in various kinematical regions. In [46], it was pointed out that the well-known transformation
formulae of the one variable pFp−1 functions can be used to find the ACs of the MHFs. The method has been
used for the Appell F1 [57], F4 [49] and recently for F2 [48]. In principle, such computations are possible and have
been achieved by hand before, but as we discuss below in the upcoming section, the analysis for the cases of H1

and H5 is tedious and demands the use of more powerful computational tools. Specifically one of the important
steps in such analysis, the ROC analysis, is nearly impossible to do by hand. These occur due to the higher-order
hypergeometric functions that appear in these studies.

With all the above motivation, in this work, we consider the non-trivial cases of Horn H1 and H5 series.
Due to the difficulty in the computation of ACs and ROCs for these non-trivial cases, we use the automated
Mathematica packages Olsson.wl and ROC2.wl [58], thus also aiming to test their efficacy. We aim to find the
analytic continuations(ACs) of these so as to cover the whole real x − y plane and their respective ROCs. We will
also tacitly exclude the exceptional values of the parameters that are values that make the gamma functions that
appear in the AC to be not defined.. While deriving the ACs, we observe that only the use of AC of pFp−1(z)
around z = ∞ and the AC of 2F1(z) around z = 1, as has been done in a similar previous analysis of F4 and F2,
is no more adequate. To resolve this issue, we use the Pfaff–Euler transformations (PETs) of the 2F1, wherever
applicable, which allow us to cover the regions that are otherwise difficult to cover. For the case of H1, we found
that such an approach allows us to cover the whole real plane, apart from some boundaries and singular points.
On the other hand, for the Horn H5 function, there still remains a small finite size region where no AC is valid
(see Fig. 29). Since it is impossible to present all the results in the form of running text, we provide along with
this manuscript a Mathematica [59] package and a demonstration file of the package. The package can be used to
access the ACs and their corresponding ROCs as required by the user. However, we point out that special care
has to be taken for the numerical evaluation, as the ACs can have multivaluedness issues which are not discussed
in the present paper. These non-trivial evaluations are thus a challenge to the package in terms of both evaluating
the analytic continuations for these two cases as well as finding the region of convergence for various higher-order
series that appear in these analytic continuations. These results can further be used as a benchmark for future
numerical tests of the same.

The scheme of this paper is as follows. In Sect. 2, we first analyzed H1, starting with the derivation of one of
its simple ACs for the illustration. All the other ACs are derived using the package Olsson.wl that follows the
same methodology. Similarly, we have discussed H5 in Sect. 3. In all these sections, we discussed ways along with
a road map to derive enough ACs that cover the whole real plane (boundaries excluded). We also illustrated the
importance and uses of the Pfaff–Euler transformations of 2F1 hypergeometric function during the process.

2 The Horn H1 series

The Horn H1 series is defined as [38, 45]

H1(a, b, c, d, x, y) =
∞∑

m,n=0

(a)m−n(b)m+n(c)nxmyn

m!n! (d)m
, (1)

with the ROC: 2
√|x||y| + |y| < 1 ∧ |y| < 1 ∧ |x| < 1, which for real x and y is shown in Fig. 1.

It satisfies the following system of partial differential equations:

x(1 − x)r − y2t + [d − (a + b + 1)x]p − (a − b − 1)yq − abz = 0,
− y(1 + y)t − x(1 − y)s + [a − 1 − (b + c + 1)y]q − cxp − cbz = 0, (2)

where the symbols are defined as follows:

z = H1, p =
∂z

∂x
, q =

∂z

∂y
,
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Fig. 1 ROC of Eq. (1)

Fig. 2 Singular curve of H1

r =
∂2z

∂x2
, t =

∂2z

∂y2
, s =

∂2z

∂x∂y
.

The singular curves of the above equation are as follows; see Fig. 2.

x = 0, y = 0, x = 1, y = −1, −4xy + y2 + 2y + 1 = 0. (3)

In the following section, we obtain the various ACs of the H1 series by using the ACs of pFp−1. These ACs
ensure that we cover the whole real xy plane with the exception of certain singular lines; in other words, we can
find the value of H1 outside its ROC given as in Fig. 1. We also make use of the Pfaff–Euler transformations of
2F1 in the intermediate steps and show how to obtain the various other ACs that could not be or are at times
hard to obtain using just the ACs of pFp−1.

2.1 An illustrative example

As an illustrative example of the procedure of finding the ACs, by deriving one simple AC of H1, we will derive
the AC around (1, 0).

We take Eq. (1) and sum over m,

H1(a, b, c, d, x, y) =
∞∑

m,n=0

(−1)nyn(b)n(c)n
n! (1 − a)n

2F1(b + n, a − n; d;x). (4)
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Now using the AC of 2F1(x) around x = 1 Eq. (46), we find two series:

H
(1)
(1, 0)(a, b, c, d, x, y) =

Γ(d)Γ(−a − b + d)
Γ(d − a)Γ(d − b)

∞∑

m,n=0

yn(b)n(c)n(b − d + 1)n
n! (1 − a)n(d − a)n

× 2F1(a − n, b + n; a + b − d + 1; 1 − x)

=
Γ(d)Γ(−a − b + d)
Γ(d − a)Γ(d − b)

∑

m,n

(c)n(a)m−n(b − d + 1)n(b)m+n

m!n! (d − a)n(a + b − d + 1)m
(1 − x)m(−y)n (5)

with ROC: 2
√|1 − x||−y| + |−y| < 1 ∧ |1 − x| < 1 ∧ |−y| < 1

and

H
(2)
(1, 0)(a, b, c, d, x, y) = (1 − x)−a−b+dΓ(d)Γ(a + b − d)

Γ(a)Γ(b)

∞∑

m,n=0

yn(c)n
n!

