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Abstract An extension of detrended cross-correlation analysis (DCCA) for processing interrelated nonsta-
tionary time series is considered using electrocorticograms (ECoG) in mice as an example. The application
of this approach to the case of wakefulness and 1-day sleep deprivation is discussed. It is shown that,
although the DCCA method enables to detect changes in ECoG caused by sleep deprivation, its extension
improves the separation of the dynamics and may reduce the amount of data required to identify the state
of the brain electrical activity.

1 Introduction

Cross-correlation analysis is widely used to quantify
the cooperative dynamics of interacting units in various
complex systems and, in particular, in network physi-
ology [1–3]. Despite the fact that this tool provides an
informative characterization of the dynamical features
of such systems, physiological time series are often non-
stationary, which limits the applicability of the classical
cross-correlation function. A possible way to get around
this limitation is to use detrending procedures, suppos-
ing that nonstationarity effects are low-frequency, and
pre-filtering enables to exclude the nonstationary part
of the data. However, there is another limitation of the
traditional approach, namely, a decrease in the correla-
tion function for random data sets, accompanied by a
significant growth in the error of quantifying long-range
correlations.

Detrended fluctuation analysis (DFA) [4, 5] is an
alternative correlation analysis technique that improves
the characterization of experimental datasets in terms
of long-range correlations due to two features. On the
one hand, DFA includes a detrending procedure as an
intermediate stage of the computational algorithm. On
the other hand, it deals with signal profiles and intro-
duces a rising function, the slope of which is a numerical
measure of the correlations in the datasets. Although
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detrending is involved, this does not mean that sig-
nal analysis can be performed without any data pre-
processing [6–8]. The presence of various types of non-
stationarity can lead to misinterpretation of the results
obtained, and knowledge of such effects is an impor-
tant issue [9]. The more stationary the process is con-
sidered within the framework of the DFA, the less prob-
lems with incorrect interpretations arise. Therefore, this
method also requires pre-processing of the signal.

There is a modification of DFA to study cooperative
dynamics based on two time series, namely detrended
cross-correlation analysis (DCCA) [10, 11]. Both meth-
ods, DFA and DCCA, are applied under the assumption
of a sufficiently homogeneous structure of the signals.
They average fluctuations of signal profiles around local
trends without focusing on the distributions of these
fluctuations over different parts of the datasets. Often,
the fluctuations in some segments can significantly out-
perform those in other parts of the signals, and taking
into account such distributions provide important infor-
mation about the dynamics under study.

Recently, we proposed an extended DFA (EDFA)
that deals with two scaling exponents [12]. The first
exponent is the quantity estimated within the origi-
nal DFA approach, while the second exponent describes
the inhomogeneous structure of the signal profiles, i.e.,
the impact of nonstationarity. We also modified this
approach for the case of two signals within the extended
DCCA (EDCCA) and showed how this modification
quantifies the nonstationary entrainment phenomena in
the dynamics of interacting systems with chaotic oscil-
lations [13]. In fact, we proposed to consider scaling
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features for the distributions of local fluctuations as an
independent measure of the dynamics. The advantages
of this approach for the case of EDFA were discussed
in [14, 15].

The extended DCCA is less explored for experimen-
tal data. To show its effectiveness for diagnostic stud-
ies, here we apply this method to ECoG signals in
mice using sleep deprivation experiments. Sleep plays
an important role in maintaining the health of the cen-
tral nervous system [16, 17] and affects many processes
in the organism [18]. It is important for attention, learn-
ing, decision making, etc. [19, 20]. Prolonged wake-
fulness (more than 10 days) causes various cognitive
impairments [21]. Brief wakefulness is less crucial; how-
ever, it can also cause some changes in the electrical
activity of the brain, which can be detected and identi-
fied from electrocorticograms (ECoG). In this work, we
analyze two-channel ECoGs in mice for two conditions:
the background dynamics of awake animals and ECoG
after 1-day sleep deprivation (SD), and show the pos-
sibilities of EDCCA in characterizing these conditions.
The paper is organized as follows. Section 2 contains
information on the proposed extension of the DCCA
and a brief description of the experimental procedures.
Section 3 describes the main results of cross-correlation
analysis of ECoGs in mice together with their discus-
sion. Concluding remarks are given in Sect. 4.

