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Abstract An approach to the processing of physiological signals is considered combining multifractal for-
malism with multiresolution wavelet analysis, which involves the transition from the original signals to
sets of detail wavelet-coefficients related to different levels of resolution. This transition could expand the
possibilities of multifractal analysis from the viewpoint of physiological interpretation of the results. In
particular, changes in the singularity spectra due to variations in system behavior are associated with
specific frequency regions, what simplifies their description and can provide a link between observed phe-
nomena and changes in rhythms of electroencephalograms (EEG) or other physiological processes when
the method is applied to datasets of different origins. We illustrate this approach using EEG signals during
mental tasks solving.

1 Introduction

Wavelet-based methods are widely applied in many
fields of science and technology [1–4]. They can use
both continuous and discrete wavelet transforms, which
have noticeable distinctions in algorithms and bases for
signal decomposition. Thus, the basic functions used
in the continuous wavelet transform have an analytic
expression and redundancy properties, what enables to
perform a thorough analysis and visual representation
of the results [3, 4]. The latter is important for stud-
ies where visual control of the estimated quantities is
required for a deeper understanding of the dynamics
and features of the system. In particular, such an anal-
ysis provides information about the temporal behavior
of the frequencies and amplitudes of rhythmic compo-
nents, changes in the distribution of local energy in
distinct frequency ranges, etc. The bases used within
the discrete wavelet transform (DWT) can be orthog-
onal and non-orthogonal depending on the purpose of
the study [1, 2]. However, they do not have an ana-
lytic expression (except for the simplest Haar wavelet)
and are given by a set of filter coefficients estimated
numerically. A useful DWT-based approach is multires-
olution wavelet analysis (MWA), which decomposes the
signal by means of filter banks and a fast (pyramidal)
decomposition scheme [5]. This approach was widely
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used for diagnostic purposes in various fields, including
engineering [6], physics [7, 8], physiology [9, 10], etc.

Usually, sets of decomposition coefficients are
obtained at different resolution levels, and their stan-
dard deviations are considered as informative measures
of signal features. Such consideration, however, has
some limitations since the complex shape of the proba-
bility density function for the decomposition coefficients
is not described by its width alone, and other measures
quantifying the distribution may be useful. In particu-
lar, accounting of its symmetric properties, the behavior
of the tails can give additional information for diagnos-
tic purposes. To provide a more thorough analysis of
signals in wavelet space, we proposed to consider dis-
tribution cumulants and showed how this analysis can
improve the characterization of changes in the system
dynamics, especially for signals with specific features
(extreme events) [11, 12]. In our opinion, a promising
approach consists in the consideration of the decom-
position coefficients as new data sets for application of
signal processing methods. In [13, 14], we proposed the
idea of enhanced MWA (EMWA), which is a combined
MWA approach with the detrended fluctuation analy-
sis of decomposition coefficients at different resolution
levels.

Another wavelet-based approach to the statistical
analysis of inhomogeneous processes is the multifractal
formalism revised with wavelets [15, 16]. It performs
characterization of complex processes in terms of the
singularity spectrum or its important quantities such
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as the mean Hölder (Hurst) exponent or the spectrum
width, which is a useful complexity measure of nonsta-
tionary datasets. One of the main problems with this
tool is the rather complicated relation of the results
to specific rhythmic components and regulatory con-
trol systems that limits the interpretation of changes
in acquired signals in physiological studies and does
not allow a deeper understanding of the mechanisms
underlying the observed phenomena. To improve this
interpretation, the method can be applied to band-pass
filtered data sets, assuming that the filter is selected
appropriately. In an effort to expand the possibilities of
multifractal characterization of singular processes, here
we propose another idea, namely to apply the wavelet-
transform modulus maxima (WTMM) method to the
decomposition coefficients at different resolution levels
instead of the original datasets. The latter provides a
way to characterize the multifractal structure of com-
plex signals associated with distinct ranges of scales
within the multiresolution WTMM approach and intro-
duces a number of measures associated with different
levels of resolution. The proposed approach is illus-
trated using electroencephalograms (EEG) related to
different conditions.

The paper is organized as follows. Section 2 briefly
describes the proposed idea of combining the wavelet-
transform modulus maxima method with the multires-
olution analysis and the considered experimental data.
Section 3 includes the main results and discussion of the
application of the multiresolution WTMM approach to
EEG. Section 4 contains some concluding remarks.

2 Methods and experimental data

2.1 Multifractal formalism revised with wavelets

The WTMM approach proposed by Muzy et al. [15,
16] and widely used in many fields of science [17–22]
performs the continuous wavelet transform of the signal
x (u)

W (a, t) =
1
a

∫ ∞

−∞
x(u)ψ

(
u − t

a

)
du, (1)

where a and t are the scale and translation parameters,
and ψ is the wavelet. Theoretically, the singularity spec-
trum is independent of the choice of the wavelet-basis
[23], although the processing of relatively short datasets
contaminated by noise and artifacts may require an
appropriate selection of ψ. Usually quite simple real-
valued functions constructed as derivatives of the Gaus-
sian are applied, such as the MHAT-wavelet that is used
in the current study. To increase the speed of numer-
ical estimates of the continuous wavelet transform, a
method described in [24] can be applied. It can improve
the performance of the wavelet-based multifractal for-
malism by providing faster computations.

