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Abstract In this work, we propose a modification of the wavelet oscillatory pattern method for analyz-
ing energy characteristics of oscillatory components in complex signals. The energy analysis of oscillatory
wavelet patterns allows fast two-dimensional sorting of oscillatory components in frequency and power,
thus allows for further statistical calculation of the observed technologies. Counting operations are sim-
ply realized on the base of parallel calculations. The presented technique could be used in studying the
electrophysiological features of brain activity during animals sleep and awake. The method was used in
investigations of brain’s electrophysiological characteristics during sleep and awake in animals. We found
out that standard energy analysis could determine NREM sleep and awake condition in rats with normal
weight and obesity. However, calculation of energy characteristics of the ECoG patterns in animals of two
groups demonstrate a significant transformation of electrophysiological signals oscillatory structure during
NREM sleep and awake in rats with severe visceral obesity. We suppose the changes of these characteristics
may be associated with shifts in homeostasis indicators due to animal obesity.

1 Introduction

Study of living systems signals from on the base of
mathematical analysis based on objective assessments
of oscillatory processes and dynamic systems have been
very common in recent decades. The classical Fourier
transform for estimating spectral components and spe-
cially adapted methods for working with biomedical
signals—calculations of correlation functions [1, 2],
entropy estimations [3, 4], recurrence relations [5, 6],
functional connectivity [7, 8], etc.—are used as the main
tools of mathematical analysis.
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In recent years, researchers are interested in such fun-
damental features of signals produced by living sys-
tems as strong unsteadiness, noise and simultaneous
registration of many oscillatory components of vari-
ous nature [9, 10]. In other words, early studies paid
attention to the search for stationary components and
trends of their changes in processing such signals. The
remaining studies, rapidly changing components were
considered as noise and/or insignificant. In particular,
methods of evoked potentials [11], estimates of desyn-
chronization/synchronization of alpha-, beta- and other
rhythms [12, 13], as well as, for example, detection of
stable sleep stages [14, 15] are implemented to analyze
the electrical activity of the brain. However, in recent
years, the focus of attention in studying of biological
systems has increasingly shifted to the rapid processes
accompanying the background activity of such objects.
This process is connected with the growing of com-
puter’s technology calculating abilities, and the applied
development of mathematical methods for processing
complex signals.

To different components features account, researchers
often substitute the classic windowed Fourier transform
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Fig. 1 The left panel corresponds to the rat’s awake/REM
sleep (AWAKE), the right panel corresponds to behavioral
sleep (NREM), for both states, respectively, the follow-
ing graphs are given: a, b—fragments of the ECoG signal
recorded in rat #1; c, d—Furie-spectrum calculated for the
corresponding ECoG signals

by the wavelet transformation. It is known that the use
of harmonic functions as the parent basis, turns the con-
tinuous wavelet transformation into a windowed Fourier
transformation, which makes possible the direct correla-
tion of Fourier and wavelet spectra [16]. In general, the
preference of the Fourier wavelet transformation to the
spectrum is associated with the averaging properties of
the Fourier transformation with respect to strong signal
nonstationarity. In particular, Fig. 1 illustrates this fact
and shows weak differences in the low-frequency region
for ECoG recorded in the frontal regions of the rat brain
during awake and NREM sleep. Figure 2 presents the
time-frequency surfaces calculated on the basis of a con-
tinuous wavelet transformation from ECoG fragments

shown in Fig. 1. Analysis of Fig. 2 data distinguishes
significantly greater differences in wavelet surfaces com-
pared with Fourier spectra. In particular, in NREM
sleep, ECoG activity becomes less homogeneous with
expressed powerful energy spikes of oscillation compo-
nents in the considered frequency intervals Δf .

