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Abstract A coarse-graining procedure that averages the original dataset over non-overlapping time windows
of increased duration was earlier proposed as part of the multiscale entropy (MSE) computation algorithm.
This idea of coarse-grained time series can be used to quantify other features of time series. Here we discuss
the application of two methods, MSE and an extended version of detrended fluctuation analysis (DFA)
to coarse-grained datasets associated with both simulated and experimental signals. We show that the
coarse-graining procedure can improve the diagnostics of changes in the system dynamics performed using
extended DFA compared to the MSE method.

1 Introduction

Analysis of complex signals is typically carried out
by decomposing them into simpler components that
are easier to process and characterize. Thus, meth-
ods using the Fourier transform decompose signals into
sets of harmonic functions quantified by magnitudes,
frequencies, and phase shifts [1]. The analytical sig-
nal approach, based on the Hilbert transform or its
enhancement [2, 3], introduces the instantaneous ampli-
tudes and frequencies of non-harmonic oscillations and
allows their independent analysis, which also simplifies
the interpretation of changes occurring in the dynam-
ics under study. Another type of decomposition is signal
filtering, which is applied within the framework of vari-
ous data processing techniques [4–6]. When the system
involves independent or weakly coupled mechanisms
that produce rhythmic contributions in distinct fre-
quency ranges, the use of band-pass filtering improves
their performance. The latter is important, e.g., for
studying the electrical activity of the brain, electroen-
cephalograms, where α, β, γ and other rhythms reflect
various states of the body: relaxation, sleep, concentra-
tion, etc. The independence of these rhythmic contribu-
tions enables to separate them by means of band-pass
filters with appropriate cutoff frequencies. For the time-
varying dynamics of physiological systems, adaptive fil-
tering is often used, and multiresolution wavelet anal-
ysis [7, 8] based on a discrete wavelet transform with
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orthogonal basic functions, such as the Daubechies fam-
ily [9], is one of the fairly popular tools for studying sig-
nal features in non-overlapping frequency ranges. This
tool makes it possible to predict the bifurcations of com-
plex regimes from transients before their visual recogni-
tion or identification by means of standard signal pro-
cessing approaches. The latter is important to diagnose
pathological changes in physiology. Moreover, the pyra-
midal decomposition algorithm ensures the speed of
computations, which is often a necessary circumstance.

A simple filtering variant is the “coarse-graining”
procedure described in [10–12], where multiple time
series are created by averaging datasets in non-
overlapping time windows. By increasing the length
of the window, it becomes possible to cover a wide
range of scales. In [10–12] this approach was applied
to compute the multiscale entropy (MSE). Entropy-
based approaches are often considered to characterize
the dynamics of complex systems, including Shannon
entropy [13], Kolmogorov-Sinai entropy, approximate
entropy (ApEn) [14], sample entropy (SampEn) [15],
etc. The ApEn quantifies the irregularity or randomness
of data sets depending on two values, the pattern length
and the tolerance factor. Although it can be applied to
experimental signals, it has restrictions in the case of
short and noisy data. A modified approach, the Sam-
pEn was designed to address the main restrictions of
ApEn regarding the amount of data and inconsistent
results. The capabilities of SampEn are described in
several works, e.g. [15, 16]. The MSE method uses Sam-
pEn to quantify the complexity of signals as a function
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of the time scale. This method has found various appli-
cations in physiological data due to its adaptation to
characterize the hierarchical complexity of natural pro-
cesses.

Coarse-grained time series can be used in a wider
range of possible applications of signal processing tech-
niques, not limited to complexity measures only. In par-
ticular, they are suitable for quantifying the correlation
properties of time series over a certain range of scales.
The purpose of this paper is to compare MSE anal-
ysis with fluctuation analysis [17–20] of coarse-grained
time series using both simulated and experimental data
to characterize the broader possibilities of the coarse-
graining procedure for diagnostics. Our study will begin
with the interactive dynamics of two coupled bench-
mark models of nonlinear dynamics, Lorenz models
producing chaotic oscillations, where transitions across
the boundary of the synchronization region change the
properties of signals, and the associated changes are
reflected in different characteristics, including complex-
ity and predictability. Next, we discuss the experimen-
tal data of relative cerebral blood flow (CBF) acquired
in rats using laser speckle contrast analysis [21, 22].
We show that scaling exponents of extended detrended
fluctuation analysis (extended DFA or EDFA) [19, 20],
which is a modified DFA approach for the case where
nonstationarity varies throughout the signal, can pro-
vide a better recognition of changes in the dynamics
compared to complexity measures.

The paper is organized as follows. In Section 2, we
briefly consider the coarse-graining procedure and two
methods, MSE and EDFA. This section also describes
the models and datasets considered for analysis. The
main results of the comparison of multiscale entropy
and fluctuation analyses are given in Section 3. The
conclusions of the study are summarized in Section 4.

