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Abstract Isolated wave segments are a type of spatiotemporal activity that has been repeatedly reported
in experimental studies of spreading depolarization on the cerebral cortex and retina of laboratory animals.
However, it has been theoretically shown that such a pattern cannot be stable in a continuous excitable
medium. In our work, we address this problem using the model of a discrete–continuous medium. We
present the targeted numerical study of isolated wave segments, including scenarios of their emergence
and an estimation of their stability to various deformations. We show that an isolated wave segment can
exhibit the properties of a space-time attractor by cyclically changing its shape and approaching it from
different initial conditions. Such a wave segment is not necessarily small, although small segments may
occur more easily and are, therefore, more likely. Finally, we show that the behavior we found persists also
under conditions of a heterogeneous propagation medium, which indicates the applicability of our findings
to the analysis of spatiotemporal patterns in real nervous tissue.

1 Introduction

Spreading depolarization (SD) is an extreme state of
the nervous tissue of the brain that occurs with cor-
tical spreading depression, migraine, and brain injury
[1–3]. Since the discovery of cortical spreading depres-
sion in 1944 [4], mathematical models of various levels
of detail have been proposed. Since the SD propaga-
tion mechanism relies on the diffusion of substances in
the intercellular space, models of a continuous active
medium with diffusion have become a very expected
modeling paradigm [5–11].

Observation of SD in the brains of laboratory animals
reveals rich spatiotemporal dynamics, including spiral
and radial waves, retracting waves, and isolated wave
segments [12–14]. If the first three types of activity are
well described by models of active media, then with the
fourth—isolated wave segments—the situation is not
completely clear.

There are the multiple reports on isolated wave seg-
ments in real life [15–18]. However, for basic models
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Glushkovskaya, Alexey Pavlov, Anatoly Karavaev.

a e-mail: ffalconn@mail.ru
b e-mail: allegroform@mail.ru
c e-mail: postnov@info.sgu.ru (corresponding author)

of excitable media, it was proved that an isolated wave
segment is unstable by nature, it must either collapse or
develop into a spiral wave [19, 20]. It is very difficult to
verify the validity of this statement for real brain tissue
due to insufficient observation time, limited propaga-
tion space, and an unknown degree of heterogeneity in
the properties of nervous tissue. Therefore, it is possible
that the instability of isolated wave segments is more a
property of the chosen model than of the object under
consideration.

The structure of the cerebral cortex (as well as other
tissues of a living organism), on the one hand, has a
number of continuous characteristics that provide the
general properties of a functioning system as a whole,
and on the other hand, it is composed of cells as dis-
crete elements, this empowers to consider cerebral cor-
tex both as a continuous and as a discrete medium.
Such a medium transmits electrical signals like a set
of discrete elements for which the model description in
the form of a continuous medium is not suitable. At the
same time, the notion of a continuous porous medium is
well applicable for the intercellular space, in which the
exchange of substances between cells occurs. The ques-
tion of the combination of discreteness and continuity
in models was discussed, for example, in [21, 22].

Usually, the choice of the type of mathematical model
is limited by the available experimental data to compare
with and target effects it should reproduce. For exam-
ple, if information about neuronal activity is obtained
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by extracellular recording and, therefore, involves aver-
aging over a certain area, then a model in the form
of a continuous active medium will be very suitable,
since the recording electrode can be placed in any of
the available locations and, with its small displace-
ment, the characteristics of the recorded signal will also
change a little. However, for a thin layer of neuron cul-
ture, we will see a different picture, when within one
cell the electric potential is almost the same, but dif-
fers greatly from the recording from a neighboring cell.
Obviously, in this case, a spatially discrete model, con-
sisting of individual elements and connections between
them, will be more adequate. One neurovascular unit
[23] of the brain parenchyma has 40–60 microns in the
crossbar, so there are only about 20 of them on a dis-
tance of one millimeter. In this case, the continuous
active medium model does not look like the best choice,
since, for example, it is not able to describe the uncorre-
lated firing of neighboring neurons. In search of a better
model description, it is appropriate to consider models
in which neurons are discrete but connected in a way,
which (but not neurons!) approximates a continuous
medium.