× 2F1(−b + d − n, −a + d + n;−a − b + d + 1; 1 − x)

= (1 − x)−a−b+dΓ(d)Γ(a + b − d)
Γ(a)Γ(b)

∞∑

m,n=0

(c)n(b − d + 1)n(d − a)m+n(d − b)m−n

m!n! (d − a)n(−a − b + d + 1)m
(1 − x)m(−y)n. (6)

So, we get the following AC around (1,0):

H1(a, b, c, d, x, y) =
Γ(d)Γ(−a − b + d)
Γ(d − a)Γ(d − b)

∞∑

m,n=0

(c)n(a)m−n(b − d + 1)n(b)m+n

m!n! (d − a)n(a + b − d + 1)m
(1 − x)m(−y)n + (1 − x)−a−b+d

× Γ(d)Γ(a + b − d)
Γ(a)Γ(b)

∞∑

m,n=0

(c)n(b − d + 1)n(d − a)m+n(d − b)m−n

m!n! (d − a)n(−a − b + d + 1)m
(1 − x)m(−y)n (7)

with ROC: 2
√|1 − x||−y| + |−y| < 1 ∧ |1 − x| < 1 ∧ |−y| < 1 as shown in Fig. 3.

We observe from Fig. 3 that around the singular point (1, 0), one AC is enough to cover the space around it.
However, there might arise a situation where this is not possible. For example for the other singular point (0, −1),
where we need two ACs around that singular point.

The following diagram illustrates the possible chain of the process that can be used to derive both the ACs
around the singular point (0, −1).

Fig. 3 ROC of Eq. (7)
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Fig. 4 All the possibilities of ACs for H1. The thick lines indicate the one that has been derived and the dashed lines
denote which are not. The region that can be covered using the ACs denoted by dashed lines can be covered using the ACs
denoted by the solid line. The derived ACs are part of the package and the AC Ti in the above graph is the i-th AC in the
package

Using the AC of pFp−1(z) around z = ∞, we have the following two possible situations:

Taking into account all these possibilities, we can have in general the following possibilities for H1 (Fig. 4).

2.2 The Pfaff–Euler transformations

In the intermediate steps of the analytic continuation procedure, it is sometimes possible to get 2F1 hypergeometric
function when carrying out one of the summations. Instead of using the usual AC of 2F1(z) around z = 1 or
z = ∞, it is also possible to use the PETs, Eq. (45), in the intermediate steps. This process can also be done using
Olsson.wl. Using this we get the following transformations for H1

We first take Eq. (1). Summing over m, we find

H1(a, b, c, d, x, y) =
∞∑

m,n=0

(−1)nyn(b)n(c)n
n! (1 − a)n

2F1(b + n, a − n; d;x). (8)

Now using the PETs of 2F1, we find

H1(a, b, c, d, x, y) = (1 − x)−b
∞∑

m,n=0

(c)n(b)m+n(d − a)m+n

m!n! (1 − a)n(d)m(d − a)n

(
x

x − 1

)m(
y

x − 1

)n

, (9)
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Fig. 5 ROC of Eq. (9)

Fig. 6 ROC of Eq. (10)

with ROC:
√∣∣∣ y

x−1

∣∣∣ +
√∣∣∣ x

x−1

∣∣∣ < 1. (Figs. 5, 6)

H1(a, b, c, d, x, y) = (1 − x)−a
∞∑

m,n=0

(b)n(c)n(a)m−n(b − d + 1)n(d − b)m−n

m!n! (d)m

(
x

x − 1

)m

(y(x − 1))n, (10)

with ROC:
√∣∣∣ x

x−1

∣∣∣ − 1√
|y(x−1)| < −1 ∧ |y(x − 1)| < 1 ∧

∣∣∣ x
x−1

∣∣∣ < 1.

H1(a, b, c, d, x, y) = (1 − x)−a−b+d
∞∑

m,n=0

(b)n(c)n(b − d + 1)n(d − a)m+n(d − b)m−n

m!n! (1 − a)n(d)m(d − a)n
xmyn, (11)

with the ROC same as H1: 2
√|x||y| + |y| < 1 ∧ |y| < 1 ∧ |x| < 1. (Figs. 7, 8)

Similarly, summing over n, we find

H1(a, b, c, d, x, y) =
∞∑

m,n=0

xm(a)m(b)m
m! (d)m

2F1(c, b + m;−a − m + 1;−y). (12)
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Fig. 7 ROC of Eq. (11)

Fig. 8 ROC of Eq. (13)

Using PETs of 2F1, we find:

H1(a, b, c, d, x, y) = (y + 1)−b
∞∑

m,n=0

(a + c)m(b)m+n(−a − c + 1)n−m

m!n! (d)m(1 − a)n−m

(
x

y + 1

)m(
y

y + 1

)n

, (13)

with ROC
∣∣∣ x
y+1

∣∣∣ +
∣∣∣ y
y+1

∣∣∣ < 1.

H1(a, b, c, d, x, y) = (y + 1)−c
∞∑

m,n=0

(b)m(c)n(a + b)2m(−a − b + 1)n−2m

m!n! (d)m(1 − a)n−m
(−x)m

(
y

y + 1

)n

, (14)

with ROC: 1
|−x| − 4

∣∣∣ y
y+1

∣∣∣
2

> 4
∣∣∣ y
y+1

∣∣∣ ∧ |x| < 1 ∧
∣∣∣ y
y+1

∣∣∣ < 1.

