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Abstract We explore the capabilities of multiresolution wavelet analysis (MWA) to characterize complex
dynamics based on short data sets that can be applied for diagnosing inter-state transitions. Using the
example of chaos–hyperchaos transitions in the model of two interacting Rössler systems, we establish the
minimum amount of data necessary for reliable separation of chaotic and hyperchaotic oscillations and
discuss how this amount changes depending on the length of the transient process. We then discuss transi-
tions between wakefulness and artificial sleep in mice and estimate the duration of electroencephalograms
(EEG) that provide separation between these states.

1 Introduction

The analysis of complex systems based on experimen-
tally recorded time series is typically performed using
stationary or almost stationary data sets produced, e.g.,
by systems with slowly changing parameters, if their
variation throughout the analyzed segments is treated
as insignificant. Consideration of such data sets allows
the use of a wide range of standard and special sig-
nal processing tools [1–3], assuming that the amount of
data is sufficient to quantify signal properties with the
required accuracy and reliably diagnose the state of the
system. Depending on the signal duration and features,
as well as the purpose of the study, the choice of the
appropriate method is carried out. Spectral or correla-
tion analysis, measures of complexity and predictabil-
ity, along with other quantitative characteristics, make
it possible to thoroughly describe the dynamics from
different points of view. Diagnostics of the dynamics is
often carried out by comparing several methods with
the choice of the most suitable one, capable of separat-
ing the states of the system related to different function-
ing conditions. Although many characteristics are inter-
related, different amounts of samples may be required
to estimate them with the required accuracy due to dis-
tinct convergence of methods with the duration of the
data.

Studying of complex systems for diagnostic purposes
is not always limited to stationary dynamics. For exam-
ple, important information about physiological systems
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can be obtained when they operate under conditions
different from the baseline behavior. Changing the state
of the system with subsequent restoration of its original
dynamics is applied to study the adaptive capabilities.
Due to this, the responses caused by functional tests,
stresses, and other factors are often more informative
than the purely stationary dynamics of such systems.
Response characterization requires an appropriate anal-
ysis of transients, and this analysis often cannot be pro-
vided under the assumption of slowly changing param-
eters, i.e., the application of approaches for nonsta-
tionary signal processing becomes mandatory. Recent
advances in this field include various wavelet-based
methods [4–10], the empirical mode decomposition with
the Hilbert–Huang transform [11, 12], detrended fluc-
tuation analysis [13–17], etc. The ability to quantify the
state of a system from short data sets is an important
issue to describe the features of transient processes. The
latter makes it possible not only to establish a change
in the state, but also to quantify the duration of the
transient process and even predict when this process
will be finished.

One of the most important questions is how to deter-
mine the minimum length of a data set that can be
processed to reliably diagnose the state of the system,
i.e., shorter data sets will give unacceptable compu-
tational errors, while longer time series segments do
not reduce the quality of diagnostics. Such a minimum
duration is not a constant value and can be adjusted
depending on the intensity and statistics of noise, the
degree of nonstationarity associated with both the abso-
lute changes in the control parameters and the rate of
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their variation. In this study, we analyze how transitions
between different types of complex oscillatory behav-
ior can be quantified based on multiresolution wavelet
analysis [5]. This mathematical tool is currently widely
applied to solve many scientific and technical problems,
and the processing of nonstationary signals is one from
them. Usually, a signal is decomposed according to a
fast (pyramidal) scheme with orthogonal basic func-
tions of the Daubechies family [4], and the standard
deviations of the detail wavelet coefficients are treated
as informative measures of complex signals [18, 19].
An enhanced version of the MWA method can also
be applied to improve the characterization of signal
features [20]. Thus, our recent studies have illustrated
some advantages of enhanced versions that use cumu-
lant analysis in wavelet space [21] or combine MWA
with DFA of the detail wavelet coefficients [22].

The purpose of this study is to analyze the applica-
bility of MWA for revealing transitions between system
states and answer the question about the possibility of
reducing the amount of data to determine inter-state
transitions. We will consider chaos–hyperchaos tran-
sitions in the dynamics of coupled systems with self-
sustained oscillations as an example of simulated data
sets. Then we discuss the ability to characterize transi-
tions between two different physiological states (wake-
fulness and artificial sleep) using EEG in mice. The
paper is organized as follows. Section 2 briefly describes
the wavelet-based multiresolution analysis and mea-
sures used to characterize distributions of detail decom-
position coefficients. It also includes descriptions of the
simulated and experimental data considered in this
work. Section 3 contains the main results of the study
of inter-state transitions at different rates of change in
system parameters. The concluding remarks are sum-
marized in Sect. 4.