2 Methods

2.1 Coarse-graining procedure

Multiple coarse-grained time series yj(τ) [10–12] are
obtained by averaging the original data set xi, i =
1, . . . , N within time windows that do not overlap and
have increased duration τ

yτ
j =

1
τ

jτ∑

i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ. (1)

The length of yτ
j reduces as τ increases.

2.2 Multiscale entropy

The MSE was recently elaborated to characterize the
complexity of natural processes according to its intu-
itive definition [23]. It was shown that this method has
advantages over other entropy-based measures which

quantify complexity in general, i.e. without any refer-
ence to specific frequency bands or time scales [10–12].
The MSE improves the interpretation of observed
changes in complexity as it provides a link between such
changes and time scales associated, e.g., with various
physiological control mechanisms. This approach uses
SampEn and computes it for every scale factor value.

After obtaining multiple coarse-grained time series
yj(τ), SampEn (SE) is estimated for each of them.
This quantity is proportional to the logarithm of the
probability of maintaining similarity between patterns
of length m and m + 1 for two series of data points.
Within this approach, self-matches are not taken into
account when estimating the probability (see [10] for
more details). The works [11, 12] used a wide range
of scales. When dealing with relatively short datasets
or the time-varying dynamics of complex systems, the
range of scales is reduced since a reliable computa-
tion of probabilities cannot be done as the scale factor
increases due to the shortening of yj(τ). In the current
work, we applied the MSE software developed by M.
Costa (https://www.physionet.org) [24].

2.3 Extended detrended fluctuation analysis

Extended detrended fluctuation analysis (EDFA) [19,
20] represents a modified version of the original
approach developed by Peng et al. [17, 18] which was
widely used in various fields [25–29]. Its peculiarity
is the consideration of the case when nonstationarity
varies throughout the signal, and an additional mea-
sure is introduced to take into account such behavior.
As part of the DFA method applied to the xi time series,
a signal profile is built

zk =
k∑

i=1

xi, (2)

separated into non-overlapping segments of length n,
and the local (usually, linear) trend zn

k is estimated
within each segment by the least squares algorithm.
Root-mean-square fluctuations around zn

k often show
a power-law dependence

F (n) =

√√√√ 1
N

N∑

k=1

[zk − zn
k ]2 ∼ nα (3)

with a scaling exponent α, which quantitatively deter-
mines the features of anti-correlated (α < 0.5) or cor-
related (α > 0.5) dynamics of complex systems.

If the nonstationarity changes throughout the entire
signal, then the inhomogeneity of trend features can be
described by the measure

σ(Floc(n)) ∼ nβ (4)

which quantifies how the distribution of local RMS fluc-
tuations Floc(n) of the signal profile from the trend
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varies with the segment length n [30, 31]. The power-
law behavior of σ(Floc(n)) is described by a scaling
exponent β, which is different from α. Nearly stationary
datasets are quantified by negative values of β. For the
time-varying dynamics of natural systems, this measure
takes positive values.

2.4 Simulated data

To investigate the cooperative dynamics of coupled
chaotic oscillators, a system of two interacting Lorenz
models was chosen. The equations for each unit rep-
resent the benchmark model of nonlinear dynamics,
which is used for studying the mechanisms of chaos for-
mation and destruction [32]

dx1,2

dt
= s(y1,2 − x1,2) + γ(x2,1 − x1,2),

dy1,2

dt
= r1,2x1,2 − x1,2z1,2 − y1,2,

dz1,2

dt
=x1,2y1,2 − z1,2b, (5)

The parameter set s =10, r1 =28.8, r2 =28, and b =8/3
defines the dynamics of the units, γ is the strength
of interaction. As signals for further processing, the
sequences of return times into the secant plane x2

1+y2
1 =

30 and x2
2 + y2

2 = 30 were used. According to the work
[33], the model (5) shows an atypical phenomenon,
namely, initial desynchronization with the growth of
γ (in the range γ ∈ [0.0, 2.0]. At γ > 2, the oscilla-
tion frequencies of the interacting units are adjusted in
accordance with the expected dynamics of the coupled
systems.

2.5 Experimental data

Relative CBF velocity acquired by laser speckle con-
trast analysis [21, 22] was used. Experimental pro-
cedures were carried out at the Saratov State Uni-
versity on 9 adult male rats in accordance with the
“Guide for the Care and Use of Laboratory Animals”.
Recordings of the duration 10 minutes were made after
adaptation to environmental conditions (30 min). Two
physiological states were considered: background and
pharmacologically induced hypertension caused by the
administration of mesaton (Sigma) at a dose of 0.5
μg/kg. The second recording was made 10 minutes after
the injection. The existence of physiological protecting
mechanisms avoids significant changes in CBF mea-
sured in veins and arteries, but reactions in the cap-
illary network may occur. For studying the effects of
such hypertension, a He-Ne laser (Thorlabs HNL210L,
632.8 nm) was chosen to illuminate the cerebral cortex,
and measurements of speckle patterns were carried out
with a Basler acA2500-14gm CMOS camera (sampling
rate 40 frames/s). Contrast was evaluated by definition
K=σ/〈I〉, where σ is the standard deviation and 〈I〉
is the mean intensity averaged over a window of 5×5
pixels. The velocity of relative CBF was measured as

Fig. 1 Multiscale entropy estimated for synchronous and
asynchronous dynamics of two interacting Lorenz models

a value inversely proportional to K [34, 35]. The study
[19] showed stronger responses in small cerebral ves-
sels to acute increase of peripheral blood flow. Due to
this, measurements in capillaries were carried out as an
integral assessment of a speckle image window in the
vicinity of a large vessel.