H1(a, b, c, d, x, y) = (y + 1)−a−b−c+1
∞∑

m,n=0

× (b)m(a + b)2m(a + c)m(−a − b + 1)n−2m(−a − c + 1)n−m

m!n! (d)m(1 − a)n−m

(
x

(y + 1)2

)m

(−y)n, (15)
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Fig. 9 The ROC of Eq. (14)

Fig. 10 The ROC of Eq. (15)

with ROC 1√∣∣∣ x
(y+1)2

∣∣∣
− |−y| > 1 ∧

∣∣∣ x
(y+1)2

∣∣∣ < 1 ∧ |−y| < 1. (Figs. 9, 10)

It is important to note that though the PETs have been used with the original definition of H1 in the above
case, one can also use them in the intermediate steps if summation over one of the indices gives 2F1. AC number
22 (in the package) of H1 is derived using this strategy.

One can then also use the whole procedure of finding the AC on the above-derived transformations of H1 and
obtain more ACs of H1. We derive AC number 20 and 21 (in the package) using this idea.

3 The Horn function H5

The Horn function H5 is defined as [37, 38, 45],

H5 := H5(a, b, c, x, y) =
∞∑

m,n=0

(a)2m+n(b)n−m

(c)n
xmyn

m!n!
. (16)

The defining ROC is given by [38]

|x|< 1
4

∧ |y|< 1∧,

123
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|y|<

⎛

⎜⎜⎝

min
(

−(1−12|x|)3/2+36|x|+1
54|x| , (1−12|x|)3/2+36|x|+1

54|x| , (12|x|+1)3/2−36|x|+1
54|x|

) √|x| < 1
2
√
3

(12|x|+1)3/2−36|x|+1
54|x| True

.

⎞

⎟⎟⎠ (17)

The ROC above is shown in Fig. 11 for real values of x and y .
The Horn H5 function satisfies the following set of PDEs:

x(1 + 4x)r + (4x − 1)ys + y2t + ((4a + 6)x − b + 1)p + 2(a + 1)yq + a(1 + a)z = 0

(y − 1)yt + xys − 2x2r − (x(a − 2b + 2))p + (y(a + b + 1) − c)q + abz = 0, (18)

where like before the symbols p, q , r , t and s are given below:

z = H5, p =
∂z

∂x
, q =

∂z

∂y
, ,

r =
∂2z

∂x2
, t =

∂2z

∂y2
, s =

∂2z

∂x∂y
.

It is to be noted that the PDE of H5 given in the book [37] is not correct. This observation is also noted in [51]. It
is worth mentioning that the singular locus of the H5 can be found by using the theory of D-modules and Gröbner
basis (see [60] for an application to Lauricella FC). Some properties of the Horn H5 function are studied in [53].

Fig. 11 The defining ROC of H5 (Eq. (17)) is plotted for real values of x and y

Fig. 12 The singular curves (i.e. Eq. (19)) are shown

123
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The singular curves for the Horn H5 are as follows:

x = 0, y = 0, x = −1/4, y = 1, 1 + 8x + 16x2 − y − 36xy + 27xy2 = 0. (19)

These are shown in Fig. 12.
In the following section, we find the ACs of the function using Olsson’s method. All the ACs are derived using

the package Olsson.wl [58]. The ROCs of the ACs are obtained using the companion package ROC2.wl. The ROCs
that are shown below are plotted for real values of x and y .

To proceed, we take the summation over the index m and observe that the Gauss 2F1 appears inside the
summand:

H5(a, b, c, x, y) =
∞∑

n=0

yn(a)n(b)n
n! (c)n

2F1

(
a

2
+

n

2
,

a

2
+

n

2
+

1
2
;−b − n + 1;−4x

)
. (20)

Similarly taking the summation over the index n, we find

H5(a, b, c, x, y) =
∞∑

m=0

(−1)mxm(a)2m
m! (1 − b)m

2F1(b − m, a + 2m; c; y). (21)

The above two expressions (i.e. Eqs. (20) and (21)) are the starting points for our analysis of the H5 function.
Applying the well-known linear transformation formulae of Gauss 2F1 listed in the Sect. 6.1, the ACs of H5 can
be found for general values of its Pochhammer parameters.

Let us take Eq. (21). Applying Eq. (46), we find the AC of H5 around the point (0, 1):

H5 =
Γ(c)Γ(−a − b + c)
Γ(c − a)Γ(c − b)

∞∑

m,n=0

(a − c + 1)2m(a)2m+n(b)n−m

(c − b)m(a + b − c + 1)m+n

(−x)m(1 − y)n

m!n!

+ (1 − y)−a−b+cΓ(c)Γ(a + b − c)
Γ(a)Γ(b)

∞∑

m,n=0

(a − c + 1)2m(c − a)n−2m(c − b)m+n

m!n! (c − b)m(−a − b + c + 1)n−m

(
− x

1 − y

)m

(1 − y)n. (22)

The first series of the above expression (Eq. (22)) is convergent in

|x|< 1
16

∧ |1 − y|< 1 ∧ |1 − y|< (1 − 12|x|)3/2 − 18|x|+1
54|x| ,

whereas the second series is valid for
∣∣∣∣

x

y − 1

∣∣∣∣ < 1 ∧ |1 − y|< 1∧

|1 − y|<

⎛

⎜⎜⎜⎜⎝

min
(

1
27

(
− (4|x|−3|y−1|)3/2

|√x(y−1)| − 8|x|
|y−1| + 9

)
, 1

27

(
(4|x|+3|y−1|)3/2

|√x(y−1)| − 8|x|
|y−1| − 9

))
4
∣∣∣ x
y−1

∣∣∣ > 3

1
27

(
(4|x|+3|y−1|)3/2

|√x(y−1)| − 8|x|
|y−1| − 9

)
True

.

