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Abstract Despite the fact that the phenomenon of bursting activity is important for functioning of living
neural networks, the mechanisms of its origin are still not clear. In this paper, we propose a new phenomeno-
logical model that can explain the mechanisms of the formation of bursting activity based on short-term
synaptic plasticity, recurrent connections, and neuron–glial interactions. We show that neuron–glial inter-
actions can induce bursting activity. The bifurcation scenarios of emergence of bursting activity are in
the focus of the paper. Proposed study is important for understanding the complex dynamics of neural
networks.

1 Introduction

The complex collective dynamics of a neural networks
include various patterns of activity, the most interest-
ing of them being bursting activity. A burst consisting
of a short, high-frequency spike sequence is more likely
to pass through a synapse than a single spike, and the
likelihood of a postsynaptic spike is increasing corre-
spondingly. Both the number and temporal structure of
spikes in a burst provide an encoding space and basis
for temporal integration of individual neurons [1, 2].

Bursting activity associated with the collective
dynamics of neurons plays an important role in the
functioning of the neural system. It underlies both the
normal physiology of the brain (e.g. the rhythmogene-
sis) and brain pathology, in particular, epilepsy. In addi-
tion, in a number of previous studies it was shown that
bursting activity makes a significant contribution to the
development of the visual system [3], sensory process-
ing [4], neural transmission [5], learning and memory
[6].

Many attempts have been made to study this phe-
nomenon because of its exceptional importance. First
of all, it is necessary to note a number of experimental
studies of bursting activity in cultures of neurons grown
on multielectrode arrays [7]. In those studies researchers
changed culture properties, such as density [8, 9], size
[10] or the stage of development [11, 12], as well as phar-
macological conditions [13]. Also, different dynamical
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properties of bursting activity, such as self-adjusting
complexity [2], have also been studied in detail. The
interest of researchers in this topic is due not only to
the possibilities of encoding information but also to the
potential possibility of creating a living neural chip [14]
with predetermined functions. However, this goal is far
from being fully achieved.

Results obtained in described biological experiments
can be explained using mathematical modeling. To
understand mechanisms of bursting activity, a number
of mathematical models [15, 16] have been proposed
recently. In particular, in [17, 18] it was shown that
short-term synaptic plasticity (STSP) can be viewed
as a possible synaptic mechanism for the formation of
bursting activity.

STSP is a temporary (on a time scale from a few
seconds to minutes) change (increase or decrease) in
the strength of a synaptic connection in response to a
short-term stimulus. This fact was first discovered in
the studies of synaptic transmission in neocortex [17,
19, 20]. The effect of STSP is based on the accumu-
lation of Ca2+ in presynaptic terminals in response to
short-term exposure, which, in turn, leads to a change
in the probability of neurotransmitter release due to the
modulation of exocytosis [21, 22]. A short-term change
in synaptic strength leads to a change in the activa-
tion of postsynaptic neurons which in its turn results in
modulating network dynamics and cognitive processes
[23].

It is worth noting that there is an increasing evidence
that glial cells (astrocytes) may also play a role in the
regulation of synaptic dynamics [24–27]. However, most
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of the previous studies on the formation of bursting
activity have not taken into account the influence of
glial cells.

The fact that astrocytes influence synaptic trans-
mission led to the hypothesis of the so-called tripar-
tite synapse. This term was first introduced in [28] on
the basis of biological evidence for the existence of a
bidirectional interaction between neurons and astro-
cyte. According to this hypothesis, a neurotransmitter,
a neuroactive substance released during synaptic signal
transmission, can reach metabotropic glutamate recep-
tors on the membrane surface of glial cells, which leads
to their activation and subsequent release of gliotrans-
mitters. In its turn, gliotransmitter (specifically, gluta-
mate) can change the probability of neurotransmitter
release by the presynaptic neuron, thereby forming a
feedback loop [29].

In this paper, we propose a new mathematical model
to describe the formation of bursting activity. Our
model takes into account the main features of neu-
ron–glial interactions. The proposed model is based on
the Tsodyks–Markram [30] model. The main attention
in the present study is paid to the mechanisms of the
formation of bursting activity. The results of our mod-
eling show that neuron–glial interactions can produce
bursting activity. The presented research will help to
contribute to the understanding of the complex dynam-
ics of neural networks.

2 The model

Tsodyks and Markram propose a simplified phe-
nomenological model of STSP in [31]. Original
Tsodyks–Markram model describes the deterministic
behavior of a population of identical excitatory neurons
using a three-dimensional system of ODE with state
variables E (t), x (t) and u(t) as follows.