3 Results and discussion

3.1 Simulated data

Chaotic synchronization typically changes the struc-
ture of signals produced by interacting nonlinear sys-
tems with self-sustained oscillations. In addition to
the adjustment of basic frequencies, phase locking and
other phenomena related to time scales or frequencies,
chaotic synchronization can change the complexity, pre-
dictability and correlation features of signals produced
by coupled units. This is illustrated in Fig. 1, where
the different behavior of SE with growing scale factor
for synchronous and asynchronous dynamics makes it
possible to distinguish between such types of chaotic
behavior of interacting Lorenz models. With the excep-
tion of the initial segments of the dependencies shown in
Fig. 1, the values of SE decrease with increasing τ , but
the decay of SE(τ) is stronger for synchronous chaotic
oscillations.

Analysis of the correlation properties using the α
exponent of the conventional DFA (Fig. 2a) does
not give noticeable distinctions between the dynamics
under study at large τ , although at small values of the
scale factor, both types of complex oscillations show a
different behavior, namely, anticorrelations (α < 0.5)
for synchronous dynamics and positive correlations (α
> 0.5) for asynchronous regime. The adjustment of α
values with growing τ does not ensure their reliable sep-
aration (Fig. 2a), but the β exponent of the extended
method (EDFA) exhibits a different behavior (Fig. 2b)
and reveals stronger distinctions compared to SE and
α. The latter confirms that the application of methods
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(a) (b)

Fig. 2 Scaling exponents α (a) and β (b) depending on the scale factor for synchronous and asynchronous oscillations in
a system of coupled Lorenz models. Here, β shows better diagnostic results compared to α and SE (see Fig. 1)

Fig. 3 Multiscale entropy of experimental datasets for
background dynamics (control) and pharmacologically
induced hypertension (mesaton). Stars show significant dis-
tinctions between the states (the Mann-Whitney test, p
< 0.05)

other than the multiscale entropy to multiple coarse-
grained time series represents a useful signal processing
approach.

3.2 Experimental data

Unlike simulated datasets, the analysis of experimental
time series is restricted by their length, which limits the
available range of the scale factor, and is complicated by
the nonstationary behavior of natural systems that also
creates additional difficulties in reliably interpreting the
results of signal processing. Nevertheless, the applica-
tion of both approaches, MSE and EDFA, makes it pos-
sible to reveal the effects of acute peripheral hyperten-
sion on the dynamics of microcerebral blood flow in the
capillary network. In the example under consideration,
the use of multiscale entropy analysis makes it possi-
ble to distinguish between background dynamics and
pharmacologically induced hypertension caused by the
administration of mesaton (Fig. 3) for scale factors τ
> 3 (p < 0.05 according to the Mann-Whitney test).

(a) (b)

Fig. 4 Scaling exponents α (a) and β (b) depending on the scale factor for experimental datasets. Stars show significant
distinctions between the states (the Mann-Whitney test, p < 0.05)
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Applying EDFA to these datasets shows less notice-
able distinctions for the α exponent (Fig. 4a). The
latter may be explained by the mentioned limitation
of the amount of data and the related length of the
region of long-range correlations. Distinctions in the
time-varying dynamics of the micro-vascular network
quantified by the β exponent are more pronounced
than for the α exponent (Fig. 4b), and are compara-
ble with the MSE method, although significant differ-
ences (p < 0.05 according to the Mann-Whitney test)
are detected at other values of τ (3 and 4). Thus, the use
of coarse-grained time series within various signal pro-
cessing techniques makes it possible to more thoroughly
analyze complex dynamics and improve the diagnosis
of changes in the system behavior. This analysis can be
applied to various fields of research, including physiol-
ogy [36–38], physics [39–41], engineering [42, 43], ener-
getics [44, 45], etc.

4 Conclusion

In the current study, we considered the application
of two approaches, MSE and EDFA to coarse-grained
datasets related to simulated and experimental sig-
nals. Using sequences of return times into the Poincare
section for a system of two interacting Lorenz mod-
els, we showed how the scaling exponent of EDFA can
outperform diagnostics of transitions between different
states compared to the MSE method. Similar diagnostic
results are shown for relative CBF velocity in microcere-
bral blood vessels during an acute increase in periph-
eral blood pressure (pharmacologically induced hyper-
tension). The results confirm that the coarse-graining
procedure may have more opportunities for signal pro-
cessing in various fields.
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