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Abstract The paper proposes a multiresolution cross-correlation analysis (MCCA) combining cross-
correlation analysis of complex signals with multiresolution wavelet analysis, which provides decomposition
of datasets at several resolution levels and processing of the obtained sets of detail wavelet coefficients.
Such an approach can improve the interpretation of changes in the dynamics of the system under study,
associating the occurring phenomena with the mechanisms responsible for them. The possibilities of MCCA
are illustrated by the example of synchronous and asynchronous dynamics of the model of two interacting
nephrons providing oscillations with two different time scales.

1 Introduction

Correlation analysis is one of the most widely used tra-
ditional signal processing techniques [1]. Features of the
correlation function in different regions (from short-
range to long-range correlations) are applied to charac-
terize various aspects of the complex dynamics of nat-
ural systems. Many diagnostic-related studies involve
quantifying the power-law long-range correlations that
often arise from the interplay of the deterministic and
stochastic dynamics of such systems. Their descrip-
tion in terms of the classical correlation function is
restricted by time-varying dynamics producing nonsta-
tionary behavior, or by the high rate of decay of this
function, which leads to significant computation errors
in the region where it tends to zero. To avoid such cir-
cumstances and improve the characterization of long-
range correlations, an approach based on the detrended
fluctuation analysis [2, 3] was proposed and applied in
various fields [4-6]. The latter approach operates with
signal profiles and introduces growing functions whose
power-law behavior can be easily quantified in terms of
scaling exponents. The applicability of this approach to
datasets containing trends or other types of nonstation-
arity has been discussed in several studies [7-10].

In addition to scalar signal processing, a similar anal-
ysis is able to quantify cross-correlations between mul-
tiple data sets, measured, e.g., in the dynamics of
interacting systems or networks. For stationary dynam-
ics, the conventional cross-correlation function is used.
The nonstationary behavior of natural systems with
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time-varying parameters creates difficulties in interpret-
ing the corresponding estimates, and other numerical
techniques become preferable. In particular, a revised
version of the DFA, called detrended cross-correlation
analysis (DCCA), has been proposed to study the coop-
erative dynamics of interacting units with time-varying
behavior [11, 12]. In our recent paper [13], we proposed
to extend this method to the case when the nonstation-
arity varies significantly across datasets, such as tran-
sients between different states of the system under con-
sideration.

A common problem with the cross-correlation func-
tion in its conventional approach or alternatives is
to quantify relationships between signals that do not
exhibit power-law cross-correlations when the esti-
mated functions have different slopes at distinct ranges
of scales. A possible way is to introduce local scal-
ing exponents instead of one (global) quantity, which
will describe distinctions in correlations for different
time scales. To increase the information content of
such a consideration, this paper proposes the MCCA
approach, when cross-correlation analysis is combined
with multiresolution wavelet-analysis of complex sig-
nals [14-16]. The latter method decomposes signals
according to a pyramidal scheme to separately study
their features in independent ranges of scales or fre-
quencies and introduces sets of expansion coefficients
at different resolution levels, reflecting the fluctuations
in the original signal in different sub-bands. The per-
formed decomposition makes it possible to more clearly
interpret changes in the system dynamics associated
with specific frequency domains, compared to the pro-
cessing of the original datasets. In other words, it is
proposed to carry out a cross-correlation analysis of the
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wavelet-coefficients related to each subsequent resolu-
tion level and reflecting the signal features in a certain
frequency band. The latter enables to determine levels
with stronger cross-correlations and, in the case of com-
plex systems composed of several subsystems operating
in distinct frequency ranges, to establish a link between
the observed phenomena and the subsystem responsi-
ble for the corresponding dynamics. This study is based
on a model of interacting nephrons [17, 18], which is a
rather complex system showing various types of syn-
chronous and asynchronous oscillations with two differ-
ent time scales, each associated with a specific physio-
logical control mechanism.

The paper is organized as follows. Section 2 briefly
describes the proposed MCCA approach and the model
of two paired nephrons used to create datasets that
reflect various types of complex dynamics of this model.
Section 3 describes the main results of applying the pro-
posed approach to phase-locked synchronous and asyn-
chronous chaotic oscillations of the model. Section 4
summarizes the concluding remarks.

2 Methods

2.1 MCCA approach

The proposed MCCA approach performs signal pro-
cessing in two stages. At the first stage, the signal z(t)
is decomposed in the framework of the standard proce-
dure of multiresolution wavelet-analysis [14] as

w=2%%,+22ww (1)
l

J2Jn

where ¢;; and 1;; are low- and high-pass filter banks
created by dilations with the factor 27 and integer trans-
lations [ of the scaling function ¢(t) and wavelet ¥ (¢),
Jjn is the a priori chosen resolution level, s;; and d;;
are the approximation and detail coefficients. Several
steps of this procedure are carried out to cover all avail-
able resolution levels j and obtain several sets of detail
coeflicients d;;, each associated with a certain range of
scales. D® wavelet of the Daubechies family was used
to decompose the signal.

