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Abstract We investigate different dynamical regimes of a small neuronal circuit. This circuit includes
two cells that are interconnected by means of dynamical synapses (excitatory and inhibitory). On the
individual level, each neuron is modelled by FitzHugh–Nagumo equations. To analyze complex patterns
and transitions between them in this small circuit, we apply wavelet analysis. We analyse the influence of
synaptic kinetics on the synchronization in this circuit. We also show that the wavelet analysis could be
applicable to systems that are difficult to investigate using methods of classical bifurcation analysis.

1 Introduction

Synchronous activity in neuronal networks generates
different rhythmic patterns that are responsible for a
large variety of physiological processes – from memory
to controlling rhythmic movement [1, 2]. Such activ-
ity could be presented by the various oscillatory pat-
terns which differ in frequency, amplitude, pattern com-
plexity, simulation thresholds, and localization in the
brain (see Reviews, for example, [3–7]). The diversity
between regimes is provided by the work of neuronal
circuits where the type of coupling (chemical synapse
or gap junctions) and its strength [8–11], as well as
the structural and physiological properties of neurons,
play a crucial role in the establishment of the particular
rhythm [1, 12].

Synchronous regimes in neuronal networks could be
spontaneous, and transitions between different rhythms
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are also possible in dependence on the initial conditions
or parameters of the system [8, 11, 13]. In numerous
experiments and computational simulations, it has been
shown that the establishment of different rhythms and
switching between them occur due to the control of cou-
pling strengths [11, 14]. Also, it has been shown that the
kinetics of synapse as well as the type of synapse, exci-
tatory or inhibitory, influence on the synchronization
in neuronal networks, see [13]. Moreover, the kinetics
of particular post-synaptic receptors (AMPA, NMDA,
GABA) which define a type of synapse, controls the
frequency in networks with irregular spiking [15] or
can determine the distribution of axons and dendrites
[16]. Also, the work of synapse has been considered in
detailed models where neurons were described by the
equations of Hodgkin–Huxley type [15, 17, 18].

In these models mentioned above, authors consider
either the dependence of regimes establishment and
transitions between them on the coupling strengths or
the influence of synaptic dynamics only on the rhyth-
mogenesis. In view of the aforesaid, some questions
arise: can synaptic dynamics be governed by the tran-
sitions between different oscillatory states in a net-
work? Does it allow tune-up rhythm transitions more
delicately compared with strict changes in coupling
strengths? How do the characteristics of synapse kinet-
ics (rise time and time decay of the signal) control the
frequency and amplitude of different rhythms?
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The formulation of such problems requires certain
methods and tools, due to which it is possible to
determine the dynamics of transitions between regimes,
e.g. to investigate the continuum of bifurcation pat-
terns transition. Besides classical bifurcation analysis
for non-linear systems, one of the most powerful mod-
ern tools is the continuous wavelet analysis with com-
plex wavelets [19, 20]. Naturally, it finds a quite wide
applications in the field of neuroscience ranged from
analysis of experimental data to the revealing non-
stationary features in the modelling dynamical system
[21]. On the other hand, the majority of such consid-
erations operate with non-intentionally non-stationary
non-linear oscillations, while the sequential prepara-
tion of neuronal systems for bifurcation study sup-
ported by wavelet analysis is only starting to gain
research interest. One can note mathematical stud-
ies of the neuron-like Bonhoeffer-van der Pol oscilla-
tor qualitatively demonstrating the similarity between
classic bifurcation diagrams and diagrams of leading
wavelet modulus maxima [22], bifurcation-like transi-
tions in the locomotor circadian rhythms induced by
gradual changes of the alcohol consumption by rodents
[23], wavelet-based analysis of the EEG response on
sequential changes of the control parameter for bistable
ambiguous images [24]. A preliminary idea to use a non-
linear dynamic system with a slowly varying control
parameter and give the interpretation of the obtained
wavelet transform images in terms of the bifurcational
sequence was proposed in [25].