⎞

⎟⎟⎟⎟⎠
(23)

Hence, the AC (Eq. (22)) is valid in the common ROCs of the two series. We plot the ROCs of the individual
series in Figs. 13 and 14.

We observe that the AC of H5 in Eq. (22) does not cover the whole space around the singular point (0, 1). Thus,
we can find another AC that will cover the space that remains uncovered. To find such AC, we take the second
series of Eq. (22) (let us denote it by S2) and take the summation over m explicitly

S2 =(1 − y)−a−b+cΓ(c)Γ(a + b − c)
Γ(a)Γ(b)

∞∑

n=0

(1 − y)n(c − a)n(c − b)n
n! (−a − b + c + 1)n

× 4F3

(
a

2
− c

2
+

1
2
,

a

2
− c

2
+ 1, a + b − c − n, −b + c + n; c − b,

a

2
− c

2
− n

2
+

1
2
,

a

2
− c

2
− n

2
+ 1;

x

1 − y

)
.

(24)
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Fig. 13 The ROC of the first series of Eq. (22)

Fig. 14 The ROC of the second series of Eq. (22)

Now using the AC of 4F3(. . . ; z) at z = ∞ (Eq. (49)), we find that only one series is non-vanishing. Denoting it
as S′

2,

S′
2 = (1 − y)−a−b+c

(
x

y − 1

)−a−b+cΓ(c)Γ(a + b − c)
Γ(a)Γ(b)

∞∑

m,n=0

× (a + 2b − 2c + 1)m−n(a + b − c)m−n(a + 2b − c)2m−n

m!n! (a + 2b − 2c + 1)m−2n(a + 2b − c)2(m−n)

(
1 − y

x

)m

(−x)n, (25)

whose ROC is given by

|r|< 1 ∧
√

|s| < min(z1, z2, z3) ∧ |s|< 1
16

, (26)

where r = 1−y
x , s = −x and

z1 = second root of 27z4|r|2−2z2(9|r|+8) − |r|−1 = 0,

z2 = second root of 27z4|r|2+2z2(9|r|−8) + |r|−1 = 0,

z3 = second root of 27z4|r|2+2z2(9|r|+8) − |r|−1 = 0.

This ROC is plotted in Fig. 15.
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Fig. 15 The ROC of series S′
2 (i.e. Eq. (26)) is plotted for real values of x and y

(0, 0)

(0, 1)
Eq. (22)

(0, 1)
Eq. (27)

Fig. 16 The procedure to find the ACs around (0, 1) is described as a directed graph

Hence, we find the second AC of H5 around the point (0, 1) by combining the first series of Eq. (22) with S′
2

(i.e. Eq. (25))

H5 =
Γ(c)Γ(−a − b + c)
Γ(c − a)Γ(c − b)

∞∑

m,n=0

(a − c + 1)2m(a)2m+n(b)n−m

(c − b)m(a + b − c + 1)m+n

(−x)m(1 − y)n

m!n!
+ (1 − y)−a−b+c

(
x

y − 1

)−a−b+c

× Γ(c)Γ(a + b − c)
Γ(a)Γ(b)

∞∑

m,n=0

(a + 2b − 2c + 1)m−n(a + b − c)m−n(a + 2b − c)2m−n

m!n! (a + 2b − 2c + 1)m−2n(a + 2b − c)2(m−n)

(
1 − y

x

)m

(−x)n. (27)

The ROC of this AC is the same as in Eq. (26), which is plotted in Fig. 15.
Let us summarise what we have achieved for H5 so far. We started with the definition of the H5, whose ROC is

given in Eq. (17) and plotted in Fig. 11. Taking summation over the index n yields the Gauss 2F1 in the summand.
Then good use of the AC of 2F1 Eq. (46) is used to find the AC of H5 at (0, 1). The ROC of that AC is plotted
in Fig. 14 for real values of x , y . Since the AC of H5 around (0, 1) does not cover the whole space around that
point, we have derived another AC around the same point by transforming the second series of Eq. (22). The
resultant AC is given in Eq. (27) and the ROC of it is plotted in Fig. 15. This procedure can be described by a
directed graph as shown in Fig. 16, where the vertices represent the singular points and the directed edges denote
the process of evaluation. We plot the ROCs of both the ACs around the point (0, 1) along with the defining ROC
of H5 in Fig. 17.

We go on to derive the ACs of H5 around (0, ∞) and (∞, ∞). The procedure is demonstrated via a directed
graph in Fig. 18. To find the AC around (0, ∞), we use Eq. (47) in Eq. (21) to find

H5 = (−y)−aΓ(c)Γ(b − a)
Γ(b)Γ(c − a)

∞∑

m,n=0

(a)2m+n(a − c + 1)2m+n

m!n! (a − b + 1)3m+n

(
− x

y2

)m(
1
y

)n

+ (−y)−b Γ(c)Γ(a − b)
Γ(a)Γ(c − b)

∞∑

m,n=0

(b)n−m(b − c + 1)n−m

m!n! (−a + b + 1)n−3m
(−xy)m

(
1
y

)n

. (28)
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Fig. 17 The defining ROC of H5, the ROC of first AC around (0, 1) (i.e. Eq. (22)) and the ROC of second AC around
(0, 1) (Eq. (27)) are plotted in blue, yellow and green, respectively, for real values of x , y

(0, 0)

(0,∞)
Eq. (28)

(∞,∞)
Eq. (31)

Fig. 18 The procedure to find the ACs around (0, inf) and (∞, ∞) are described as a directed graph

The ROC of the first series is given by

16
∣∣∣∣
x

y2

∣∣∣∣ < 27 ∧
∣∣∣∣
x

y2

∣∣∣∣ <
1
32

((
9 − 8

|y|
)3/2

− 36
|y| +

8
|y|2 + 27

)
∧ 1

|y| < 1, (29)

and the second series is valid in

27|xy|< 1 ∧ |y|< y2∧

|xy|< min

(
1
32

((
9 − 8

|y|
)3/2

− 36
|y| +

8
y2

+ 27

)
|y|3, 1

32
|y|

(
−

√
|y|(9|y|+8)3/2 + 36|y|+27y2 + 8

))
. (30)

These are plotted in Figs. 19 and 20, respectively. The ROC of the AC given in Eq. (28) is the intersection of the
ROCs of both the series.