In our work, we study the behavior of isolated wave
segments using the model previously proposed in the
works [24–26]. In particular, in [26] it was observed that
as a result of a short-term noise burst, many wave seg-
ments are born, of which the smallest few survive the
longest. Here we present the targeted numerical study
of such long-living wave segments, including scenarios
of their emergence and an estimation of their stability
to various deformations. We show that an isolated wave
segment exhibits the properties of a space-time attrac-
tor by cyclically changing its shape and approaching
it from different initial conditions. Therefore, through-
out the text, we refer to them as stable wave segments
(SWS). Such a wave segment is not necessarily small,
although small segments may occur more easily and are,
therefore, more likely. Finally, we show that the behav-
ior we found persists also under conditions of a hetero-
geneous propagation medium, that indicates the appli-
cability of our findings to the analysis of spatiotemporal
patterns in real nervous tissue.

In Discussion we argue that, similarly to a continu-
ous medium, the stability of isolated wave segment is
determined by events at its edge, while the central part
can have any length, tending in shape to a plane wave
as its size increases.

2 Model

2.1 Spatial structure

In real tissue of the brain parenchyma, cells have dif-
ferent shapes and sizes and are arranged in an irregular
manner, see for illustrations [27, 28]. Such an arrange-
ment is schematically reproduced in Fig. 1a, where a
section of nervous tissue is depicted. When creating a
computational model, in the first step, we simplify the

irregular cell placement in a real tissue to a regular
arrangement of neurons in extracellular space (ECS),
as shown in Fig. 1b. It is convenient to use a two-
dimensional grid, each point (pixel) of which is associ-
ated with one cell and the volume of the ECS assigned
to it, see Fig. 1c. Thus, we consider the activity of dis-
crete set of units-neurons, while the connection between
them is carried out through a continuous layer that rep-
resents the ECS.

2.2 Local dynamics

We based on the extension of the FitzHugh–Nagumo
model previously proposed in [24, 25], where the equa-
tions for fast spiking variable u and slow recovery vari-
able ν, are supplied with the equation for the extracel-
lular potassium concentration z :

εu
∂u

∂t
= u − u3

3
− ν + F (u, z) + Dξ(x, y, t), (1)

εν(u)
∂ν

∂t
= au + b − ν, (2)

εz
∂z

∂t
= αzψ(u) − z + γzzdiff (x, y). (3)

Parameters a and b in (2) control position of ν-nullcline
(see the red line in Fig. 2a). Equations (1)–(2) them-
selves without the term F (u, z ) describe a purely dis-
crete medium. However, we transform the model to
present a realistic biophysical approach. We introduce
a variable z (see [26]) that describes the changes of
the extracellular potassium concentration. In turn, the
characteristics of ECS depend on z value. Thereby
we can simplistically consider that z variable deter-
mines the ECS size, i.e., the distances between discrete
elements of the model medium. In other words, the
variable z makes the medium discrete–continuous. We
define the term F (u, z ) in the following way: F (u, z) =
z(a1 − a2(1 − u)m). The nullclines for z = 0 and z = 1
values are shown in Fig. 2a (the solid and dotted blue
lines correspondingly). The term Dξ(x, y, t) stands for
Gaussian noise with intensity D which represents the
random-like total postsynaptic stimulus received by a
neuron.

The nonlinear function

ψ(u) = 0.5(1 + tanh(u/us)) (4)

accounts for potassium release. Function ψ(u) is equal
to zero in the rest state and tends to unit value as u
increases.

The term γzzdiff (x, y) describes the redistribution of
z over available ECS by means of diffusion. Diffusion of
z variable is simulated in terms of the finite-element
approximation of the concentration flows between the
neighboring pixels:

zdiff (x, y) =

(∑
nb

zi,j − 4zx,y

)
, (5)
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Fig. 1 Transition from a
realistic topology of the
ECS to a 2D grid in the
model. a A typical picture
in a tissue section; b a
regularized representation
of a flat structure; c ECS
(white) forms the
continuous layer, while the
active elements-neurons are
disconnected

where nb denotes all combinations of (i , j ) that are
adjacent to location (x , y).

In order to implement different time scales for spike
generation and recovery stage, function εν(u) takes two
different values: τspike if u > 0 and τrest otherwise.
Thus, εν is

εν(u) = τspike(1 − ψ(u)) + τrestψ(u). (6)

In the absence of neural spikes, when ψ(u) = 0 and
z −→ 0 (bottom plane in Fig. 2), the dynamics of the
subsystem (1)–(2) is the same as for the conventional
FitzHugh–Nagumo model. In the presence of spikes
that activate z in (3) by means of (4), the dynam-
ics of the system demonstrates both excitability and
bistability [24]: at rare spiking events the trajectory
returns to the initial point EQP 1, while the inten-
sive and long enough stimulus can trigger the transition
to self-sustained oscillations (the schematically shown
orbit LC) or (at higher αz) to the EQP 2.