Thus, in view of the above, it would be convenient
to consider a system of neurons, taking into account
only important dynamical characteristics without a
detailed biophysical description. For this purpose, we
consider a mini-circuit that consists of the two synap-
tically coupled neurons (inhibitor and activator) that
are described in the frame of the FitzHugh–Nagumo
formalism. We intend to give a more solid mathemati-
cal basis to the latter approach [25], generalize, and use
it for the detailed analysis of the considered system of
coupled neuron-like oscillators.

2 Minimal circuit and its model

We consider synaptically coupled basket and pyramidal
cells. Figure 1 illustrates the model topology.

The pyramidal and basket cells were described as the
FitzHugh–Nagumo model [26] coupled with excitatory
and inhibitory chemical synapses:

⎧
⎨

⎩
v̇i = vi − v3

i

3
− ui + Iextδi,P +

∑
j Isyn(ji),

u̇i = ε(vi + a − bui),
(1)

where i ∈ {b, p} is the index of a basket or pyrami-
dal cell, vi and ui are the membrane potential and the
recovery variable of the i -th neuron, Iext is an exter-
nal current, parameters a and b mimic ion kinetics, ε

Fig. 1 The model of a coupled basket (B) and pyramidal
cells (P). Pyramidal cells are the exciting neurons, basket
cells inhibit other neurons [14]. Plus and minus mean posi-
tive and negative interconnections

is a timescale of oscillations, and Iji
syn is the synaptic

current from cell j to cell i [14, 27]:

{
Iji = Gjisji(Eex, in − vi),
ṡji = A

2

(
1 + tanh vj

vvsl

)
(1 − sji) − Bjisji,

(2)

where Gji is a coupling strength between elements,
Eex,in is a reversal potential: Eex for excitatory input
from pyramidal cell and Ein for inhibitory input from
basket cell. Synaptic variable sji depends on a thresh-
old function and defines activation. Parameters A, Bji

and vvsl determine synaptic kinetics.
To study what different rhythms arise in depen-

dence on the synaptic variables, we have considered
the response of the system to variation of the synap-
tic parameters Bpb and Bbp, which determine the
kinetic constants of the closed state of excitatory and
inhibitory synapses correspondingly. The rest of param-
eters (parameters of synapse opened state Apb and Abp,
potential νvsl, and constants in the FitzHugh–Nagumo
equations) were obtained by fitting experimental data
[11, 14, 26] and shown in Table 1.

Therefore, time decay constants Bpb and Bbp are
changed on a grid from 0 to 1, where the starting point
is the completely opened synapse state, whereas the last
point means an entirely closed state.

Numerical integration of our system (1)–(2) is per-
formed using the fourth-order Runge–Kutta algorithm
with a fixed time step of 10 µs.

3 Continuous wavelet transform as a tool
for instant bifurcation analysis

Numerical simulations of the system Eqs. (1)–(2)
demonstrate a complex dynamical picture, which indi-
cates the existence of non-stationary effects such as
hysteresis during forward and backward changes of
parameters. Tracing such features related to transi-
tions between different oscillatory regimes, including
the changes in the spectral content of non-linear oscil-
lations, is extremely hard, and even sometimes impos-
sible, for conventional methods of bifurcation analysis.
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Table 1 Parameters of the
model a b ε Gbp Gpb Iext A vvsl

0.5 0.8 0.3 0.5 0.5 0.5 1 0.1

Therefore, in this work, we also apply a kind of bifur-
cation analysis based on the continuous wavelet trans-
form (CWT) with the Morlet wavelet, improving the
idea proposed in the work [25].

3.1 From Fourier’s to the continuous wavelet
transform of limit cycles

The principal idea of the wavelet-bifurcation analysis of
transitions between oscillatory states is based on a gen-
eralization of the spectral analysis and the respective
Andronov’s approach [28] to revealing limit cycles. The
latter considers a non-linear dynamic system, which can
be represented in the complex form as

dz

dt
= iωz + Z (z;μ), (3)

where z(t) = R exp(iωt) is the linear component rep-
resenting harmonic oscillations with the frequency ω,
and Z (z;μ) is the non-linear term, with non-linearity
governed by the value of the parameter μ (Z = 0 if
μ = 0). The existence of a limit cycle with the same
period Tmain = 2π/ω corresponds to the null-balance of
the Fourier component of the non-linear term in Eq. (3),
which has the same main frequency ω:

2π/ω∫

0

Z (z;μ)e−iωtdt = 0.