To analyze biomedical signals, various basic func-
tions of continuous wavelet transformation are used,
in particular, the Morlet, MHAT or Paul wavelet
[17, 18]. Based on the continuous wavelet transforma-
tion, in our work Runnova, et al. [19] a method for
constructing and evaluating oscillatory patterns was
implemented—various components that coexist at each
moment in the recorded electroencephalography (EEG)
or electrocorticograms (ECoG). We “deploy” each one-
dimensional signal in the time-frequency plane, on
which we further allocate an oscillatory component,
for which we can estimate the average frequency and
lifetime. By choosing a number of interested frequency
ranges, we can calculate the statistical oscillatory char-
acteristics of a living system, namely, the average num-
ber and lifetime of oscillatory components in a partic-
ular frequency range. In this work, we develop the pro-
posed approach by introducing the energy weight of
each oscillation component into consideration. We use
the proposed method to evaluate a small experimental
material based on the analysis of invasive ECoG in Wis-
tar rats recorded in two homogeneous groups of males,
divided by their weight characteristics.

Fig. 2 The left and right panels correspond to the rat’s physiological states, awake and NREM-sleep, respectively. a,
b—wavelet spectrums CWT (f , t); c, d are the energy estimations EΔf (t) = CWT 2(f, t) calculated for the frequency ranges
Δf = [5; 10] (solid red line), Δf = [3; 5] (green dashed line), Δf = [1; 2.5] (blue thin dashed line ); e, f—constructions
of the skeleton characteristics, characterizing the maximum values of CWT (f , t), the first skeletons corresponding to the
highest values are highlighted in red, the second-largest in green and the third in blue
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2 Method for assessing energy oscillatory
components (patterns)

The mathematical basis of the oscillatory pat-
terns method is the continuous wavelet transforma-
tion (CWT) [20–22]:

W (s, t) =
√

s

∫ ∞

−∞
x(t)ψ∗

(
t − t0

s

)
dt, (1)

where x (t) is the analyzed signal, and s is the time
scale that determines the wavelet width, “*” is the com-
plex conjugation, and ψt0,s(t) is the basis of the wavelet
transform in the form of a complex function. In the
framework of working with biological signals, a Morlet
wavelet [22] is used frequently:

ψt0,s(t) =
√

fπ
1
4 ejω0f(t−t0)e

f(t−t0)2

2 , (2)

where ω0 = 2π is the wavelet scaling parameter that
provides a relationship between the time scale of the
wavelet transform (s) and the Fourier transform fre-
quency (f ), where f = 1/s. Thus, we can use with the
usual classical frequency representation of signals when
calculating CWT.

In the framework of applying CWT, in particular, the
skeleton CWT method [21, 23, 24] is used to improve
the quality of assessment of such coexisting processes.
This technique is based on the identification in the ana-
lyzed frequency range of the local maximum in the
instantaneous distribution of CWT energy at every
time. The following relation determines the instant
CWT-energy distribution:

E(f, t0) = W (f, t0)2. (3)

Figure 2e, f illustrates the classical skeleton method,
according to which a set of local extrema of function (3),
can be identified for each time moment t0. The method
of oscillatory patterns estimation is based on a special
sorting of local extrema data, i.e., skeletons.

Firstly, in each time moment tn, we compose a set
of frequencies fj , where j = 1, 2, . . . ,m, which cor-
respond to the local maximum E(fj , tn) (3). Here,
the sequence number j characterizes only the sequence
number of the extrema and is not related to the ampli-
tude E(fj , tn). However, information about the value
E(fj , tn) is stored for each point (fj , tn). Thus, in the
process of analyzing the total duration of the studied
signal, a set of frequencies fn

j is formed, where n is the
duration of the experimental signal, i.e., the number of
time samples in the signal.

Secondly, we denote the condition for the develop-
ment of an activity pattern with a frequency fj . To do
this, we consider the following condition on each time
interval [tn; tn+1] for each frequency fj :

√
(fn

j − fn+1
s )2 < δ, (4)

where fn
j is a set of frequencies for which the local

maximum E(fj , tn) (3) observed at time step tn, and
fn+1

j are similar set of frequencies with local maximum
E(fj , tn+1) for the next time step tn+1, δ is a numerical
constant. The choice of the value of δ-constant is based
on the signal sampling frequency and exceeds it by 1–2
orders of magnitude, which allows minimizing the loss
of information about the frequency patterns existing in
the signal under study and reducing the influence of the
signal’s numerical noise.