2.3 Numeric methods

The set of equations (1)–(3) was integrated numerically
by the explicit method (the fourth-order Runge–Kutta
method adopted for SDE [29–31]). The numerical algo-
rithm to perform such simulations was chosen according
to parallel computing needs [32].

In order to assess the long-term stability of the SWSs,
we construct the solution domain of the toroidal shape.
It was done simply by connection between the left and
right boundaries, and between the upper and lower
boundaries of the 2D lattice. This method does not
take into account the surface curvature effects stud-
ied in [33], but fits well our specific needs, providing
the unbounded uniform propagation space for a single
SWS.

In order to quantify wave segments under study, we
assumed that only pixels in which z > zth belongs to the
segment, where zth > 0 is the empirically determined
threshold value. Then, we determined segment size in
pixels and calculated three quantities Su, Sv, and Sz

as the total sums of deviations u, ν, z from its rest

values over the segment area, Su =
∑

(u − u0), Sv =∑
(v − v0), Sz =

∑
(z − z0). Note, the specific choice of

zth strongly affects the segment size, but not Su, Sv, Sz.
In our work we take zth equal to 0.01. The rest values:
u0 = −1.0576, v0 − 0.6633, z0 = 0.

To quantify the motion of wave segments we calcu-
lated the velocity Vs as the number of pixels that a
segment passes per a unit of dimensionless time.

The program code and the datasets used in Figs. 3 are
available as Supplemental Material. The set of model
parameters is given in Table 1.

3 Results

3.1 Scenarios of origin

Previously, it was demonstrated that SWS can emerge
spontaneously under the short-term excitation by a spa-
tially uncorrelated noise burst which triggers the variety
of excitation clusters [26]. After the noise burst ends,
(i) large patterns become the growing waves; (ii) small
patterns disappear; (iii) some suitable patterns take the
form of wave segments that survive for a long time and
looks stable in size. An example is provided in the Sup-
plemental Material (see SWS_Emergence_Scenario_1 -
Noise.avi).

Here, we present three examples of deterministic
medium leading to SWS formation, see Fig. 3. For
each of the figure panels, numbers 1, 2, 3 indicate the
sequence of time moments when snapshots were taken.
Video files with detailed descriptions and files with the
initial conditions (.st and .gif files) of the solutions in
Fig. 3b, c can be found in Supplemental Material.

Figure 3a shows the propagation of the plane wave
through the “wall” (Dirichlet boundary condition z =
0, shown as yellow line) with three gaps of different
sizes—3, 8 and 20 pixels wide. Easy to see that small
gap does not allow the wave propagation at all, too large
gap leads to the formation of the growing wave front,
while some appropriate gap ( in the middle) provide
the formation of small wave segment with seemingly
constant size.
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Table 1 The set of
parameter values for the
model (1)–(3)

εu τspike τrest εz a1 b D

0.04 1.5 1.0 0.5 1 0.5 0.005

αz a2 a γz us m

0.75 0.06 1.1 0.5 0.05 3

Fig. 2 Nullcline plot for a single unit defined by the Eqs. (1)–(3). a Nullclines ν(u) for the equations (1)–(2). b Three

nullcline surfaces are defined by the conditions
∂u

∂t
= 0 (magenta),

∂ν

∂t
= 0 (yellow), and

∂z

∂t
= 0 (cyan)

Fig. 3 Deterministic SWS formation scenarios: a a plane wave passes through gaps in Dirichlet boundary, b a wave front
spreads through an inhomogeneous medium with variable γz (εz = 0.6, γz = 0.25 and γz = 0.5 in violet and blue areas,
respectively), c as a result of the approach and collision of two curling ends of the same growing wave. For all three panels
SWSs are marked with yellow arrows. The numbers show the evolution of the front in three successive time moments. In
c two structures appeared simultaneously are marked with the letters a and b. See also video illustrations of the process in
Supplemental Material

Figure 3b demonstrates the emergence of SWS
when growing wave passes through an inhomogeneous
medium containing regions with reduced diffusion rate
(γz = 0.25 in contrast to the γz = 0.5 in the rest part
of medium.

Figure 3c shows the formation of SWS by collision
of two curling ends of the same growing wave front.
Similarly, SWS can emerge in collision of the ends from
two different wave fronts (see the video in Supplemental
Material).