We observe that the second series can be transformed further to find the AC of H5 around (∞, ∞) in a similar
way to the second AC around (0, 1). We find the AC around (∞, ∞) as

H5 = = (−y)−aΓ(c)Γ(b − a)
Γ(b)Γ(c − a)

∞∑

m,n=0

(a)2m+n(a − c + 1)2m+n

m!n! (a − b + 1)3m+n

(
− x

y2

)m(
1
y

)n

+ (−y)−b(−xy)
b−a
3

Γ(1 − b)Γ(c)Γ
(
a−b
3

)

3Γ(a)Γ
(−a

3 − 2b
3 + 1

)
Γ
(−a

3 + c − 2b
3

)

×
∞∑

m,n=0

(
a
3 − b

3

)
m−n

3

(
a
3 + 2b

3

)
m+ 2n

3

(
a
3 + 2b

3 − c + 1
)
m+ 2n

3

(
1

27xy

)m(
− 3√−xy

y

)n

m!n!
(
1
3

)
m

(
2
3

)
m

(−a
3 − 2b

3 + 1
)
− 1

3 (2n)

(
a
3 + 2b

3

)
2n
3

(
a
3 + 2b

3 − c + 1
)

2n
3

(−a
3 + c − 2b

3

)
− 2n

3

− 2π3−a+b− 1
2 (−y)−bΓ(1 − b)Γ(c)Γ(a − b)(−xy)

1
3 (−a+b−1)

Γ(a)Γ
(
1
3 (−a − 2b + 2)

)
Γ
(
a−b
3

)
Γ
(
1
3 (a − b + 2)

)
Γ
(
1
3 (−a − 2b − 1) + c

)
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Fig. 19 The ROC of the first series of Eq. (28)

Fig. 20 The ROC of the second series of Eq. (28)

×
∞∑

m,n=0

(
a
3 − b

3 + 1
3

)
m−n

3

(
a
3 + 2b

3 + 1
3

)
m+ 2n

3

(
a
3 + 2b

3 − c + 4
3

)
m+ 2n

3

(
1

27xy

)m(
− 3√−xy

y

)n

m!n!
(
2
3

)
m

(
4
3

)
m

(−a
3 − 2b

3 + 2
3

)
− 2n

3

(
a
3 + 2b

3 + 1
3

)
2n
3

(
a
3 + 2b

3 − c + 4
3

)
2n
3

(−a
3 + c − 2b

3 − 1
3

)
− 2n

3

+
π3−a+b− 1

2 (−y)−bΓ(1 − b)Γ(c)Γ(a − b)(−xy)
1
3 (−a+b−2)

Γ(a)Γ
(
1
3 (−a − 2b + 1)

)
Γ
(
a−b
3

)
Γ
(
1
3 (a − b + 1)

)
Γ
(
−a

3 + c − 2(b+1)
3

)

∞∑

m,n=0

(
a
3 − b

3 + 2
3

)
m−n

3

(
a
3 + 2b

3 + 2
3

)
m+ 2n

3

(
a
3 + 2b

3 − c + 5
3

)
m+ 2n

3

(
1

27xy

)m(
− 3√−xy

y

)n

m!n!
(
4
3

)
m

(
5
3

)
m

(−a
3 − 2b

3 + 1
3

)
− 2n

3

(
a
3 + 2b

3 + 2
3

)
2n
3

(
a
3 + 2b

3 − c + 5
3

)
2n
3

(−a
3 + c − 2b

3 − 2
3

)
− 2n

3

(31)

We do not write the ROC of the above AC explicitly. It can be obtained from the ancillary file (See Sect. 6.3).
The ROC is shown in Fig. 21.

To summarise, we have found four ACs of H5 around the singular points (0, 1), (0, ∞) and (∞, ∞). Two ACs
are found around the neighbourhood of (0, 1). The ROCs of these four ACs are plotted in Fig. 22. In an analogous
way, starting from Eq. (20), one can find ACs around (1, 0), which can further be used to find ACs around (∞,
0), (1, ∞) and (∞, ∞). The whole procedure of finding ACs of H5 is demonstrated using the directed graph in
Fig. 23. However finding all the ACs according to the graph is quite a laborious task in practice, due to the lengthy
expressions of the ACs, even when one uses the computer program Olsson.wl.