At the second stage, each set is treated as a signal,
which is subjected to further processing. Thus, dealing
with two systems or subsystems with numbers I and
II, we can estimate the cross-correlation function

—dhdii,,, —dih ()

MH:

l:l

where d! and JJII are average values, m is much less
than the number of decomposition coefficients J at the
level j, and M=J — max(m).
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2.2 Model of two paired nephrons

The model of two paired nephrons [17, 18] is a quite
complicated example of coupled oscillators providing
a mathematical description of the interaction of func-
tional units of the kidney, which is in good agree-
ment with physiological assumptions and experimen-
tal data. In particular, the model makes it possible
to describe the transition from periodic oscillations to
chaotic modes with an increase in blood pressure (renal
hypertension), which is known in renal physiology [19,
20], as well as distinctions in synchronization phenom-
ena for normotensive and hypertensive animals [21, 22].
From the point of view of the current study, this exam-
ple represents a stage between a simple mathemati-
cal description of biological oscillators and their real
dynamics. On the one hand, this makes it possible to
apply the proposed mathematical approaches to really
complex simulated dynamics. On the other hand, this
dynamics is still much simpler compared to natural sys-
tems, where additional complexity is associated with
noise, artifacts, time-varying behavior due to changes in
environmental conditions, etc. Therefore, the features
of the proposed method can be clearly illustrated.

The nephron is the functional unit of the kidney
that produces self-sustained oscillations in the proxi-
mal intratubular pressure, distal intratubular pressure,
and chloride concentration near the terminal part of the
loop of Henle, caused by two different mechanisms. The
first (main) mechanism is the tubuloglomerular feed-
back, which is responsible for slow oscillations (30-40 s
according to experiments in rats [19, 20]). These oscilla-
tions are almost periodic in normotensive animals and
very irregular (chaotic) in renal hypertension. The sec-
ond mechanism is the myogenic dynamics of the afferent
arteriole leading to oscillations with a typical period of
5-10 s and a lower amplitude. Both of these mecha-
nisms act on the same afferent arteriole and, therefore,
changes in one of them affect the other.

A single nephron is described by six ordinary differ-
ential equations [17]

dP,
dtt Ct b{Ff(Pt’ )7 reab — (Ptfpd)/RHen}a
dr _
at
dv, 1
dt :*{Pav(Ptﬂ") Peq(T’,\I/(Xg,/B)) _def“}
dX, 1 3
T
dX, 3
— =—(X7] - X
dt T( 1 2)7
dX 3
anS :T(XQ - X3). (3)

Model (3) involves many nonlinear functions and
parameters, and their thorough description takes sev-
eral pages. In this regard, only the main aspects are
reproduced in the current paper (additional details can
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be found in [17, 18]). The variable P; is the proximal
tubular pressure, F¢ defines the rate of the glomeru-
lar filtration, Cy,, quantifies the tubular elastic compli-
ance, P; is the distal tubular pressure. For simplicity,
reabsorption Fj...p is assumed to be constant. The fol-
lowing two equations describe the behavior of arterio-
lar blood flow, namely r and v, are the vessel radius
and its rate of variations, respectively. The quantities d
and w are the damping coefficient and the relative mass
measure. P, and P, are the mean arteriolar pressure
and its value for the equilibrium state; ¥ is the mus-
cular activation. Fy, P,, and P, are estimated from
solutions of algebraic equations, which are considered
in addition to the integration of differential equations.
The last three equations of model (3) are introduced to
define the time delay 7T in the tubuloglomerular feed-
back, which is an important quantity strongly affecting
the dynamics of the model. The development of chaotic
dynamics can be simulated by increasing the strength
of feedback regulation (parameter [3).