Summarizing, the formation of small long-living wave
segments is not an exception, at least for the active

medium under consideration. The examples above nat-
urally raise the question of the mechanism of sponta-
neous SWS generation and, in particular, why do only
small segments become long-lived? We will return to
this issue in the Discussion based on the results shown
in the following sections. Below we study the features
of already existing SWS disregarding the way of it for-
mation.

3.2 Traveling SWS features

Figure 4a shows a specific SWS that we consider below.
It can be seen that the object is better localized by the
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Fig. 4 a The 2D profiles of variables u, ν and z in SWS
at the selected time moment; b time courses of Su, Sv, Sz

show oscillations

variables u, ν than by the variable z , which provides a
spatial coupling.

The main feature of SWS is their indefinitely long
time living without growing or collapsing. However, this
does not mean that their shape and size are constant
over time. Figure 4b, c shows the details. While mov-
ing, the SWS change its shape according to a specific
scenario. In order to characterize this motion, panel (b)
shows the time courses of Su, Sv, Sz. It can be seen that
each of these quantities shows oscillations, and their
combined change gives a closed orbit, shown in panel
(c). Thus, phenomenologically, SWS is similar to the
object known as breathing dissipative solitons, which
have recently attracted the attention of researchers in
nonlinear optics. [34, 35].

Below we analyze the features of SWS motion and
evolution, depending on its size and shape.

3.3 SWS is resistant to small deformations

The closed orbit in Fig. 4c resembles a limit cycle in low-
dimensional dissipative systems. To test this hypothe-
sis, we introduce small deviations and follow their evo-
lution.

As initial conditions, we take the distribution of u, ν,
z from Fig. 4a. At first, we take an initially large area.
We assign stationary values u0, v0, z0 to the variables at
each area point. Then, we take the SWS (i.e., the vari-
able distributions) from Fig. 4a and scale this structure
by Sk times using the linear interpolation method. Fur-
ther, if there are no additional instructions, it should
be considered that the scaling by Sk times is performed
only in one direction—perpendicular to the direction
of motion. We interpolate u, ν, z values according to
Sk value and put new distributions on the previously
created area of stationary values for further numerical
simulations. Therefore, we get a new area with a new
scaled SWS inside.

Figure 5 shows the results for scaling rate Sk = 0.8
(b) in respect to the original shape at Sk = 1.0 (a).
With tiny but visible differences at t = 0.1, both cases
converges to the same shape by the time t = 10.
Figure 5c shows the process in terms of Su, Sv, Sz.It
reveals the complex transient that converges to the
closed orbit shown in Fig. 4c and marked by green in
Fig. 5c.

Regardless of the formation scenario, the emerging
SWSs move strictly vertically or horizontally on the 2D
grid. We used the rotation of the template from Fig. 4 as
another way to set the initial perturbation. The results
are shown in Fig. 6.

Panel (a) shows how the rotation of the original struc-
ture by 45◦ leads to the rapidly growth of the structure,
moving at an angle to the vertical. At smaller angle of
rotation (10◦) SWS rapidly turns around tending to its
original form (Fig. 6b).

The performed targeted set of simulations shows that
any structures with the front moving with a sufficiently
large inclination to the vertical or horizontal, either dis-
appears (if the size is small) or grows, turning into a
spiral structure if its initial size is large enough.

In summary, in this section, we have shown that the
SWS from Fig. 4 exhibits robustness against small devi-
ations in shape and direction of motion allows us to
assert that such an object really has spatiotemporal
stability and can exist indefinitely.

3.4 Scaling reveals SWS family

The results above raise a natural question: how unique
is the shape of the SWS we analyzed, and how struc-
turally stable is it?

We conducted a series of computational experiments
that showed that there are many variants of SWS of var-
ious size and speed. However, smaller SWSs, for which
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Fig. 5 Time evolution for
a the original SWS
(Sk = 1.0) and b the scaled
SWS (Sk = 0.8); c 3D and
2D maps of the dynamics of
sum values of u, v ,
z variables (for clarity we
show the orbit in (Su, Sv)
space after first 1000
arbitrary time units, we
mark the final closed orbit
by green color)

the discreteness of the model is more essential, exist in
a wider range of diffusion rate γz. The spatial varia-
tion of γz reflects the spatial distribution of diffusivity,
which is in good agreement with both biophysical real-
ity and recent concepts about the diversity of diffusion
processes, see, for example [36].