2 Methods and experiments

2.1 Extended detrended cross-correlation analysis

Detrended cross-correlation analysis (DCCA) was pro-
posed as a modification of DFA for the case of two inter-
related time series {xi} and {x̃i}, i = 1, . . . , N , pro-
duced by time-varying dynamics of complex systems.
The method consists of the following steps:

(1) Construction of profiles

yk =
k∑

i=1

xi, ỹk =
k∑

i=1

x̃i. (1)

(2) Dividing the profiles into N − n overlapping seg-
ments of n + 1 samples and estimating the local (in
the simplest case linear) trends zk and z̃k within each
segment (i ≤ k ≤ i + n).

(3) Computation of the cross-correlation

f2
DCCA(n, i) =

1
n − 1

i+n∑

k=i

(yk − zk)(ỹk − z̃k). (2)

(4) Averaging over all segments

F 2
DCCA(n) =

1
N − n

N−n∑

i=1

f2
DCCA(n, i). (3)

The estimated dependence is usually a power-law func-
tion

FDCCA(n) ∼ nλ, (4)

where λ is the scaling exponent.
The extended DCCA proposed in our recent paper

[13] introduces an additional measure of the distribu-
tions of local fluctuations of the profiles around the
trends by computing these local fluctuations

Floc(n, i) =
1

n − 1

i+n∑

k=i

(yk − zk),

F̃loc(n, i) =
1

n − 1

i+n∑

k=i

(ỹk − z̃k), (5)

estimation of their standard deviations σ(Floc(n)),
σ(F̃loc(n)) and building the function

dFEDCCA(n) =
√

σ(Floc(n)) ∗ σ
(
F̃loc(n)

)
∼ nμ.

(6)

This function takes small values for stationary pro-
cesses with similar local fluctuations in various seg-
ments. In the case of strong differences between local
fluctuations, dFEDCCA(n) increases. The application of
this approach for the quantitative evaluation of chaotic
synchronization in coupled systems with self-sustained
oscillations and a more detailed description of the
method are given in [13].

2.2 Experiments

Experimental procedures were carried out on 10 male
mice according to the Guide for the Care and Use
of Laboratory Animals and protocols approved by the
Local Bioethics Commission at the Saratov State Uni-
versity. Two-channel cortical ECoGs (Pinnacle Tech-
nology, Taiwan) were acquired by means of two silver
electrodes with a tip diameter of 2–3 µm, which were
placed at a depth of 150 µm in coordinates (L: 2.5 mm,
D: 2 mm) from the bregma on both sides of the mid-
line. For this, anesthesia with 2% isoflurane at a rate of
1 L/min N2O/O2—70:30 was applied. Small burr holes
were drilled in the head plate to insert ECoG wire leads
and fix them with dental acrylic. The experiments were
started 10 days after the surgery.

Sleep deprivation was performed in accordance with
the approach [22] by bringing new objects and sounds
into the room [23], and observing that the animals
study these objects. It was held from 20:00 to 8:00.
ECoG signals were acquired before and after sleep
deprivation for 4 h with a sampling rate of 2 kHz. Arti-
fact removal was performed before signal processing.
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3 Results and discussion