Thus, the spectral analysis of dynamical system solu-
tions aimed to reveal its main frequency plays a princi-
pal role in the classification of motion with respect to
their limit cycles.

At the same time, a spectrum of non-linear oscilla-
tions contains a set of peaks: one of them detects the
limit cycle period, while the others are higher harmon-
ics, which determine the shape of oscillations.

Since we are interested in the search for limit cycles,
it is possible to extract the target oscillatory motion
by applying the Gaussian-like window centered at the
frequency corresponding to the main period to the full
spectrum F̂ [Z(t)]:

F (ω) = F̂ [Z(t)](ω)e− ω2
0(ωTmain

2π
−1)2

2 ,

where the constant ω0 is called central frequency; it
determines the window’s effective width.

Note that this procedure automatically determines
the action of the temporal Gaussian sliding window on
the original oscillating signal

Z̃(t) = F̂−1[F (ω)]

=

+∞∫

−∞
Z(t′)

e
−iω0

t′−t
(ω0Tmain/2π) e

− (t′−t)2

2(ω0Tmain/2π)2

√
2π(ω0Tmain/2π)2

dt′

(4)

due to the convolution theorem.
The procedure represented by Eq. (4) determines

local correlations between the harmonic oscillations
with the frequency ω and the oscillations cut off
from the full curve Z (t) within the relatively short
time interval with the characteristic width equal
to ω0Tmain/2π. As a result, in the case of non-
stationary oscillations, it will produce the signal Z̃(t) =
[R(t) exp(iϕ(t))] exp(i2πt/Tmain) with the same fre-
quency as fast oscillations modulated by the slow-
varying complex amplitudes, i.e. an analogue to the
van der Pol–Krylov–Bogolyubov method for the slow-
fast decomposition (the more detailed consideration of
effects of the Gaussian window’s width variation, espe-
cially in the case of chaotic signals, can be found in the
work [29]).

At the same time, more complete information can be
obtained by considering the full variety of frequencies
(or periods) that are available for determining from a
given sample of oscillations. Thus, introducing instead
of one fixed period Tmain the variable a = (ω0/2π)T
called the scale and expressed via the possible periods
and the central frequency, and the variable b called
the shift , which determines centering of the variable
width sliding window, we get instead of one-dimensional
transform (4) the continuous wavelet transform

w(a, b) =
∫ +∞

−∞
Z(t)ψ∗

(
t − b

a

)
dt

a
√

2π
(5)

with the standard Morlet wavelet

ψ(ξ) =
1√
2π

eiω0ξe− 1
2 ξ2

. (6)

In Eq. (5), the asterisk denotes the complex conjugation
and the normalization factor 1/a

√
2π corresponds to

the amplitude norm

+∞∫

−∞
|ψ(ξ)|dξ = 1,

which has important advantages from the point of
view of extracting periodic components from a sig-
nal: (i) for the pure periodic harmonic oscillations
z(t) = exp(iωt), its transform has a complex form
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w(a, b) = exp(iωt) exp
(−(aω − ω0)2/2

)
, i.e. the fre-

quency may be directly expressed from the maximum of
the transform’s modulus maximum ω = ω0/a (respec-
tively, the period is equal to 2πa/ω0; (ii) the zero-level
wavelet transform is exactly proportional to the anal-
ysed signal: w(0, b) = Z(b) exp

(−ω2
0/2

)
. These proper-

ties assure fast methods for the numerical computing of
the CWT and its inversion as well as the interpretation
of their results [30, 31].