On the other hand, one may use the PETs of the Gauss 2F1 Eq. (45) to find some ACs of H5. We now show
examples of how to find such ACs.
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Fig. 21 The ROC of Eq. (31)

Fig. 22 The ROCs of the four ACs that are obtained so far

Fig. 23 The graph shows all the possibilities of obtaining ACs for H5. The thick lines indicates the ones that have been
derived, and the dashed lines denote those which are not. The ROCs of the ACs that can be derived following the dashed
lines overlap with the ROCs of the obtained 13 ACs. The other seven ACs that are not mentioned in the above graph are
derived using the PETs of 2F1
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As before, our starting points are Eq. (20) and Eq. (21). Let us start with Eq. (20). Using the first PET (i.e.
first equation of Eq. (45)), we find:

H5 = (4x + 1)− a
2

∞∑

m,n=0

(a)n
(
a
2

)
m+n

2

(
1
2 (−a − 2b + 1)

)
m− 3n

2

m!n!
(
a
2

)
n
2
(c)n

(
1
2 (−a − 2b + 1)

)
− 1

2 (3n)
(1 − b)m−n

(
4x

4x + 1

)m(
− y√

4x + 1

)n

. (32)

This AC is valid in

{
|r|< 1 ∧ |s|< 1

4
∧ |s|<

(
min(Φ1(r), Φ2(r), Φ3(r)) |r|< 1

4
Φ3(r) True

)}
, (33)

where r = 4x
4x+1 , s = − y2

16x+4 . The functions Φi(r) are defined below:

Φ1(r) =
−128|r|3+96|r|2+3|r|−2

√
1 − |r|√−(4|r|−1)3(8|r|+1) + 2

729|r|2 ,

Φ2(r) =
−128|r|3+96|r|2+3|r|+2(8|r|+1)

√
1 − |r|√−(4|r|−1)3 + 2

729|r|2 ,

Φ3(r) =
−2

√|r|+1|1 − 8|r||(4|r|+1)3/2 + 128|r|3+96|r|2−3|r|+2
729|r|2 . (34)

Similarly using other two PETs, we find two more ACs. These are written below:

H5 = (4x + 1)
1
2 (−a−1)

∞∑

m,n=0

(a)n
(
a+1
2

)
m+n

2

(−a
2 − b + 1

)
m− 3n

2

m!n!
(
a+1
2

)
n
2
(c)n

(−a
2 − b + 1

)
− 1

2 (3n)
(1 − b)m−n

(
4x

4x + 1

)m(
− y√

4x + 1

)n

. (35)

We observe that the ROC of both the ACs Eqs. (32) and (35) are the same. Hence, the AC Eq. (35) is valid in
the same ROC (i.e. Eq. (33)). The other AC can be found using the last PET (i.e. the last equation of Eq. (45):

H5 = (4x + 1)−a−b+ 1
2

∞∑

m,n=0

(a)n
(
1
2 (−a − 2b + 1)

)
m− 3n

2

(−a
2 − b + 1

)
m− 3n

2
(−4x)m

(
− y

(4x+1)2

)n

m!n! (c)n
(
1
2 (−a − 2b + 1)

)
− 1

2 (3n)

(−a
2 − b + 1

)
− 1

2 (3n)
(1 − b)m−n

(36)

|r|< 1 ∧
√

|s| <

(
min(Ψ1(r), Ψ2(r), Ψ3(r), Ψ4(r))

√|r| < 1√
3

min(Ψ3(r), Ψ4(r)) True

)
∧ |s|< 1

4
, (37)

Fig. 24 The ROC of Eqs. (32) and (35)
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Fig. 25 The ROCs of Eq. (36)

where r = −4x, s = y2

4(4x+1)4 . The functions Ψi(r) are defined below:

Ψ1(r) =
−(1 − 3|r|)3/2 + 9|r|+1

27
(
|r|3/2+√|r|

)2 , Ψ3(r) =
3|r|

(√
3|r|+1 − 3

)
+

√
3|r|+1 + 1

27(|r|−1)2|r| ,

Ψ2(r) =
(1 − 3|r|)3/2 + 9|r|+1

27
(
|r|3/2+√|r|

)2 , Ψ4(r) =

√
3|r|+1 + 3|r|

(√
3|r|+1 + 3

)
− 1

27(|r|−1)2|r| . (38)

Starting with Eq. (21) and using three PETs, we find three ACs below:

H5 = (1 − y)−b
∞∑

m,n=0

(a)2m(a − c + 1)2m(b)n−m(c − a)n−2m

m!n! (c)n
(x − xy)m

(
y

y − 1

)n

, (39)

with ROC

4|x − xy|< 1 ∧
∣∣∣∣

y

y − 1

∣∣∣∣ < 1∧

|x − xy|<

√∣∣∣ y
y−1

∣∣∣ + 8
∣∣∣ y
y−1

∣∣∣
3/2

+
∣∣∣ y
y−1

∣∣∣
2

− 20
∣∣∣ y
y−1

∣∣∣ + 8
√∣∣∣ y

y−1

∣∣∣
√∣∣∣ y

y−1

∣∣∣ + 8 − 8

32
(∣∣∣ y

y−1

∣∣∣ − 1
)3 (40)

and

H5 = (1 − y)−a
∞∑

m,n=0

(a)2m+n(c − b)m+n

m!n! (1 − b)m(c)n(c − b)m

(
− x

(y − 1)2

)m(
y

y − 1

)n

, (41)

with ROC

4
∣∣∣∣

x

(y − 1)2

∣∣∣∣ < 1 ∧ 32
∣∣∣∣

x

(y − 1)2

∣∣∣∣ +

√∣∣∣∣
y

y − 1

∣∣∣∣

(∣∣∣∣
y

y − 1

∣∣∣∣ + 8
)3/2

+
∣∣∣∣

y

y − 1

∣∣∣∣
2

< 20
∣∣∣∣

y

y − 1

∣∣∣∣ + 8 ∧
∣∣∣∣

y

y − 1

∣∣∣∣ < 1 (42)
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Fig. 26 The ROC of Eq. (39)

Fig. 27 The ROCs of Eq. (41)

and the last one

H5 = (1 − y)−a−b+c
∞∑

m,n=0

(a)2m(a − c + 1)2m(c − a)n−2m(c − b)m+n

m!n! (1 − b)m(c)n(c − b)m

(
x

y − 1

)m

yn, (43)

with ROC

4
∣∣∣∣

x

y − 1

∣∣∣∣ < 1 ∧ |y|< 1 ∧
(
4
∣∣∣ x
y−1

∣∣∣ + 3
)3/2

√∣∣∣ x
y−1

∣∣∣
+ 8

∣∣∣∣
x

y − 1

∣∣∣∣ > 9(3|y|+2). (44)

All the ROCs of the six ACs are shown in Figs. 24, 25, 26, 27 and 28 for real values of x and y .
It is worth noting that the PETs of 2F1 can be used in any intermediate step of the derivation, when the Gauss

2F1 appears inside the summand, to find new ACs. We have applied it on the definition of the H5 function only
in this section to demonstrate the usefulness of the PETs of the Gauss 2F1.