2 Methods and experiments

2.1 MWA and its enhancements

Multiresolution wavelet analysis is an iterative signal
decomposition procedure using filter banks constructed
from two conjugate mirror filters called the scaling func-
tion ϕ(t) (low-pass filter) and the wavelet ψ(t) (high-
pass filter) [23]. The filter banks are built by integer
translations of ϕ(t) and ψ(t) and their dilations with
the scaling factor 2j :

ϕj,l(t) =2j/2ϕ(2jt − l),

ψj,l(t) =2j/2ψ(2jt − l). (1)

Such a procedure is carried out for time series consisting
of N = 2n samples. Each value of j is associated with
distinct frequency bands (resolution levels). The signal
f (t) can be decomposed at all available resolution levels

or only up to some level jm

f(t) =
∑

k

sjm,lϕjm,l(t) +
∑

j≥jm

∑

l

dj,lψj,l(t), (2)

where the sets of approximation (sjm,l) and detail coef-
ficients (dj,l) carry information about the signal in inde-
pendent ranges of scales and can be used to restore
the signal within the framework of iterative inverse
wavelet transforms [24]. The choice of basis depends on
the purpose of the study. Orthogonal wavelets of the
Daubechies family are often applied with the function
D8 being a good compromise between regularity and
support length of ψ(t) [4].

Signal fluctuations are accompanied by fluctuations
in decomposition coefficients [25, 26]. To describe their
variability, the standard deviations of dj,l are consid-
ered as a function of the resolution level:

σj =

√√√√ 1
J

J∑

l=1

[dj,l − 〈dj,l〉]2, 〈dj,l〉 =
J∑

l=1

dj,l, (3)

where J is the number of decomposition coefficients at
the level j .

Depending on the distribution of detail coefficients,
other measures can also be used for their characteriza-
tion, not limited to the standard deviation or variance,
which is the second cumulant of the distribution. Thus,
the higher cumulants can be applied, namely the skew-
ness (the third cumulant)

Aj =
μ3
j

σ3
j

, μ3
j =

1
J

J∑

l=1

[dj,l − 〈dj,l〉]3 (4)

or excess kurtosis (the fourth cumulant)

Ej =
μ4
j

σ4
j

− 3, μ4
j =

1
J

J∑

l=1

[dj,l − 〈dj,l〉]4. (5)

In particular, the latter quantities can be informative
and helpful in processing physiological time series with
specific features (extreme events) and their application
can outperform the approach based on standard devi-
ations in diagnostic-related studies [21, 27]. We des-
ignate the multiresolution analysis with thorough pro-
cessing of decomposition coefficients as enhanced MWA
(EMWA).

2.2 Simulated data

A model of two coupled Rössler oscillators is consid-
ered to analyze chaos–hyperchaos transitions by varia-
tions in the control parameter [28, 29]. This model is
described by six first-order ordinary differential equa-
tions:

dx1,2

dt
= − ω1,2y1,2 − z1,2 + γ(x2,1 − x1,2),
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dy1,2
dt

=ω1,2x1,2 + ay1,2,

dz1,2
dt

=b + z1,2(x1,2 − c), (6)

where the parameters a = 0.15, b = 0.2 and c govern
the dynamics of each oscillatory unit, γ = 0.02 is the
coupling strength, and non-identical basic frequencies
ω1,2 = 1.0 ± Δ are characterized by mismatch Δ =
0.009. We use the parameter c near the value c = 7.0,
where chaotic synchronous oscillations are changed by
hyperchaotic dynamics. The analysis of such transitions
for the case of fast switching between the given regimes
and a slower change in the parameter c is carried out
based on sequences of return times into the Poincaré
section x2 + y1 = 0.

2.3 Experimental data

The experiments were carried out on six male mice
weighing 20–25 g in accordance with the Guide for
the Care and Use of Laboratory Animals (2011) and
the protocol approved by the Local Bioethical Commis-
sion of the Saratov State University. The animals were
housed in a light–dark environment with lights on from
8:00 to 20:00 and fed ad libitum with standard rodent
food and water. Cortical EEG [30, 31] (two channels,
Pinnacle Technology, Taiwan) was acquired using silver
electrodes. Signals were measured in awake mice and
after anesthesia provoked by 4% isoflurane (i.e., in arti-
ficial sleep). The duration of the recording was 2 h with
a sampling rate of 2 kHz. Artifact removal procedures
[32] were performed prior the EEG data analysis.