At the first stage of signal processing, we compared the
inter-state differences in ECoG records in individual
subjects. Our analysis showed that these states can be
recognized based on the dependencies lg FDCCA(lg n)
of the DCCA approach [10] and lg dFEDCCA(lg n) of
the extended method [13]. An example demonstrat-
ing the differences in lg FDCCA(lg n) and the corre-
sponding values of the λ-exponent is shown in Fig. 1.
According to this figure, stronger distinctions are asso-
ciated with the region of long-range correlations, i.e.,
large values of lg n. When these values decrease, the
slopes of the dependencies approach each other. This is
consistent with many studies of physiological datasets
where long-range power-law correlations provided an
informative characterization of the dynamics of phys-
iological systems, e.g., [24–26]. Consideration of the
distribution of Floc(n) within the framework of the
extended method (EDCCA) provides similar distinc-
tions (Fig. 2), although the difference in the slopes
quantified by the μ-exponent becomes more noticeable.

Fig. 1 An example of the dependencies lg FDCCA(lg n) for
the states of wakefulness and sleep deprivation (one mouse)

Fig. 2 An example of the dependencies lg dFEDCCA(lg n)
for the states of wakefulness and sleep deprivation (the same
mouse as in Fig. 1)

Note that the μ-exponent can take negative values, sim-
ilar to EDFA [12] and, therefore, the differences can
be both quantitative and qualitative. Again, more pro-
nounced distinctions are related to large values of lg n.

After such a preliminary analysis using visual con-
trol of the dependencies lg FDCCA (lg n), lg dFEDCCA

(lg n) on a double logarithmic plot and numerical mea-
sures λ, μ, the states of wakefulness and sleep depri-
vation for the whole group of mice were compared at
the second stage. To provide comparison of different
ranges of lg n, we estimated local slopes and computed
t-values of the Student’s t-test. Figure 3 shows the
results of statistical analysis for both λ and μ expo-
nents. It gives an opportunity to point out several
important circumstances. First, both scaling exponents
enable characterization of inter-state transitions in a
wide range of lg n. The dashed lines indicate the crit-
ical value tc related to the significance level p < 0.05.
Secondly, the EDCCA method provides higher t-values
compared to the DCCA approach, i.e., the proposed
modification of the detrended cross-correlation anal-
ysis seems to be useful for improving the diagnostic
capabilities of DCCA. Thirdly, the EDCCA method
enables inter-state characterization over a wider range
of scales (lg n > 2.3 compared to lg n > 2.6), therefore,
a reduced amount of data can be used for analysis and
separation between two physiological states under con-
sideration. For the example discussed in our study, this
reduction is not crucial, because the necessary length
of data sets is rather small compared to the total dura-
tion of the experimental records. For other studies with
faster changes in functional conditions, this feature of
the EDCCA method becomes more important.

Thus, the performed study not only showed the pos-
sibility of reliably characterizing the effects of sleep
deprivation, but also demonstrated the advantages and
potential of the extended version of the detrended cross-
correlation analysis.

Fig. 3 The dependencies of t-values of the Student’s t-test
on the scale (lg n) showing differences between the states of
wakefulness and sleep deprivation in a group of mice char-
acterized by λ and μ exponents, respectively. Dashed line
indicates the critical value tc related to the significance level
p < 0.05
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4 Conclusion

Time-varying dynamics of complex systems, leading
to nonstationary behavior of the resulting time series,
limits the application of traditional methods for sig-
nal processing, such as the cross-correlation function.
In order to avoid misinterpretation of data analysis
results caused by various types of nonstationary behav-
ior, detrended cross-correlation analysis was proposed
and tested in several studies, as well as its exten-
sion—the EDCCA approach. In the current work, we
considered the application of EDCCA to characterize
changes in ECoG signals caused by 1-day sleep depri-
vation in mice. The obtained results indicate that while
the DCCA method allows identification of wakefulness
and sleep deprivation states, its extension can improve
the quantification of the effects of sleep deprivation.
The EDCCA method has been shown to be a useful
extension of the detrended cross-correlation analysis for
physiological time series.

Funding This work was supported by the Russian Science
Foundation (Agreement 22-22-00065), https://rscf.ru/en/
project/22-22-00065/.
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