τĖ = −E + α ln
[
1 + exp

(
JuxE + I0

α

)]
,

ẋ =
1 − x

τD
− uxE,

u̇ =
U − u

τF
+ U(1 − u)E,

(1)

Here E (t) is the average neuronal activity of the excita-
tory population (in Hz) at any given time. Parameter
I0 is the inhibitory input received from the recurrent
network E (t). The α parameter determines the thresh-
old for increasing the average neuronal activity of the
excitatory population. It should be noted that the pos-
itive feedback JuxE contains both structural (J ) and
synaptic (ux ) factors.

Variable x (t) models the amount of available neu-
rotransmitter (glutamate). According to this model,
presynaptic resources are finite and each of them can

be either available or non-available to be released. The
overall fraction of available neurotransmitter is x (t),
and the fraction of non-available neurotransmitter is
(1 − x(t)). In the case of network activity E(t) > 0
neurotransmitter is consumed, which results in short-
term synaptic depression. Term u(t)E (t) corresponds
to the consumption rate. The parameter τD represents
the spontaneous recovery time from the depressed state.

The variable u(t) describes the change in the proba-
bility of release of the neurotransmitter from the presy-
naptic terminal. A fraction 1−u(t) has a low probability
of being released; a fraction u(t) has a high probability
of being released, respectively. Also, the term UE (t)
is the transition rate from low-probability releasable
state to high-probability releasable state. In the orig-
inal model parameter U is a constant that encodes the
baseline level of u(t). Time constant τF describes the
characteristic time of the facilitation.

To describe the dynamics of the glial cell (astrocyte),
we used the approach proposed by the authors in [32].
The schematic representation of the biological mecha-
nism of neuron–glial signaling via tripartite synapse is
presented in Fig. 1. Mathematically these interactions
were described as follows. The system (1) was supple-
mented with an additional equation for the variable
y(t), which describes the change in the concentration
of the gliotransmitter released as a result of a cascade
of biochemical reactions during the neuron–glial inter-
action. Also, we took into account the dependence of

Fig. 1 Overall scheme representing the physical phe-
nomenon: astrocyte modulates synaptic transmission at tri-
partite synapse. During the synaptic activity, the presy-
naptic element releases a neurotransmitter (glutamate)
x (t), which activates receptors at the postsynaptic ele-
ment and influences an astrocyte. Activation of the cor-
responding receptors on the astrocyte membrane leads
to calcium elevations. This process helps to control neu-
ronal excitability and synaptic transmission through the
calcium-dependent release of gliotransmitter y(t) that
alters the probability of release of neurotransmitters at
the presynaptic terminal. Here ΔU0(y) is an influence
of the astrocyte on neurotransmitter release probabil-
ity U(ΔU0(y)), 1 − u(t)—low-probability releasable state,
u(t)—high-probability releasable state
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the baseline level of u(t), U , on the variable y(t). The
resulting four-dimensional system of ordinary differen-
tial equations can be written in the following form:

τĖ = −E + α ln
[
1 + exp

(
JuxE + I0

α

)]
,

ẋ =
1 − x

τD
− uxE,

u̇ =
U(y) − u

τF
+ U(y)(1 − u)E,

ẏ = − y

τy
+ βσ(x),

(2)

The characteristic relaxation time of the gliotransmitter
τy is 1 s, σ(x) is a sigmoid function of the form:

σ(x) =
1

1 + e−20(x−xthr)
, (3)

where xthr is the astrocyte activation threshold. The
release of the gliotransmitter results in a change in the
baseline probability of neurotransmitter release. Exper-
imental studies show that, depending on the type of
presynaptic receptors, the probability of release in the
presence of a gliotransmitter can either increase (poten-
tiation) or decrease (depression). In our model, the
change in release probability in the presence of a glio-
transmitter is described as follows:

U(y) = U0 +
ΔU0

1 + e−50(y−ythr)
, (4)

where U0 is the probability of neurotransmitter (glu-
tamate) release in the absence of astrocytic influence,
ΔU0 is the change in the release probability due to the
action of the gliotransmitter on the presynaptic termi-
nal, and ythr is the threshold value that determines the
change in the release probability due to the effects of
gliotransmitter on the presynaptic terminal.

Parameters of the original Tsodyks–Markram model,
as well as corresponding parameters of the proposed
model in the present study can be identified with bio-
physical variables, that can be found experimentally.