To operate in the transform (5) with the complex
input Z (t) formed as a sum (or an integral in the gen-
eral continual case) of exponential functions with imag-
inary exponents and strictly non-negative frequencies,
it is convenient to apply the method first proposed by
D. Gabor for analysis of non-stationary signals [32] and
further effectively transferred to the wavelet theory [33].
It implies the complexification by adding to a real-
valued oscillating signal f (t) with extracted its mean
constant value its Hilbert transform

H[f(t)](t) =
1
π

v.p.

∫

R

f(t)
t′ − t

dt′

is the imaginary part that results in the analysed func-
tion

Z(t) = f(t) + iH[f(t)](t),

which has the same set of frequencies but is restricted
to the positive values only and additionally implies fast
and memory-reducing numerical algorithms for soft-
ware allowing matrix operations [34].

3.2 Essence of the wavelet-bifurcation analysis

As it is given by Eq. (3), the frequency of limit-cycle
oscillations and their amplitudes depend on the value of
the control parameter μ. Moreover, when it crosses cer-
tain values, bifurcations leading to the change of quanti-
tative properties of the oscillations can occur. However,
due to the locality of the continuous wavelet transform,
which operates with an effectively limited time range,
it is possible to analyse the change of spectral proper-
ties of a long sample representing the non-linear oscil-
lations with different values of the parameter μ and to
connect these values with the respective main period
of the limit-cycle motion (or even with different loops
of multi-looped cycles emerging, e.g. due to the period-
doubling bifurcations).

For this goal, let us consider the extremely slow (adi-
abatically) varying time-depended μ(t). Thus, we will
get a non-stationary non-linear oscillations Z(t;μ(t))
within a single run of computing. Quantitatively, this
condition can be reached if to define

μ(t) = μ0 + kt (7)

with

dμ(t)
dt

= k << ω =
ω0

max(a)
, (8)

where max(a) is determined by the upper limit of time
scales used during the analysis. Respectively, due to
the definition (5)–(6), the non-linearity parameter does
not change significantly within the several widths of
all applied Gaussian windows included in the Morlet
wavelet. Therefore, the output of the CWT will give the
complete local spectrum in the vicinity of the instant
time, which corresponds to the Gaussian windows cen-
tering. The respective instant value of the parameter μ
follows from Eq. (8) with this instant time value sub-
stituted.

3.3 Smoothing the wavelet modulus maxima
in the case of spike sequences

It should be pointed out that dynamical systems mim-
icking neuronal oscillations reproduce sharp spikes,
which are highly non-linear and have a very rich spec-
tral content. Thus, even relatively small central frequen-
cies, which allow for better revealing for the main period
of limit-cycle oscillations as the principal wavelet mod-
ulus maximum, result in some temporal variation of the
letter. This difficulty was indicated in the works [35, 36],
where the so-called double-wavelet transform has been
proposed. The cited approach applies the CWT to these
oscillating wavelet modulus maxima themselves, aimed
at the more fine distinction between the slow and fast
oscillations and their fine spectral content.

On the other hand, we are interested in the oppo-
site goal, namely, the tracking of the principal period
changes, which emerge because of a change of the con-
trol parameters in a non-linear system. In this case,
we need not enhance and extract oscillations of the
wavelet modulus maxima but smooth them. For this
reason, we propose an alternative approach via the dif-
fusive smoothing of the non-monotonous wavelet max-
ima lines defined for each wavelet scale, as the following
convolution with the non-oscillating window

|w̃|2(a, b) =
∫ +∞

−∞
|w|2(a, b)Gσ(b − b′)db′, (9)

where the Gaussian smoothing window

Gσ(ξ) =
e− ξ2

2σ2

√
2πσ2

has a width coordinated with the current scale as σ =
πa/ω0, i.e. the width of this Gaussian is equal to the
half-period of oscillations with the wavelet scale a. As
a result, the wave bulges and troughs occurring during
the oscillation period will be mutually smoothed.