Next, we test a condition (4). If condition (4) is sat-
isfied for some frequencies f(a1)n and f(a2)n+1 , then
the activity at these frequencies in the time interval
[tn; tn+1] can be regarded as the development of one
oscillatory pattern. We then denote the frequency data
f(a1)n and f(a2)n+1 as (a1) and (a2), respectively. Next,
for frequency (a2), we again analyze (4) for the next
time step tn+2. If the condition is satisfied for a given
time step, then the identified pattern will continue fur-
ther with a certain frequency (a3).

The described actions must be repeated cyclically
until the moment when condition (4) becomes incor-
rect, in other words, until the end of the activ-
ity of this oscillatory pattern. Thus, each oscilla-
tory pattern P can be described by the frequency
at each time moment of its existence, i.e., P (f, t) =
{{(a1), tn}, {(a2), tn+1}, . . . , {(am), tn+m}}, where m
characterizes the time duration of pattern “life.” Then
the time duration T of the pattern P can be defined as

T = tn+m − tn, (5)

and for the case of equidistant experimental time series,
we use the expression T = mΔt, where Δt is the sam-
pling time interval. So, the average frequency fmd can
be estimated for each frequency pattern P as

fmd =
m∑

i=1

(ai)/m. (6)

For further analysis, we denote the following selection
criterion for the correct oscillatory patterns P . If the
time duration τ of the pattern P does not exceed the
oscillation period of its average frequency fmd, i.e.,
τ < (fmd)−1, then this pattern must be considered
a random noise interference and should not be taken
into account in the further analysis of the signal. This
method was proposed and tested earlier, in the our
works [19, 25].

We propose to expand this approach by supplement-
ing it with an estimate of the energy of each P oscil-
latory pattern. To do this, we return to the stored
energy value Ei,j for each point (fi, tj) representing
part of the detected patterns P . At each time tj we
form an array of all energy values {E1,j , . . . , Ek,j , . . . },
where k = 1, . . . , r, and r is the number of frequencies
observed for time tj on the computed pattern surface
P . In the array {E1,j , . . . , Ek,j , . . . , Er,j} we estimate
the maximum energy value Emax,j , Emax,j > Ek,j , for
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Fig. 3 The top a, b and
bottom c, d panels
correspond to the
CWT-estimation of
energetic oscillatory
patterns, calculated in
groups I and II,
respectively. The left
diagrams show the results
of the assessment of ECoG
fragments of active
wakefulness in rats, and the
right diagrams show NREM
sleep. The color of the
patterns corresponds to the
value of the normalized
energy, according to the
scale below

∀k. And we normalize energy values as:

(7)

{〈E1,j〉 , . . . , 〈Ek,j〉 , . . . , 〈Er,j〉}
=

{
E1,j

Emax,j
, . . . ,

Ek,j

Emax,j
, . . . ,

Er,j

Emax,j

}
.

Normalization is performed separately for each moment
j of time, which allows use standard parallel mode for
program realization of this algorithm.

Next, we again return to the sorting of patterns P ,
and for all points (f, t)p, constituting one pattern P
with duration m, we calculate the average energy char-
acteristic E of the pattern as

E =

∑m
p=1〈E(f, t)p〉

m
. (8)

Therefore, each pattern is described by three charac-
teristics: mean frequency fmd, duration or lifetime T ,
mean energy E . We demonstrate the results of the pro-
posed method in processing on an ECoG fragment.
Figure 3 shows the results using the energetic patterns
method. Each pattern on the (f ; t) plane is colored
according to its average energy E .