In this paper, the parameter I0 was chosen as the
control one. The remaining parameters were fixed and
took the following values. We used parameters of neu-
ral activity that are essentially typical parameters of
the Tsodyks-Markram model: τ = 0.013, τD = 0.15,
α = 1.5, τF = 1, J = 3.07. The neurotransmitter
and gliatransmitter parameters were chosen in accor-
dance with the tripartite synapse model proposed ear-
lier in 2012 [33] and 2017 [32]: U0 = 0.23, ΔU0 = 0.305,
τy = 1.8, β = 0.4375, xthr = 0.9, ythr = 0.5.

3 Bifurcations and change in temporal
patterns of population activity

Now let us study the mechanisms of rhythmogenesis in
the proposed model using methods of nonlinear analysis
and bifurcation theory.

In dynamical terms, the developed model demon-
strates a rich set of patterns of population activ-
ity—from trivial ones (stable equilibrium and one-loop
limit cycle that correspond to the excitatory state and
tonic spiking), to multi-loop periodic orbits and irregu-
lar complex motions corresponding to regular and irreg-
ular bursting dynamics (see Fig. 2).

The change of temporal patterns of population activ-
ity in the system (2) is determined by the bifurcations
of its equilibrium states and limit cycles.

Unfortunately, analytical study of these bifurcations
presents great difficulties since the right-hand sides
of the system (2) include essentially non-linear func-
tions such as sigmoids σ(x), U (y) and logarithm ln[1+
exp(·)]. This leads us to transcendental equations for
equilibrium states

E = α ln
[
1 + exp

(
JuxE + I0

α

)]
, x =

1
1 + τDuE

,

u = U(y)
1 + τFE

1 + τFEU(y)
, y = τyβσ(x),

which in general do not allow an analytical solution.
This circumstance makes it difficult to carry out a stan-
dard local bifurcation analysis of equilibrium states.
Therefore, we conducted a numerical study. The results
discussed below were obtained by us using a package for
numerical bifurcation analysis MATCONT [34].

The system (2), depending on the parameter I0,
has one (e1 or e3) or three equilibrium states e1,2,3,
which appear and disappear as a result of saddle-
node bifurcations. Figure 3a shows an extended one-
parameter bifurcation diagram. It was built numeri-
cally and demonstrates bifurcations that take place in
the case of changing control parameter I0. The black S-
shaped curve in Fig. 3a marks the change in the E coor-
dinate and the stability type of the equilibrium states as
the parameter I0 changes. The solid and dashed parts
of the curve correspond to the stability and instability
of e1,2,3, respectively. Namely, e3 is always stable, e2 is
always unstable, and e1 changes the type of its stabil-
ity under the Andronov–Hopf bifurcation AHe1, when
a saddle limit cycle merges with the stable equilibrium
e1. As a result of the saddle-node bifurcations fe23 or
fe12, the equilibrium states e2 and e3 (or e1 and e2,
respectively) merge and disappear, leaving the equilib-
rium state e1 (or e3 respectively) globally stable.

Spiking and bursting dynamics of the system (2) cor-
respond to stable periodic orbits (and in some cases,
chaotic attractors, which are not considered in this arti-
cle). The one-loop stable limit cycle corresponding to
regular spiking activity is born together with the sad-
dle limit cycle as a result of saddle-node bifurcations
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Fig. 2 Temporal patterns of population activity of the system (2). (Left panel) Regular oscillatory (spiking) activity at
I0 = −1.42, which corresponds to a one-loop stable limit cycle (red trajectory in Fig. 3b). (Middle panel) Bursting activity
at I0 = −1.45. (Right panel) Bursting activity at I0 = −1.48, which corresponds to a multi-loop stable limit cycle (green
trajectory in Fig. 3c)

fl : I0 ≈ −1.447 and fr : I0 ≈ −1.396 (see Fig. 3a).
A three-dimensional projection of a stable limit cycle
that exists in the system (2) at I0 = −1.42 is shown in
Fig. 3b.

The transition from the spiking to the bursting pop-
ulation activity occurs as a result of the saddle-node
bifurcation fl : I0 ≈ −1.447, at which the stable limit
cycle (the red closed trajectory in Fig. 3b) merges with
the saddle limit cycle and disappears. In this case, a
stable multi-pass limit cycle of a large period is born,
which corresponds to a bursting activity with a burst
of long duration.1

With the decrease in parameter I0 the size of the
burst also decreases (see temporal patterns in Fig. 2).
In Fig. 3c, the green closed trajectory shows the three-
dimensional projection of the multi-pass limit cycle cor-
responding to the bursting activity at I0 = −1.48. For
I0 ≈ −1.509 the multi-pass stable limit cycle vanishes,
and the equilibrium state e3 becomes the only attract-
ing set.