4 Results

As it is known from experiments [11] there are at least
three main rhythms that are differed in spike frequency

123



Eur. Phys. J. Spec. Top. (2023) 232:485–497 489

0 0.2 0.4 0.6 0.8
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

B
pb

B
bp

1c,
2c

1c,
2c

1

1b

1c

1e−>1a−>1d

1−>1a

2c1
2c1,2

22,1b

2c,1b
2c

2a 2a,1b2a,1b

3a−>3b−>3−>3b

Fig. 2 Map of the dynamical regimes for the system:
the numbers correspond to the gamma-rhythm (1), theta
rhythm (2), and theta-gamma rhythm (3) while letters
denote separate features within each frequency band

and oscillations shape: slow oscillated theta-rhythm
(2–11 Hz), gamma rhythm that introduces broad-
band (20–100 Hz) and regime where fast rhythm is
modulated by slow oscillations, so-called theta/gamma
rhythm.

Numerical simulations of the system (1)–(2) reveal
all these types in dependence on the parameters Bpb

and Bbp as shown in Fig. 2. In this section, we sin-
gle out main regimes obtained in model and describe
evolution/transformation between them.

4.1 Gamma-rhythm

Gamma rhythm arises at the increasing of two-time
decay constants and exists in large intervals of Bpb

and Bbp. A closer look shows that the gamma regime
undergoes different transformations in dependence on
the parameters’ variation: increasing the value Bbp

at the small values of Bpb the gamma regime, where
inhibitory cell oscillates subthreshold, whereas excita-
tory cell gives spikes (regime 1b, see Fig. 2; all further
references to regimes mean this figure). This rhythm
slowly transforms to classical rhythm gamma (regime
1) at the values of Bpb >0.16 and Bbp > 0.19.

The gamma rhythm undergoes period-doubling
(regime 1c) within the parameter range 0.18 < Bpb <
0.66 at the slowly changed parameter Bbp. Then this
rhythm marked as 1c turns into aperiodic regime
(regime 1a) through the sequence of period-doubling
bifurcations (regime 1e) that turns into the three-
spiking gamma rhythm (1d). These transitions are illus-
trated by the bifurcation diagrams shown in Fig. 3.

The CWT demonstrates the same picture of tran-
sition as seen in its modulus maxima plot shown in
Fig. 4. For more direct illustrative purposes, the scale
of the wavelet transform corresponding to the main fre-
quencies of the signal’s spectral content in this figure as
well as in the following CWT-based plots is explicitly

expressed in terms of inter-spike intervals (ISI). What
is most remarkable is that one can see the chaotic pat-
tern of the transition to the spiking gamma rhythm
with the tripling of the period: ISI ≈ 15, 30, 60 (Fig. 4),
where one can distinguish between the preservation of
the first spectral band and the fork-like splitting of
the spectral band ISI = 35 into the bands 30 and
60. The mentioned chaotic-like behaviour is detected
within this splitting, which highlights the advantages of
the wavelet-bifurcation diagram over the classical one
(Fig. 3), where the detailed tracing of the fork’s details
is not possible.

When the three-spiking gamma rhythm (regime 1d)
is changed into the regime 1c (Bbp ∈ (0.4386, 0.5515))
we observe intermittent chaos. The CWT-based picture
for it is shown in Fig. 5.

At the further increasing of parameter Bpb it changes
into chaotic regime (regime 1a) that transforms to
the “double-spiking” rhythm (Fig. 6). All these trans-
formations occur within the narrow parameter range
0.11 < Bbp < 0.12.

At the Bpb > 0.8, the classical gamma rhythm
appears (the zone 1 → 1a, the left-hand side of the dia-
gram shown in fig:map) that undergoes the sequence of
transformations. This transformation also goes through
chaos (Fig. 7).