Even after analysing all the possible ways of applying the PETs in the intermediate steps of the derivation, we
found no AC that is valid inside the small ‘white’ region as shown in Fig. 29.
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Fig. 28 The ROC of Eq. (43)

Fig. 29 The plot shows the uncovered region for real x , y

4 Summary

In this work, we have presented the various ACs and their corresponding ROCs of the Horn H1 and H5 functions.
These results were derived using the publicly available Mathematica packages Olsson.wl and ROC2.wl. This
ensures an easeful computation of the ACs and their ROCs which are otherwise prone to errors or difficult to
compute by hand.

Our extensive work shows that the ACs of H1 cover the whole real x − y plane, with the exception of a few
boundaries and singular lines, whereas the ACs of H5 can be used to cover everywhere, except for the small region
shown in Fig. 29. It is to be noted that in both cases, we are not able to give convergent expressions on the
singular curves. It may be pointed out that the expressions given here have to be used carefully for numerical
implementation due to the problem of multi-valuedness, which has not been discussed in this article. To this extent,
it is the precise analogue of the work of Exton for Appell F4 and Olsson for Appell F1. All the ACs derived here
are valid for generic values of Pochhammer parameters. If the ACs are required to be used for the exceptional
parameters, then one has to do the proper limiting procedure.

It is our view that investigations such as those reported here will go a long way in the advancements of the
theory of hypergeometric functions, even for higher orders and higher numbers of variables, which in general
are ubiquitous. Furthermore, the use of various symbolic computational packages used here makes them more
significant for the analysis of complicated hypergeometric functions.
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Appendix

Appendix A

In this Appendix, we list some formulae that are used in deriving the ACs of the H1 and H5 functions.

• Euler transformation of 2F1 :

2F1(a, b, c; z) = (1 − z)−a
2F1

(
a, c − b, c,

z

z − 1

)
= (1 − z)−b

2F1

(
c − a, b, c,

z

z − 1

)

= (1 − z)c−a−b
2F1(c − a, c − b, c, z). (45)

• Analytic continuation of 2F1 around z = 1 :

2F1(a, b, c; z) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b) 2F1(a, b, a + b − c + 1; 1 − z) +

Γ(c)Γ(a + b − c)
Γ(a)Γ(b)(1 − z)c−a−b

2

× F1(c − a, c − b, c − a − b + 1; 1 − z). (46)

• Analytic continuation of 2F1 around z = ∞ :

2F1(a, b, c; z) =
Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

(−z)−a
2F1(a, a − c + 1, a − b + 1;

1
z
)

+
Γ(c)Γ(a − b)
Γ(a)Γ(c − b)

(−z)−b
2F1(b, b − c + 1, b − a + 1;

1
z
). (47)

• Analytic continuation of 3F2 around z = ∞ :

3F2

⎛

⎝
a1, a2, a3

b1, b2

|z
⎞

⎠ =
Γ(b1)Γ(b2)Γ(a2 − a1)Γ(a3 − a1)
Γ(a2)Γ(a3)Γ(b1 − a1)Γ(b2 − a1)

(−z)−a1
3F2

⎛

⎝
a1, 1 + a1 − b1, 1 + a1 − b2

1 + a1 − a2, 1 + a1 − a3

|1
z

⎞

⎠

+
Γ(b1)Γ(b2)Γ(a1 − a2)Γ(a3 − a2)
Γ(a1)Γ(a3)Γ(b1 − a2)Γ(b2 − a2)

(−z)−a2
3F2

⎛

⎝
a2, 1 + a2 − b1, 1 + a2 − b2

1 + a2 − a1, 1 + a2 − a3

|1
z

⎞

⎠

+
Γ(b1)Γ(b2)Γ(a1 − a3)Γ(a2 − a3)
Γ(a1)Γ(a2)Γ(b1 − a3)Γ(b2 − a1)

(−z)−a3
3F2

⎛

⎝
a3, 1 + a3 − b1, 1 + a3 − b2

1 + a3 − a1, 1 + a3 − a2

|1
z

⎞

⎠. (48)

• Analytic continuation of 4F3 around z = ∞ :

4F3

⎛

⎝
a1, a2, a3 a4

b1, b2 b3

|z
⎞

⎠ =
Γ(b1)Γ(b2)Γ(b3)Γ(a2 − a1)Γ(a3 − a1)Γ(a4 − a1)
Γ(a2)Γ(a3)Γ(a4)Γ(b1 − a1)Γ(b2 − a1)Γ(b3 − a1)

(−z)−a1

4F3

⎛

⎝
a1, 1 + a1 − b1, 1 + a1 − b2 1 + a1 − b3

1 + a1 − a2, 1 + a1 − a3 1 + a1 − a4

|1
z

⎞

⎠ +
Γ(b1)Γ(b2)Γ(b3)Γ(a1 − a2)Γ(a3 − a2)Γ(a4 − a2)
Γ(a1)Γ(a3)Γ(a4)Γ(b1 − a2)Γ(b2 − a2)Γ(b3 − a2)