A singularity of x (u) for t = t∗ leads to the power-law
behavior of the wavelet-coefficients for a → 0

W (a, t∗) ∼ ah(t∗), (2)

quantified by the Hölder exponent h(t∗). Although it
can be obtained based on the last equation, this is a very
unstable procedure due to the presence of neighboring
singularities that affect the estimates as a increases.
The better way is based on the partition functions com-
puted as follows:

Z(q, a) =
∑

l∈L(a)

| W (a, tl(a)) |q, (3)

where L(a) is the full set of skeleton lines (lines of local
maxima and minima of W (a, t) detected at each scale
a), tl(a) is the time associated with the line l . To fur-
ther increase the stability of the method, the values of
W (a, t) close to zero can be eliminated according to
the equation

Z(q, a) =
∑

l∈L(a)

(
sup
a′≤a

| W (a′, tl(a′)) |
)q

. (4)

The parameter q determines the strength of the sin-
gularities under consideration. Negative q are selected
to study small signal fluctuations (weak singularities).
Positive q are used to quantify large fluctuations (strong
singularities).

The power-law behavior of Z (q , a)

Z(q, a) ∼ aτ(q) (5)

allows estimating the scaling exponents τ(q) and, at
the next stage, the Hölder exponents with singularity
spectrum D(h)

h(q) =
dτ(q)
dq

,D(h) = qh − τ(q), (6)

where D(h∗) is the Hausdorff dimension for data sub-
sets characterized by the Hölder exponent h∗. The mean
Hölder exponent H = h(0) and the singularity spec-
trum width Δ = hmax − hmin are important quantities
of correlation properties and complexity of x (u) [25,
26].

2.2 Multiresolution analysis and a combined
approach

The multiresolution wavelet analysis decomposes a sig-
nal y(t) using two sets of filters constructed from the
scaling function ϕ(t) and the wavelet ψ(t), which are a
low-pass filter and a high-pass filter, respectively. The
sets are built by means of integer translations and dila-
tions with the scaling factor 2j of ϕ(t) and ψ(t). The
decomposition can be done over all available resolutions
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or up to a fixed level jm using a selected wavelet basis
(e.g., the D8 Daubechies wavelet, which will be used in
the current study)

y(t) =
∑

k

sjm,kϕjm,k(t) +
∑

j≥jm

∑
k

dj,kψj,k(t). (7)

This wavelet is a compromise between the regularity of
the basic function and its support length. It is often
used for signal processing and our analysis confirmed
that D8 provides a reliable diagnostic for the purpose
of the study. The decomposition coefficients are called
approximation (sjm,k) and detail coefficients (dj,k). The
latter are considered to describe the features of the sig-
nal at different scales (resolution levels). For this pur-
pose, the standard deviations of dj,k as a function of
the resolution level σj are typically used.

However, such consideration takes into account only
limited information about the statistics of dj,k. Their
more thorough processing can expand the possibilities
of characterizing signal features. Here, we propose to
consider dj,k at each resolution level j as a data set
whose scaling features can be characterized by the mul-
tifractal formalism to quantify singularities associated
with different resolution levels.

2.3 Experiments

The experiments were carried out at the Saratov State
University (Saratov, Russia) on a group of 7 healthy
volunteers (students) aged 18–21 years (men). Experi-
mental procedures were carried out in accordance with
the Declaration of Helsinki. EEGs were recorded at a
sampling frequency of 200 Hz using the MP100 measur-
ing complex (BIOPAC Systems, Inc.) and “AcqKnowl-
edge” software. At the preprocessing stage, a Butter-
worth bandpass filter with cutoff frequencies of 1 Hz
and 100 Hz and a notch filter 50 Hz were used. During
the experiment, the volunteers sat on a chair. Base-
line EEG (relaxation with open eyes) was recorded for
5 min, followed by recording during mental tasks (5
min). The latter involved solving arithmetic examples
with four basic mathematical operations chosen at ran-
dom. Artifacts were removed before signal processing.

3 Results and discussion

The multifractal structure of various natural signals,
including physiological datasets, has been widely dis-
cussed in many studies [15–23]. Although the presence
of complex scaling and multifractality is a typical phe-
nomenon, changes in the singularity spectra can be
used to describe transitions between states, responses to
external stimuli, etc. The shape of the singularity spec-
trum can be quantified by different measures reflect-
ing its features for weak and strong singularities (small

and large fluctuations), including the degree of inho-
mogeneity (the range of Hölder exponents and associ-
ated Hausdorff dimensions) for all types of fluctuation
and independently in the range of positive and nega-
tive q , spectrum asymmetry, its position on the h-axis
and other quantities. Often the characterization using
the measures H (mean Hölder exponent) and Δ (range
of Hölder exponents, which can be treated as a mea-
sure of complexity) is rather informative and useful for
diagnosing the state of the system.