Fig. 3 Bifurcation diagram for Bpb ∈ (0.1, 0.8) and fixed
Bbp = 0.12. Here dots correspond to the extremum values
of the function vb

Fig. 4 Wavelet transform’s modulus for the parameters
Bbp = 0.12, Bpb ∈ (0.2, 0.3). Bright yellow colouring marks
the wavelet maxima lines
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Fig. 5 Wavelet transform’s modulus for the parameters
Bpb = 0.12, Bpb ∈ (0.4, 0.5). Bright yellow colouring marks
the wavelet maxima lines

Fig. 6 Wavelet transform’s modulus for the parameters
Bpb = 0.12, Bpb ∈ (0.5, 0.9). Bright yellow colouring marks
the wavelet maxima lines

Fig. 7 Poincare section and phase portrait of chaotic
behaviour for Bbp = 0.12, Bpb = 0.79

4.2 Theta rhythm

The aperiodic theta rhythm (regime 2a) is replaced by
the conventional theta rhythm (regime 2) at the val-
ues of 0.03 < Bbp < 0.09 within the interval of Bpb

ranged from 0.02 to 0.4; the characteristic time dura-
tion of one oscillation gradually decreases from ≈ 340 to
51. At the Bbp > 0.09 the period abruptly falls to val-
ues 36–37, and the regime close to theta rhythm arises
(regime 2c). The transition from regime 2 to regime 2c
includes hysteresis, which is highlighted in the wavelet-
bifurcation diagram shown in Fig. 8. This picture of
the hysteresis was calculated referring to the wavelet
modulus maxima determined from the CWT of signals
with the bifurcation parameter slowly varying with time

starting from values, which correspond to the opposite
values in the considered range.

We observe the limit cycle with the loop (T = 56) for
Bbp = 0.06−0.0849. When Bbp comes to the vicinity of
the value 0.085, the loop disappears through the chaotic
pattern and we can observe the limit cycle with the
period T = 39. Transition when Bpb = 0.19 and Bbp =
0.079 − 0.086 are shown in Fig. 9.

For this range of the parameter, we can observe a
clearly chaotic behaviour. To confirm this, the Poincare
section for Bpb = 0.19 and Bbp = 0.079−0.086 is shown
in Fig. 10.

The regime 2c at the Bpb > 0.33 is replaced (through
a sequence of aperiodic regimes) by the theta regime
where the inhibitory cell oscillates in the subthreshold
regime (the regime 2c1). Let us consider this replace-
ment in more detail. The regime 2c is characterised
by the period T = 51. These oscillations continue
up to Bpb = 0.27. For the parameter range Bpb ∈
(0.27, 0.295), we observe period-doubling bifurcations
leading to a chaotic pattern (Fig. 11).

Fig. 8 Top panel: the hysteresis indicated in the wavelet
modulus maxima lines in direct pass (red line). Bottom
panel: the hysteresis indicated in the wavelet modulus max-
ima lines (blue line). The fixed parameter: Bpb = 0.19. The
range of the parameter’s variation: Bbp = 0.06..0.1

Fig. 9 Transition with a chaotic pattern. The fixed param-
eter: Bpb = 0.19. The variable parameter: Bbp =
0.079..0.086
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Fig. 10 Poincare section and example of the respective
chaotic attractor for Bpb = 0.19 and Bbp = 0.084

To be sure that we have already found chaos, we cal-
culated the maximal Lyapunov exponent for the param-
eter Bpb = 0.27: λ = 0.004 (std = 0.0019). This tran-
sition leads to the loop’s disappearing and emerging
oscillations with the period T = 32.4.

After chaotic oscillations, the system comes to regime
2c. The region of this rhythm is located in a narrow
range of parameters, namely 0.34 < Bpb < 0.42 and
0.03 < Bbp < 0.09.

4.3 Theta-gamma rhythm

Finally, let us consider the transformations of theta
rhythms when parameter Bpb, which describes the
exciting synapse, changes (the sequence leading to the
chain of regimes 3a → 3b → 3 → 3b. If we continue
increasing Bpb greater than 0.33, a loop on the limit
cycle appears. Figure 12 shows the gradual loop appear-
ance.

After loop rolling, we observe a series of period-
doubling bifurcations (Fig. 13), which ends with a
chaotic attractor at Bpb = 0.3781. The maximal Lya-
punov exponent is equal to λ = 0.018 (std = 0.003).

The chaotic nature of the oscillations changes to
another kind of complex oscillations for Bpb = 0.380
(T = 121, ISI = 30) with the subsequent transforma-
tion into the theta-gamma rhythm for Bpb = 0.448.