Figure 3b allows us to see that the oscillatory activity
dynamically develops over time and formes oscillatory
patterns with various durations, changing in the fre-
quency and amplitude zones, up to complete destruc-
tion. Obviously, the our exstension of the wavelet-
technique used to process the ECoGs as a whole has
outstanding sensitivity and allows identifying activity
of a very low magnitude. In this situation, a rational
analysis of the evolution of the entire frequency spec-
trum is adopted to gain a detailed understanding of
signal oscillatory structure. We can observe patterns of
oscillatory activity of fluctuating amplitude in different

frequency bands. Moreover, the using of this method
allows for a simple quantitative assessment of signal
patterns for a specific frequency range, or time inter-
val, or energy diapason.

Figure 3b allows us to see that the oscillatory activity
dynamically develops over time and formes oscillatory
patterns with various durations, changing in the fre-
quency and amplitude zones, up to complete destruc-
tion. Obviously, the our exstension of the wavelet-
technique used to process the ECoGs as a whole has
outstanding sensitivity and allows identifying activity
of a very low magnitude. In this situation, a rational
analysis of the evolution of the entire frequency spec-
trum is adopted to gain a detailed understanding of
signal oscillatory structure. We can observe patterns of
oscillatory activity of fluctuating amplitude in different
frequency bands. Moreover, the using of this method
allows for a simple quantitative assessment of signal
patterns for a specific frequency range, or time inter-
val, or energy diapason.

3 Approbation of the method
on experimental data
of electrocorticograms of Wistar rats

3.1 Animals

Experiments were performed in 18 male Wistar rats
at the biological laboratory of Saratov State University
(Saratov, Russia). The living conditions and experimen-
tal work in animals followed the recommendations in
the ARRIVE guidelines 2.0 [26], were done in accor-
dance with “the Guide for the Care and Use of Lab-
oratory Animals” and local ethical guidelines, and it
was approved by the Local Bioethics Commission of
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the Saratov State University. Animals were kept in
a vivarium at temperature of 22 ± 2 ◦ C and humid-
ity of 40–60% with 12-h day cycle (artificial illumina-
tion mode). Experimental animals were divide into two
groups in three-months age. The first group (5 males)
were kept on a standard diet with a total calorie content
of 270 kcal/100 g (20% protein; 40% carbohydrates;
40% fat of total calories). The second group (13 males)
had a high-calorie diet of about 500 kcal/100 g (20%
protein; 70% carbohydrates; 10% fat of total calories).
For purpose of modeling of real conditions, the animals
had unlimited access to food and drinking water.

At the age of 5 months rats were implanted with
epidural electrodes for ECoG recording. Pinnacle Tech-
nology (Taiwan) was used to record two-channels
ECoG. During stereotaxic operation, rats were kept
under inhalation anesthesia (2% isoflurane at 1 L/min
N2O:O2—70:30) and were implanted with two silver
electrodes (tip diameter 2–3 mm) at a depth of 150 mm
inserted in right/left frontal cortex (L: 2.5 mm and
D : 2 mm from bregma). Small burr holes were drilled in
the scull, ECoG wire leads were inserted in the epidu-
ral space and secured with dental acrylic. In order to
control postoperative pain, Ibuprofen (15 mg/kg) was
provided in drinking water during 2–3 days prior to
surgery and more than 3 days after the surgery. Rats
were allowed 10 days to recover from surgery prior to
recording session. ECoG was recorded during the whole
day in animals’ free state, for each rat.

The first group is characterized by standard animals
weight (400–480 g), in the second group, the weight of
rats ranged from 645 to 740 g, which corresponds to
significant differences according to the Wilcoxon test
(p < 0.05). The body length of the animals in both
groups coincided and was in the range of 27–30 cm.

3.2 Methods

Two stages of the sleep-wake cycle were identified in
ECoG: NREM-sleep and wakefulness/REM-sleep. The
state of Wake/REM sleep (Fig. 1a) and NREM-sleep
(Fig. 1b) were detected automatically using wavelet-
based algorithm described elsewhere [27, 28]. This
methodology is based on the assessment of (1) clas-
sic energy of CWT in different ranges of ECoG signals
and (2) individually calculated NREM-sleep start/end
thresholds for each rat.