Figure 7 summarizes the obtained results. The initial
SWS was scaled in two ways, either in all directions
(thick lines), or only in the direction perpendicular to
the direction of motion (thin lines). The evolution of Sz

has revealed many stable variants, which can be seen
as nearly constant (with small oscillations) level of Sz.

When scaling the original structure by a factor of
Sk perpendicular to the direction of motion, for any
considered Sk > 1, stable SWS appear after some rise
of Sz. They always take the form of a flat front, rounded
at the edges Small fluctuations of Sz over time reflect
the oscillations of the SWS shape discussed above. Note
once again that when scaling with the coefficients Sk =
0.8 and Sk = 1.0, the structures take the same final
size.

In contrast, when initial conditions was set using scal-
ing in both directions (see curves 2x, 3x, 4x), the evolu-
tion always starts with fall of Sz with subsequent sta-
bilization. Visual inspection of the process reveals that
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Fig. 6 Evolution of the
shape of the structure
obtained from the original
a by a significant angle of
rotation 45◦, and b by a
small angle 10◦

initial shape first quickly becomes more thin, and then
adjusts its size to be stable. Note, that resulted SWS
is larger (have greater Sz) that SWS achieved with the
same scaling factor but only in one direction.

All previous results were obtained with diffusion
value γz = 0.5 (see Table 1). Our numerical experi-
ments show that SWS can exist in a certain range of
values of the diffusion coefficient γz.

As the size of the initial structure increases, the range
of γz at which the SWS exists narrows: see Table 2,
where Sk is a scaling factor in all directions. At val-
ues less than the lower value of the interval, the initial
structures can not propagate and they disappear, at
larger values they turn into a spiral wave. For the coef-
ficients Sk ≥ 5, we failed to find the γz values at which
the initial conditions develop into the SWS.

Earlier, we demonstrated that SWS can only spread
in a vertical or horizontal direction, so the velocity of
pattern motion Vs determines the distance in pixels that
SWS overcomes per unit of time in the direction of its
motion. With the growth of SWS size, an increase in its
velocity is observed as it is shown in Fig. 8. However,
the velocity is limited by a certain value, to which the
curve tends asymptotically with an increase in the SWS
size. Below in Discussion we will argue that this limit
coincides with the velocity of the infinitely wide flat
wave at the given γz value.

Summarizing in this section, we have shown that by
specifying different initial conditions, one can find a set
of different variants of SWS, not necessarily of small
size. Their common property is a small (3-5 pixels)
thickness in the direction of motion, while the width
can vary significantly. At the same time, the smallest
(in width) SWS is slower than the wide ones.

3.5 SWSs persist in the randomized parameter
landscape

The above discussed results were obtained using a reg-
ular 2D grid. Obviously, the arrangement of biologi-
cal neurons is not so regular, see Fig. 1a. To demon-
strate that our results are applicable to a more realistic
medium, in this section, we consider nonhomogeneous
solution domain. Specifically, we do not change the 2D
mesh itself, but introduce a non-uniform distribution of
parameters on it. To do so, the most suitable param-
eters are αz and γz. The αz parameter describes the
rate of potassium outflow from neurons, so its spatial
variability may account, for example, for the size of neu-
rons. The heterogeneity of the distribution of the diffu-
sion coefficient γz can describe the variable volume of
the ECS between neurons. We consider the distribution
of parameter values over the grid to be uniform over a
certain interval with a mean value equal to the one for
homogeneous case from Table. 1. An example of such a
random deviation from the mean for the parameter γz

is depicted in Fig. 9a.
The performed simulations show that SWSs remain

stable even at a sufficiently large spread of parameters.
The effect of γz inhomogeneity on a small SWS is shown
in Fig. 9b. Similar graphs of changes in the shape of
the edge of the large SWS, obtained from the original
one by scaling 6 times perpendicular to the direction of
motion, are shown in Fig. 9c. The top rows in (b) and
(c) show the waveform at constant parameter values.
Lower rows show the process of changing the waveform
at 4 consecutive time moments with a step of 0.5.

We conclude that the inhomogeneity of the medium
introduced by us leads only to small variations of the
variables inside the wave region, not directly affecting
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Fig. 7 Considerable scaling reveals multiple SWS variants.
The initial conditions are obtained both by scaling the orig-
inal structure (thick lines labeled as Sk = 2.0x at γz = 0.45,
3.0x at γz = 0.408, 4.0x at γz = 0.403; the notification kx
means that the initial SWS was scaled in all directions in
k times), and by expanding perpendicular to the direction
of motion at γz = 0.5 (thin lines). Inserts in the left and
right show the initial and final SWS shape, respectively

its stability. Note that large SWSs turned out to be
more sensitive to medium inhomogeneity than small
ones.