The model of paired nephrons includes two systems
(3) with additional terms and equations for the cou-
pling [23]. Thus, the vascularly propagated coupling is
defined by taking into account the contribution of the
activation level in one unit to the activation level in
another unit:

Wio="Vi2+7¥a, (4)

where 7 determines the coupling strength, ¥; o are
the activation levels of both nephrons. The values
v = 0.005, § = 27.3 are selected (other parame-
ters are taken according to [17]). For the purpose of
individual study of fast and slow oscillations for each
nephron, two sequences of return times to the Poincaré
sections v, = 0 and P, = 1.6 kPa were considered.
Synchronous chaotic dynamics was studied at feedback
delays T7 = T5 = 13.5 s, asynchronous chaotic oscilla-
tions were investigated at T} = 13.5 s, T, = 13.4 s.
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3 Results and discussion

The dynamics of model (3) was studied for the case
of chaotic dynamics, where two different time scales
are clearly distinguished, namely, slow oscillations with
a frequency of about 0.03 Hz and fast oscillations in
the range of 0.1-0.2 Hz. Consideration of the variables
r and v, allows us to analyze the fast rhythm, while
the variables X1, X5 and X3 reflect the slow dynam-
ics. Time dependencies for the variable P; allow visual
recognition of both rhythmic components (Fig. 1).
The transition from time series of model variables to
sequences of return times is a way to keep the most
important information about the internal structure of
chaotic attractors, which can be used for diagnostic pur-
poses.

In the dynamics of coupled nephrons, different types
of entrainment phenomena occur, including cases of in-
phase and out-of-phase inter-nephron synchronization,
full and partial synchronization of paired functional
units of the kidney, and entrainment between regula-
tory mechanisms in individual units (intra-nephron syn-
chronization) [23]. Due to this, a separate analysis of the
fast and slow modes for each nephron makes it possible
to identify various changes in the dynamics of the model
(3) caused by variations in the control parameters.

Let us consider how the proposed MCCA approach
expands the possibilities of characterizing changes in
the cross-correlation properties of the model dynamics.
Figure 2 shows the results of a cross-correlation analy-
sis of the slow dynamics associated with the tubulo-
glomerular feedback mechanism for the case of syn-
chronous and asynchronous dynamics depending on
the resolution level. The strongest values of C;(0) are
obtained for the first level (j = 1), and they clearly dif-
fer for the regimes under study. Similar values of C;(0)
for j > 1 (Fig. 2, inset) are much smaller, although their
comparison gives an interesting observation: C;(0) for
j > 1 can take about 150-200 times stronger values for
synchronous oscillations than for asynchronous dynam-
ics. At the level j = 1 this ratio is about 18 times.
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Fig. 1 An example of a signal (a) and the corresponding phase portrait (b) of a chaotic attractor in nephron model
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Fig. 2 MCCA analysis of the slow dynamics associated
with the tubulo-glomerular feedback mechanism depending
on the resolution level
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Fig. 3 MCCA analysis of the fast dynamics associated with
the myogenic mechanism depending on the resolution level

Thus, taking into account different ranges of scales gives
additional information about the dynamics under study
and extends the possibilities for diagnosing changes in
dynamics. In this analysis, the behavior of the cross-
correlation function at m = 0 was more informative
than the behavior of this function at increasing m. In
this regard, the figures show C;(0).

For fast (myogenic) dynamics of coupled nephrons,
less pronounced distinctions are observed at j = 1
(Fig. 3), and the values of C;(0) are much closer than
for slow dynamics. This is due to the choice of the asyn-
chronous regime near the region of partial synchroniza-
tion. However, an important observation can be made
for j = 3 (Fig. 3, inset), where C3(0) is much stronger
for synchronous regime. The latter can be explained by
the reflection of the tubulo-glomerular feedback mech-
anism. Due to the interaction of the two regulatory
mechanisms, the slow dynamics is reflected in the fast
variables of the model (3). The case j = 3 is related to
the frequency ratio 1/4-1/8 of the case j = 1. Taking
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into account that the typical frequency ratios for slow
and fast dynamics of an individual nephron are 1/4 or
1/5, the synchronization of slow oscillations affects the
change in cross-correlations at 7 = 3. The given exam-
ple is an illustration of the advantages of considering
cross-correlations depending on the resolution level in
comparison with the analysis of complete datasets with-
out their multiresolution analysis.

4 Conclusion

To increase the information content of cross-correlation
analysis of complex signals with multiple rhythmic com-
ponents, it is proposed to combine the study of cor-
relation properties with multiresolution wavelet anal-
ysis. The MCCA approach includes decomposition of
datasets at distinct resolution levels (independent fre-
quency ranges) with subsequent processing the detail
coefficients related to each level. The advantage of
this approach is a better interpretation of the ongo-
ing changes in the dynamics of the system under study
and the relationship between the observed changes
and the mechanisms associated with them. Using a
model of two interacting nephrons, it is shown how
this approach expands the possibilities of character-
izing changes in cross-correlation properties in terms
of distinctions between synchronous and asynchronous
oscillations associated with the mechanism of tubulo-
glomerular feedback and myogenic dynamics of indi-
vidual functional units of the kidneys. This approach
can have various signal processing applications.
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