Oscillation patterns and their main characteristics
(average frequency fmd, duration T and average energy
E ) were calculated for each ECoG record. Statistical
analysis was carried out for two distinguished physi-
ological states within the following frequency ranges:
Δf1 [0.1; 5] Hz, Δf2 [14; 16] Hz, Δf3 [25; 35] Hz, Δf4
[40; 50] Hz. For each frequency range, the number of
patterns N was counted and the average characteris-
tics of the lifetime T , energy E of the pattern with
an average frequency falling within the given frequency
range were estimated.

Mean, median, and standard deviation were used in
descriptive statistics of the data. The Mann–Whitney

U test for independent samples was used for the com-
parison of quantitative data [29]. The results with a
p value≤ 0.001 were considered statistically significant.
Statistical analyses were performed using the SPSS ver-
sion 22.0 software for Windows (IBM, Armonk, NY,
USA).

4 Results

The analysis of the duration of sleep episodes per day
showed no significant differences for the two groups
of animals; the total duration of sleep periods was
[31; 40]% for all rats. The number of sleep episodes var-
ied within [3; 10] during the day, naturally increasing
during the daylight period.

The results of statistical analysis of oscillatory pat-
terns in the frequency ranges under consideration are
shown in Figs. 4 and 5. The distribution of the num-
ber, lifetime, and energy of patterns during the NREM
sleep and awake states are represent for each animal. We
observe variegated dynamics for the considered charac-
teristics of oscillatory patterns in different frequency
ranges. However, in general, it should be noted that
in group II, all characteristics of oscillatory patterns
demonstrate almost identical dynamics during sleep
and wakefulness. Such dynamics is not typical for nor-
mal weight animals signals recording (group I).

For the low-frequency range Δf1, observed a decrease
in the number and an increase in the lifetime of patterns
in animals of the second group, highlighted in red in the
diagrams in Fig. 4a. The energy characteristics show a
large scatter and do not differ quantitatively. At the
same time, for each animal from group II for states of
sleep and wakefulness, their values, as before, do not
differ significantly.

In the Δf2 range, the number and lifetime of patterns
in animals of group II increase (Fig. 4b) compared to
animals with normal weight. The mean energy char-
acteristics E of the oscillational structures still do not
differ.

The Δf3 range is characterized by an increase in the
number N and lifetime T of patterns, similar to the Δf2
range, as shown in Fig. 5a. The rat #11 shows differ-
ences in the mean energy E during sleep and wake-
fulness. At the same time, we observed no differences
between the two groups in the mean energy levels E .

The characteristics of the “fastest” oscillatory pat-
terns are shown in Fig. 5b. We observed no significant
differences between the two groups in the lifetime T
of the patterns at high activity frequencies in the Δf4
range. However, the number N and energy E of pat-
terns differ significantly in groups I and II. In addition,
in group II, 5 animals (#6–#10) demonstrate a very
homogeneous dynamics of the energy characteristics of
the oscillatory structure during sleep and wakefulness.
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Fig. 4 The diagrams of
pattern’s numbers N ,
duration T and energy E in
ranges Δf1 (a) and Δf2

(b) in two rat’s groups. The
diagrams depict the
following statistical
characteristics of numerical
indicators: the first and the
third quartiles (25–75%,
inside the box); the median
and the mean (transverse
line and point inside the
box, respectively);
1.5 interquartile range
(shown by whiskers); and
outliers represented by
asterisks. Blue color
indicate characteristics for
wakefulness, red color
indicate NREM sleep.
Animal numbers are given
on each diagram, animal
groups are highlighted in
green (Group I) and red
(Group II)

5 Discussion

The proposed modification of the previously developed
method for estimating oscillatory patterns based on
a continuous wavelet transformation allows, as before,
identifying the individual oscillatory components of the
signal for each frequency interval. In addition to these
possibilities, a new energy characteristic appears. Dur-
ing the testing performed on experimental ECoG, we
used a variant of calculating the characteristic E , nor-
malized for each frequency interval. Thus, we inde-
pendently assessed the dynamics of oscillatory activity
within each frequency interval.