For Bpb = 0.4490, we observe period-doubling bifur-
cations that ends with chaos for Bpb = 0.4550:
λ = 0.0224, std = 0.0058. The chaotic pattern is
replaced by the stable theta-gamma rhythm for Bbp ∈
(0.456, 0.461).

The range Bpb ∈ (0.4615, 0.4897) consists of states
with a lot of chaotic transitions between different
regimes. Figure 14 demonstrates diversity of regimes
for this range.

For Bpb ∈ (0.491, 0.71), we observe the stable theta-
gamma rhythm (Fig. 15).

Fig. 11 Period doubling
bifurcation. Synaptic
parameter Bbp = 0.08 is
fixed and Bpb = 0.293,
Bpb = 0.290, Bpb = 0.276,
Bpb = 0.274
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Fig. 12 Loop rolling.
Synaptic parameter
Bbp = 0.08 is fixed and
Bpb = 0.30, Bpb = 0.33,
Bpb = 0.34, Bpb = 0.36

For Bpb ∈ (0.7, 0.82) we observe complex behaviour
with chaotic patterns for (Fig. 16).

4.4 Multistability

Note that, as it is demonstrated above, the solution of
the system (1)–(2) exhibits hysteresis and specific tran-
sitions between particular spectral bands contained in
the spikes of complex shape depending on the paths
of change of bifurcation parameters as revealed by
the wavelet-bifurcation diagrams. Thus, the system
exhibits multistability.

To get the respective classification of the rhythms, we
imply the calculation of the minimal and maximal ISI.
If the maximal and minimal ISI differed by more than
two times, we supposed it was a theta-gamma regime.
In this case, the maximal ISI corresponded to the inter-
burst interval (IBI). On the contrary, pure gamma and
theta rhythms can be distinguished by the ISI value
only. Using this approach, we calculated the map of
the rhythms with fixed initial conditions. Since the sys-
tem is multistable, we had to find all the possible states
for each parametric set. To simplify this task, we found
the boundaries on the map with fixed initial conditions
for each rhythm. Then we expanded these boundaries
as follows: we calculated dynamics where the last step
was used as the initial conditions. The resulting map

is presented in Fig. 17, where one can see both mono-
stable regimes (a single-type patterning) as well as the
regions of multistability, where different kinds of pat-
terning overlap.

5 Discussion

Although the key role of gamma and theta rhythms and
their coupling is a well-established mechanism of the
brain’s activity related to a wide variety of processes
related to memory, spatial navigation, etc. [37–39], the
understanding of this stitching’s regulation and the
development of the respective mathematical models are
still far from the completeness. To achieve the required
dynamical picture, the most recent models operate with
a large ensemble of neuronal oscillators and consider
theta-gamma switches as a consequence of complex
network dynamics [40–42]. At the same time, it has
been demonstrated that switching between frequency
bands, including multistable dynamics, can be observed
in more simple models, which include a few neuronal
cells. In particular, in the work [43], a variant of regime
switching was achieved with two neurons and two astro-
cytes, which govern synaptic transmission.

In our work, we deal with the minimal possible model
system, which includes only two synaptically coupled
neurons. It turns out that the specificity of synaptic
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Fig. 13 Period doubling
bifurcation. Synaptic
parameter Bbp = 0.08 is
fixed and Bpb = 0.3740,
Bpb = 0.3750,
Bpb = 0.3760, Bpb = 0.3770

coupling is quite enough to produce the full range of
a variety of dynamical regimes that are qualitatively
comparable with those that were observed in neurobi-
ological experiments. Thus, this result shifts attention
from large and complex (and, as a consequence, not
very interpretable) networks to more plausible mecha-
nisms of inter-neuronal interactions.

Alongside the building of mathematical models of
these inter-neuronal interactions, there is a special ques-
tion about the analysis of the dynamics of such a highly
nonlinear coupled system, which is rather complex. New
methods that use the wavelet transform can provide
more opportunities for this goal.