Thus, the existence of the SWSs under study is not
a consequence of the regularity of the grid. This makes
our results applicable for describing processes in real
nervous tissue, in particular, for modeling stable wave
fronts in migraine [18].

Fig. 8 Dependence of the SWS velocity on its size

Table 2 Diffusion intervals maintaining the SWS nature of
the scaled structure

Sk γz interval

1 0.479–0.683

2 0.425–0.460

3 0.405–0.411

4 0.402–0.404

4 Discussion

As we mentioned in Introduction, basic model of con-
tinuous excitable medium demonstrates fundamentally
unstable behavior of isolated wave segments, for which
negative feedback is usually used to stabilize [19,
37–39]. In contrast, our model medium demonstrates
wave segments that are stable in time, insensitive to
small changes in the initial conditions and exist at cer-
tain intervals of values of the model parameters.

To reveal the specific features of SWS that provide its
stability, we have compared in detail the edges of struc-
tures with different widths. We found that while grow-
ing, SWS become more and more similar at the edges.
The conclusion about the pivotal role of the SWS edges
well correlates with the previously obtained results for a
continuous medium, where the events in the boundary
regions predetermine the instability of wave segments
[38, 39].

Our results also expose that each of the considered
SWS remain stable in a limited range of diffusion coef-
ficient γ ∈ (γmin, γmax). At γ < γmin SWS decreases
in sizes and vanishes, at γ > γmax it turns into an
expanding wave front. Such behavior, together with the
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Fig. 9 SWS persists in a heterogeneous medium. a An example of the spatial distribution of the parameter γz; b dynamics
of the variable z in the front of small sizes (Sk = 1); c dynamics of the variable z on one of the edges of the large front
(Sk = 6). The solutions are given with a time step of 0.5, while in all cases the upper graphs show the shape of the structure
for a uniform distribution of the parameter

properties that we mentioned above, allows us to pro-
pose a hypothesis about the mechanism underlying the
existence of SWS.

One of the first reports on the effect of propaga-
tion failure in systems of discrete coupled cells was
the study by Keener [40]. Later, this effect was stud-
ied both for bistable fronts in reaction-diffusion sys-
tems and for excitable systems [41–44]. Simplistically,
we can say that excitation is not transmitted to the
next discrete element, until some critical value of the
activating factor is accumulated. In our case this factor
is the amount of z .

Considering the events at the edge of the SWS, at
each time step of the solution there are grid units where
excitation can be transmitted and those where it can-
not. The difficulty is that these exclusions and permis-
sions change at every time step. Our hypothesis is that
by finding SWS during the calculations in Sect. 3.1,
we automatically find only those structures for which
there is a periodicity in time: after a certain number
of steps, they repeat themselves with a displacement
in space. As our results show, a SWS is characterized
by (i) a strictly flat central part and (ii) edges lagging
behind the center. In this case, the shape of the edge
does not have to be exactly specified, as we showed in
Section 3.2, its small variations fade out. At the same
time, a flat central part is critically needed, and viola-
tion of this condition will inevitably lead to an expand-
ing wave, as in the Fig. 3a, right side. The minimum
length of the flat part of a segment is 2 pixels, and such
segments are most likely to occur. All other variants of
structures will either disappear, or expand indefinitely,
or evolve towards sustainable SWS, as we have shown
in our work.

The oscillations of z sum in Fig. 4, 7 reflect such
a repeating in time pattern. In our case, the criterion
for whether a given grid unit can be excited or not
is the amount of accumulated z in it. This, in turn,
depends on both the diffusion coefficient and the state
of neighboring elements, which changes in time.

In conclusion, we believe that the obtained results
giving the new understanding of the processes in the
nervous tissue will be useful, in particular, for the anal-
ysis of similar phenomena in case of spreading cortical
depression, or activity patterns in migraine [45].

Along this way, the obvious next task is to generalize
our results to irregular lattices. The grounds for opti-
mism here are given by the stability of waves in non-
homogeneous medium, since the heterogeneity of the
parameter field and the unevenness of the location of
the centers of activity are equivalent in a sense.

Supplementary Information The online version con-
tains supplementary material available at https://doi.org/
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