3 Results and discussion

3.1 Chaos–hyperchaos transitions

Before studying the transients between chaotic and
hyperchaotic oscillations produced by the model of two
interacting Rössler systems (6), let us consider what is
the minimum amount of data that allows us to reliably
characterize the steady-state oscillations associated
with these two types of complex dynamics. Recently, we
have demonstrated how these regimes can be detected
and quantified based on Lyapunov exponents, a com-
monly used approach for diagnosing chaos–hyperchaos
transitions [33]. However, this method requires rather
long data sets to perform authentic estimates associ-
ated with the two largest Lyapunov exponents, and
especially with the second one, the estimates of which
are performed after thorough averaging over vari-
ous regions of the chaotic/hyperchaotic attractor. The
MWA method considered in the current study cannot
recognize complex oscillations with two positive Lya-
punov exponents as a hyperchaotic regime, but it can
reveal different complexities of return times sequences,
related to chaotic and hyperchaotic oscillations in terms

of the features of the distributions of wavelet coef-
ficients. To ensure that these two types of complex
dynamics are clearly separated, Fig. 1a shows the t-
values of the Student’s t test computed using sequences
of detail wavelet coefficients for chaotic and hyper-
chaotic dynamics.

According to Fig. 1a, the best state separation is
observed at the first resolution level, characterized by
the standard deviation of the wavelet coefficients (σ1).
Here, k denotes the number of segments with a dura-
tion of 128 samples used to diagnose the analyzed types
of oscillations. For any k , starting from k = 2, the esti-
mated value t exceeds the critical value tc related to
the significance level p < 0.05. Thus, the possibility of
a clear separation between the two types of dynamics is
confirmed, and the question arises whether it is possible
to reduce the amount of data for diagnostic purposes.
To answer such a question, we performed a more care-
ful analysis, considering segments of different lengths
with different numbers of averages, and choosing σ1,
which provided the best characterization of the states.
Figure 1b illustrates that t > tc for k = 2 if n ≥ 32, i.e.,
64 return times into the Poincaré section make it pos-
sible to distinguish between chaotic and hyperchaotic
oscillations. A similar analysis performed for various
initial conditions and a small change in the control
parameters (which does not change the type of com-
plex dynamics under study) produces results similar to
Fig. 1b, and, therefore, we can establish the minimum
required amount of the data set. The results obtained
refer to stationary dynamics, when any transient pro-
cesses between regimes are excluded and do not affect
the analysis. Taking them into account obviously affects
the estimates and may require longer data sets for diag-
nostic purposes, especially if the transients take quite
a long time compared to the duration of the signal seg-
ment used for analysis. Since the duration of the tran-
sient process is an important circumstance, we consid-
ered two cases: fast (switching between values of control
parameters) and slow change (linear growth of the con-
trol parameter).

The switching case is illustrated in Fig. 2. For rela-
tively long data sets (n = 256 or n = 128, Fig. 2a), there
is no obvious problem of distinguishing between chaotic
(i < 1000) and hyperchaotic oscillations (i > 1000)
by simply introducing a threshold level related, e.g., to
σ1 = 0.03. Smaller data sets (n = 64 or n = 32, Fig. 2b)
give a greater variability of the estimated values of σ1

for hyperchaotic oscillations, and the introduction of
a threshold level is less appropriate, since it will be
crossed by some variations in σ1. To remedy this sit-
uation, running averaging can be carried out, i.e., aver-
aging within a floating window. By choosing a window
of size n, the high-frequency variations of σ1 can be
reduced, and the obtained dependences become more
suitable for distinguishing between chaotic and hyper-
chaotic oscillations. This averaging, however, means
increasing the analyzed data set to 2n samples. In the
example under consideration, authentic diagnostics for
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(a) (b)

Fig. 1 Estimates of t value of the Student’s t test for standard deviations and excess kurtosis of wavelet coefficients of
simulated data sets (chaotic and hyperchaotic oscillations) for n = 128 and different number k of segments for averaging
(a), and t values for σ1 and n from 16 to 128 depending on k (b). The critical values tc, related to the significance level
p < 0.05, are shown by a black solid line. Skewness results (hereinafter) are comparable to excess kurtosis, so we do not
reproduce them in the figures