Another modification of the numerical estimate of
the energy of oscillatory wavelet patterns with normal-
ization in a certain time interval is possible. In this
case, automatic allocation of the the most energeti-
cally significant ranges during the required time inter-
vals becomes possible. This approach seems to be more
important in solving the problems of psychophysiology
arising from the analysis of human cognitive processes.
In particular, some studies demonstrate the connection
of short-term periods of alpha and delta activity in the
EEG with the long-term maintenance of a consistently
high level of active human attention [9, 12, 13, 30, 31].

The use of the proposed modification of the wavelet
analysis will allow obtaining a detailed assessment of
the presence and energy value of oscillational activity
in low- and high-frequency activity. Further statisti-
cal analysis of the different EEG rhythms detected in
this way can provide additional information about the
possible correlation of such patterns and attentional
decrease. Such studies are in demand in technologies
for controlling loss of control, for example, during pro-
longed driving [32], as well as in the development of
brain–computer interface [33].

Regarding the completed approbation of the pre-
sented technique, we can note that today in the sci-
entific community rats are recognized as a biological
model of human obesity [34, 35]. The approach of ani-
mals feeding in the second group used in this work cor-
responds to the induction of obesity based on a high-
carbohydrate diet [36–38]. The speed of obesity devel-
opment with such a diet is lower compared with the
high-fat diet, in which the fat content ranges from 30–40
to 60% of the total energy value of the diet [39, 40]. At
the same time, obesity developing in this diet seems to
be the best model of visceral obesity in humans accord-
ing to [36, 41]. At the same time, this type of obesity

123



Eur. Phys. J. Spec. Top. (2023) 232:595–603 601

Fig. 5 The diagrams of
pattern’s numbers N ,
duration T and energy E in
ranges Δf3 (a) and Δf4

(b) in two rat’s groups. The
diagrams depict the
following statistical
characteristics of numerical
indicators: the first and the
third quartiles (25–75%,
inside the box); the median
and the mean (transverse
line and point inside the
box, respectively);
1.5 interquartile range
(shown by whiskers); and
outliers represented by
asterisks. Blue color
indicate characteristics for
wakefulness, red color
indicate NREM sleep.
Animal numbers are given
on each diagram, animal
groups are highlighted in
green (Group I) and red
(Group II)

apparently plays a great role as a global factor of cardio-
vascular risk among the various patients classes of pop-
ulation in modern developed countries [42–44]. Changes
in the functioning of the cardiovascular system and an
increase in the load on it lead to disturbances in the nor-
mal nutrition of the most energy-consuming organ—the
brain. However, at the same time, an increase in the
percentage of adipose tissue in the body leads both to
chronic inflammatory processes and to development of
neurodegenerative disorders.

In our work, we show a change in the structure of
brain activity that develops in obese rats based on the
method of energy oscillatory patterns. A conditionally
“rough” energy assessment of ECoG signals performed
during the detection of sleep and awake states in entire
frequency ranges [27, 28] demonstrated identical oscil-
latory dynamics of ECoG in rats of groups I and II. In
other words, as for the classical frequency analysis, the
states of sleep and awake in obesity are close to the same
physiological states in animals with normal weight. At
the same time, pattern analysis demonstrates very sig-
nificant changes in the internal structure of oscillatory
dynamics. At low frequencies, changes affect mainly the
number and lifetime of patterns, and at high frequen-
cies, they also greatly change the level of expression,

i.e., the energy of the oscillational components. In addi-
tion, the question of the specific physiological causes of
these changes in electrophysiological activity remains
open and requires further explaining studies.

6 Conclusion

We provide an additional modification of spectral anal-
ysis based on continuous wavelet transform. The pro-
posed estimation of the oscillatory components exist-
ing on a two-dimensional time-frequency plane calcu-
lated on the base of the wavelet transformation on a
one-dimensional signal makes possible the expansion of
the possibilities to evaluate the properties of signals.
This technique is suggested for biomedical signals, but
can also be adapted to solve radiophysical problems, for
example, in developing complex algorithms for encrypt-
ing/decrypting signals of a wide spectrum.
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