(−z)−a2
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4F3

⎛

⎝
a2, 1 + a2 − b1, 1 + a2 − b2 1 + a2 − b3

1 + a2 − a1, 1 + a2 − a3 1 + a2 − a4

|1
z

⎞

⎠ +
Γ(b1)Γ(b2)Γ(b3)Γ(a1 − a3)Γ(a2 − a3)Γ(a4 − a3)
Γ(a1)Γ(a2)Γ(a4)Γ(b1 − a3)Γ(b2 − a3)Γ(b3 − a3)

(−z)−a3

4F3

⎛

⎝
a3, 1 + a3 − b1, 1 + a3 − b2 1 + a3 − b3

1 + a3 − a1, 1 + a3 − a2 1 + a3 − a4

|1
z

⎞

⎠ +
Γ(b1)Γ(b2)Γ(b3)Γ(a1 − a4)Γ(a2 − a4)Γ(a3 − a4)
Γ(a1)Γ(a2)Γ(a3)Γ(b1 − a4)Γ(b2 − a4)Γ(b3 − a4)

(−z)−a4

4F3

⎛

⎝
a4, 1 + a4 − b1, 1 + a4 − b2 1 + a4 − b3

1 + a4 − a1, 1 + a4 − a2 1 + a4 − a3

|1
z

⎞

⎠. (49)

• The analytic continuation around z = ∞ of pFp−1(. . . ; z) function can be found using the Olsson.wl package.

Appendix B

In this appendix, we give an outline of the various methods that are used to find the ROC of the hypergeometric
series [38]. The methods are applicable to series with more than two variables as well. But the discussion below
is focused on the double variable hypergeometric series and implemented in the companion package ROC2.wl of
Olsson.wl:

1. Cancellation of parameters: Cancellation of parameters states that the region of convergence of a hyper-
geometric series is independent of the Pochhammer parameters. For example, consider the following Kampé
de Fériet function:

S1 =
∞∑

m,n=0

(a)m+n(b)m(c)n(d)n
(e)m(f)n(g)nm!n!

xmyn. (50)

Since the ROC is independent of the Pochhammer parameters, we can choose d = g, then the two Pochhammer
symbols cancel and the series then effectively becomes similar to the Appell’s F2 function and thus have the
ROC: |x|+|y|< 1

2. Horn’s theorem: Horn’s theorem provides a more general way to find the ROC of a given hypergeometric
series for any number of variables. The automatised implementation of the Horn’s theorem for two-variable
hypergeometric series is performed in the package ROC2.wl. We will explain its working principle with an
illustrative example below. Consider the following series:

S2 =
∞∑

m,n=0

(a)m+n(b)m+n(c)m
(d)2m+nm!n!

XmY n. (51)

Writing the above series in a compact form:

S2 =
∞∑

m,n=

Am,nXmY n. (52)

We then evaluate the following two ratios:

f(m, n) =
Am+1,n

Am,n
=

(a + m + n)(b + m + n)(c + m)
(d + 2m + n)(d + 1 + 2m + n)(1 + m)

, (53)

g(m, n) =
Am,n+1

Am,n
=

(a + m + n)(b + m + n)
(d + 2m + n)(1 + n)

. (54)

Now, we define two more functions as follows:

Φ(μ, ν) = | lim
t→∞ f(μt, νt)|−1,

Ψ(μ, ν) = | lim
t→∞ g(μt, νt)|−1.
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From this, one can construct the following two subsets of R2
+ :

C = {(r, s) | 0 < r < Φ(1, 0) ∧ 0 < s < Ψ(0, 1)} (55)

.= K[Φ(1, 0), Ψ(0, 1)] (56)

and

Z =
{
(r, s) | ∀(m, n) ∈ R

2
+ : 0 < r < Φ(m, n)

∨0 < s < Ψ(m, n)}. (57)

The Horn’s theorem for the two-variable hypergeoemetric functions is then given as follows.

Theorem 1 The union of Z ∩C and its projections upon the co-ordinate axes is the representation in the absolute
quadrant R

2
+ of the region of convergence in C

2 for the series F .

For S2, we then have

C = 0 < r < 4 ∧ 0 < s < 1

Z = r + s < 2s1/2.

Using Horn’s theorem, the ROC of the series S2 is then given by

|x|< 4 ∧ |y|< 1 ∧ |x|+|y|< 2|y|1/2. (58)

Appendix C

In this appendix, we briefly describe the Mathematica [59] package HornH1H5.wl for the ease of the reader. Since
it is not possible to present all the ACs of the Horn H1 and H5 function due to their lengthy expressions, we
provide this package as an ancillary file. The package can be downloaded from the link below.
https://github.com/souvik5151/Horn_H1_H5.git
Once the file is downloaded, it can be called, after setting the correct path, as
In[]:=<<HornH1H5.wl .

This package can be used to access all the ACs as well as their corresponding ROCs. We have included the two
commands for each of the function H1 and H5 in the package. These are the following:

1. H1expose and H5expose : These commands take an integer ( less than the number of ACs ) and give the
output as a list of two elements containing the ROC and the expression of the AC, labelled by that number,
of H1 and H5, respectively. There are 22 ACs of H1 and 20 ACs of H5.

2. H1ROC and H5ROC : These commands plot the ROC of a particular AC for real values of x and y , which is
specified by a number given by the user, along with a user-specified point (x , y). This command can be used
when the user wants to determine if a certain point lies inside the ROC of an AC or not.

More information about these commands are available to the user via the Information command of Mathematica
after loading the package.
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