Thus, the system (2) for the considered parameter
values in the interval −1.509 < I0 < −1.396 can have
three attracting sets simultaneously, which means that
the dynamics of the system depends on the initial con-
ditions. From the biophysical point of view, described
multistability at the network level could ensure the for-
mation of persistent states in the prefrontal cortex [30].

4 Conclusion

In this study, we have proposed a new mean-field model
of neuron–glial interactions, which reproduces bursting
activity. The novelty of our research is the extension of
a classical Tsodyks–Markram model that allows taking
into account the effects of glial cells to understand the
mechanisms for the generation of the bursting activity
in neuronal populations.

Previously the Tsodyks–Markram model with short-
term synaptic plasticity has already been successfully

1Such transitions occur during the “blue sky catastro-
phe” bifurcation [35–37] and have been considered, incl. in
the context of applications in neurodynamics [38].

Fig. 3 Bifurcation transitions explaining the change in the
population activity in the system (2). a Extended one-
dimensional bifurcation diagram. The black curve marks
the coordinate E of the equilibrium states e1, e2 and e3.
Solid and dashed areas mean their stability and instability,
respectively. Vertical dashed lines mark the main bifurca-
tions: fe23 (fe12) is a saddle-node bifurcation of equilibrium
states e2 and e3 (e1 and e2 respectively), AHe1 and AHe2

are the Andronov–Hopf bifurcations of e1 and e2, at which
saddle cycles are born (the blue bell-shaped regions are their
projections onto the E axis), fl and fr are saddle-node bifur-
cations of limit cycles. The red area is the projection onto
the E axis of a stable limit cycle (red curve in panel b) corre-
sponding to oscillatory activity. The green area is a projec-
tion of multi-pass stable cycles (green curve in panel c) and
irregular motions corresponding to bursting activity. Pan-
els b, c show three-dimensional projections of stable limit
cycles corresponding to oscillatory (I0 = −1.42) and burst-
ing (I0 = −1.48) activity, respectively. The transition from
oscillatory activity to bursting activity occurs through the
saddle-node bifurcation fl, where the one-loop stable limit
cycle (red curve in panel b) merges with the saddle limit
cycle

applied to various phenomena such as working mem-
ory [23] and working memory processing capacity [39].
The dynamical properties of the Tsodyks–Markram
model with short-term synaptic plasticity were studied
in [40]. Our model allows taking into account the impor-
tant features of the glial mechanism of modulation of
the probability of neurotransmitter release, leading to
bursting activity. To the best of our knowledge, these
peculiarities have not been considered earlier.
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The developed model allows to reproduce a rich vari-
ety of temporal patterns: from trivial ones, such as
quiescence and tonic spiking, to regular and irregular
bursting activity. Mathematical images of these types
of activity in the phase space of the proposed system
were described. In particular, it was shown that reg-
ular bursting activity is connected to the appearance
of multi-loop periodic orbits in the phase space of the
system under study. We have used bifurcation theory
to obtain the mathematical description of transitions
between the main types of population activity, caused
by variations in the control parameter I0 that char-
acterize inhibitory input. Irregular bursting activity in
the system (2) is generated by a chaotic attractor. This
issue is beyond the scope of this work and will be con-
sidered separately.

The appearance of multistability and bursting activ-
ity in the model is independent of the complexity of the
local dynamics of neurons and glial cells. These types of
dynamics are determined by the existence of the feed-
back loop between the presynaptic terminal and glial
cells. The demonstrated effects of bursting dynamics
and neuron–glial interactions are robust because they
do not imply specific characteristics in the neuron–glial
interaction, a particular architecture of the neural net-
work or dynamics of individual neurons.

Summarizing, the proposed phenomenological mean-
field model can be used to reproduce different patterns
of population spiking and bursting activity in a wide
range of studies of dynamic memory and information
processing. One possible application of such studies is
development of new efficient treatment for neurological
diseases related to neuron–glial interactions. Another
area, where these results can be helpful, concerns the
creation of the efficient living chip with useful func-
tions, which require better insights into rhythmogenesis
in neural networks and the functioning of the brain.
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