It should be pointed out that although the wavelet
transform has recently become part of the standard pro-
tocols for rhythms and chaos investigations in biology
[44], its widespread application is mostly limited by
the detection of rhythms in time series. Applications
from the point of view of the bifurcation analysis are
scarce [22, 45, 46] and mainly address again wavelets
as a tool for characterising complex dynamics of time
series generated by the system with some fixed parame-
ters. This means that building the bifurcation diagram
based on the characteristics revealed by the analysis of
time series generated by a nonlinear system at some set
of parameters is still computationally expensive because
it requires generating long time series for each point in
the parametric space. On the contrary, the proposed
wavelet-bifurcation approach is free of such a drawback

since the simultaneous change of the parameter and the
time of observations allows getting a picture of transi-
tions during one run of time series calculations.

In addition, the proposed method provides an oppor-
tunity to address the question of the dynamics of tran-
sitions as a function of the rate of parameter change.
Recently, this problem has attracted active attention
within the context of the transition delay effect and
early warnings of catastrophic systemic restructur-
ing in nonlinear systems [47–50]. Such effects can be
extremely hard (if even possible) to detect with the
usual methods of bifurcation analysis due to operat-
ing with a set of fixed values for bifurcation param-
eters. But the wavelet-bifurcation method, which we
proposed, operates with the required conditions by con-
struction. In particular, we demonstrated some practi-
cal examples of the considered multistable system.

6 Conclusions

The main messages of this work can be summarised as
twofold.

First of all, we demonstrated that even a system
of only two coupled identical neurons can exhibit a
rich variety of dynamic regimes that cover all three
principal spectral bands of neuronal oscillations. The
main premise of such a possibility is a non-symmetrical
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Fig. 14 Diversity of
oscillatory regimes for the
synaptic parameter’s range
Bpb ∈ (0.4615, 0.4897). The
synaptic parameter
Bbp = 0.08 is fixed. Red
and blue colors mark νb and
νp

Fig. 15 Theta-gamma oscillations for Bpb ∈ (0.491, 0.71)
and fixed Bbp = 0.08. Red and blue colors mark νb and νp

correspondingly

coupling, with the strength determined by the kinetic
parameters of the connection. Thus, we can conclude
that this provides some open questions for future neuro-
biological studies aimed at clarifying whether the large
systems of coupled neurons are already underlying neu-
ronal activity as indicated by the change of gamma and
theta regimes or whether such neuronal tasks can be

Fig. 16 Wavelet transform’s modulus for the parameters
for Bpb ∈ (0.7, 0.9) and fixed Bbp = 0.08. Bright yellow
colouring marks the wavelet maxima lines

carried out by extremely small groups of neurons by
adjusting the coupling between them.

The second message relates to more procedural
aspects of the work. It is known that bifurcation anal-
ysis of periodic orbits is a very complicated procedure
for the vast majority of conventionally used algorithms
and implementing them in programs (such as LOCBIF,
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Fig. 17 Multistability map. The diagonal hatch corre-
sponds to the gamma rhythm, the squared hatch corre-
sponds to the theta rhythm, the circled texture corresponds
to the theta-gamma rhythm. Colormap presents ISI for the
theta and gamma rhythm and IBI for the theta-gamma
rhythm

MatCont, etc.). In cases when one is interested in mul-
tistable transitions between particular spectral compo-
nents of multi-loop (in the phase space representation)
oscillations, such conventional analysis can be even
impossible. On the contrary, the wavelet-bifurcation
approach, which operates with the continuous reveal-
ing changes in the instant period of spikes under condi-
tions of a slowly varying bifurcation parameter, solves
this problem easily because it falls directly into the
CWT’s focusing point. In addition, the cross-section
over the wavelet scales (equivalent to the interspike
intervals after proper scaling) at each time/instant
parameter value indicates principal components of the
spike’s shape, whose bifurcations can be studied sep-
arately from the spike trains considered as a whole.
Thus, the wavelet-bifurcation analysis, which inherits
Andronov’s approach to the limit cycle decomposition
but supplies it with the property of time/parameter
locality, calls for new insight in the practical study of
the evolutionary dynamics of strongly non-linear sys-
tems.
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