In contrast to the traditionally used multifractal for-
malism applied to the acquired complex signals, we pro-
pose to make an intermediate stage consisting of mul-
tiresolution signal decomposition and obtaining sets of
detail wavelet-coefficients. These sets also have a rather
complex structure and can be used as inputs to the
WTMM approach. In the latter case, each set is asso-
ciated with a certain frequency range, which is conve-
nient for further interpretation of the signal processing
results. Figure 1a clearly shows the multifractal struc-
tures of the dj,k sets for the first 4 resolution levels.
The transition from one level to another is accompa-
nied here by the translation of the singularity spectrum
along the h axis and by a change in its width. There-
fore, the application of Δ and H measures seems to be
quite informative for describing changes in the electri-
cal activity of the brain related to different frequency
ranges. Figure 1b illustrates the behavior of the spec-
trum of Hölder exponents and confirms that h(q) values
are useful for characterizing signal features related to
distinct ranges of scales. Analysis for large negative val-
ues of q often provides unstable results for noisy data.
For this reason, we limited ourselves to a reduced range
of this parameter.

Using the measures Δ and H , we performed a com-
parison of two states: the baseline EEG (control state)
and the solution of arithmetic examples. Figure 2a
shows the statistical results for a group of volunteers
(mean values ± SE). In the case under consideration,
the level j = 1 corresponds to the frequency range [50,
100] Hz, j = 2 is related to [25, 50] Hz, j = 3 cor-
responds to [12.5, 25] Hz, and j = 4 refers to [6.25,
12.5] Hz. According to Fig. 2a, the strongest inter-state
distinctions are related to the resolution level j = 3 (p
< 0.05 according to the Mann–Whitney test). For other
resolution levels considered, the distinctions are less
pronounced, and the Mann–Whitney test does not rec-
ognize them as significant. The decomposition was per-
formed until the number of detail wavelet-coefficients
exceeds 128. For smaller numbers, the computing errors
can be quite strong, and the method does not provide
a reliable characterization of data sets. Note that the
third level of resolution is mainly associated with the
EEG β-rhythm, and the appearance of changes caused
by mental tasks in this frequency range is in accordance
with physiological assumptions. The results for measure
H are shown in Fig. 2b. Here inter-state distinctions
are less well expressed. Despite the fact that they are
stronger at j = 3, in the given example the width of
the singularity spectrum provided better diagnostics of

123



646 Eur. Phys. J. Spec. Top. (2023) 232:643–647

(a)

0.5 1.0 1.5 2.0
h

0.1

0.4

0.7

1.0

D
j=1
j=2
j=3
j=4

(b)

−2.5 −1.5 −0.5 0.5 1.5 2.5
q

0.5

1.0

1.5

2.0

2.5

h

j=1
j=2
j=3
j=4

Fig. 1 Examples of singularity spectra (a) and the corresponding Hölder exponents (b) estimated from detail wavelet
coefficients at the first four levels of resolution (computations were made for the background EEG). Here, H=1.42, Δ=0.72
(j = 1); H=1.17, Δ=0.64 (j = 2); H=0.97, Δ=0.33 (j = 3); H=0.76, Δ=0.31 (j = 4)
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Fig. 2 Statistical results for a group of volunteers: differences in the width of the singularity spectrum (a) and the position
of D(h) (b) for two states. Asterisks mark significant differences between the states according to the Mann–Whitney test
(p <0.05)

changes in the electrical activity of the brain compared
to the position of the spectrum D(h).

The main idea of this study was to propose an
approach to multifractal analysis which could expand
its capabilities in terms of the physiological interpre-
tation of the results. Combining the WTMM-approach
with multiresolution wavelet analysis and transitions
from the original signals to sets of detail wavelet-
coefficients related to distinct resolution levels is a way
to improve the performance of the method, which was
illustrated in this study using an example of two states
of the electrical activity of the brain.

4 Conclusion

Multifractal analysis revised with wavelets is probably
the most powerful approach to the statistical analysis of
nonstationary and inhomogeneous processes. However,

its performance is limited by the lack of a clear and sim-
ple association of the features of the singularity spec-
trum with the physiological control mechanisms respon-
sible for the observed changes in the dynamics of physi-
ological systems. In other words, the WTMM method is
capable of diagnosing dynamical changes in the behav-
ior of complex systems with time-varying characteris-
tics, but does not provide a mechanism-based inter-
pretation of these phenomena. Here, we considered
an alternative approach that performs a multifractal
description of individual sets of wavelet coefficients
obtained within the multiresolution analysis with filter
banks. Each set is associated with a specific region of
frequencies, therefore, changes in the singularity spec-
trum, such as its translation and width variations, may
be related to changes in EEG rhythms or other physio-
logical processes when the method is applied to datasets
of a different origin. An illustration of the proposed
approach for the case of mental tasks is described. The
proposed idea of the combined method of multiresolu-
tion WTMM can be applied in many areas of research,
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dealing with processing of nonstationary dynamics of
complex systems, not limited to EEG signals.
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