(a) (b)

(c)

Fig. 2 Changes of σ1 during the transition from chaotic to hyperchaotic oscillations (the switching case) for several values
of n: (a) 128 and 256, (b) 32 and 64 (without running averaging), (c) 32 and 64 after running averaging. In the latter case,
the duration of the window is equal to n
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Fig. 3 Changes of σ1 during the transition from chaotic to
hyperchaotic oscillations (the switching case) for n = 128
and several variances of additive white noise. Noise statistics
affects the σ1 values, but the conclusion of the study remains
unchanged

n ≥ 128 is provided in both cases, without averag-
ing (Fig. 2a) and after averaging σ1-values at n = 64
(Fig. 2c) using a window of 64 values.

These results show that consideration of smaller parts
of data with an additional running averaging procedure
does not improve diagnostics compared to the case of
larger data segments without averaging. Up to now, we
have considered the case of purely deterministic dynam-
ics. The presence of additive (measuring) noise does not
strongly affect the results and conclusions of this study.
Figure 3 compares estimates for n = 128 performed for
the case when the variance of white noise takes values of
0, 1, and 10% of the signal range. The first two depen-
dences are almost the same. Stronger noise (10%) leads
to an increase in σ1-values for both regimes, chaotic
and hyperchaotic, and, therefore, the threshold value
may increase, but the possibility of reliable diagnostics
is kept, as well as estimates of the minimum required
amount of data. We have shown that in the example
under consideration, switching between regimes which
produce the related transient processes, requires almost
twice as much data (n = 128) as compared to the case
when the stationary dynamics of the model (6) is ana-
lyzed, and transients are avoided (n = 64).

If the control parameters vary slowly, the duration of
the transients increases, and the latter affects the length
of the data set required to study the transitions between
states. Figure 4 illustrates this case for the linear growth
of the parameter c from c = 6.9 to c = 7.1 in the range
i ∈ [500, 1500]. Changes in σ1 in this case are more
complex compared to switching of the control parame-
ter (Fig. 2a). Before σ1 stabilizes at a value related to
hyperchaotic dynamics, it can behave in a rather com-
plicated way. Although near i = 1000 there is a rapid
growth associated with the intersection of the bifurca-
tion value of c, further variations of σ1 at n = 128 are
quite strong, and a simple introduction of the thresh-
old level, e.g., σ1 = 0.03 may lead to misinterpretations
of the underlying dynamics. Here, the case n = 256
is more appropriate for diagnosing chaos–hyperchaos

Fig. 4 Changes of σ1 during the transition from chaotic
to hyperchaotic oscillations (linear growth of the control
parameter) for two values of n

transitions. Thus, the minimum amount of the data set
depends on the duration of the transients, what can
be considered as an expected result. It is important,
however, to note that in all the examples considered,
stationary dynamics, switching, slow changes in con-
trol parameters and measurement noise, MWA analysis
enables to reliably diagnose chaos–hyperchaos transi-
tions using a relatively small amount of data.

3.2 EEG recordings with transitions
between physiological states

The analysis of physiological processes, such as EEG
recordings, allows us to consider similar cases of almost
stationary dynamics, when the state of the body does
not change essentially (e.g., relaxation), fast changes
in dynamics (responses to sudden stimuli), or relatively
slower changes when one state of the body is replaced by
another one (waking and sleeping). Diagnostics of the
dynamics based on relatively short signals is important
not only for detecting inter-state transitions in healthy
organisms, but also makes it possible to establish the
development of pathological dynamics of the brain. In
this study, we discuss the features of EEG signals during
anesthesia. By analogy with the simulated data sets dis-
cussed in Sect. 3.1, let us start with stationary dynam-
ics (or almost stationary, which is more appropriate
for physiological processes) and compare the states of
wakefulness and artificial sleep caused by anesthesia.

Figure 5 shows the t values of the Student’s ttest
computed from segments of the duration n = 512
(smaller segments did not provide reliable separation
between states due to the rather high sampling rate,
2 kHz). According to Fig. 5, the results for standard
deviations of detail wavelet coefficients and excess kur-
tosis are comparable, and both of these measures can
be applied in this example. Reliable inter-state separa-
tion takes place at k > 15, i.e., the minimum duration
of EEG signals for such separation approaches 4 s. For
other experiments, this quantity may vary, but typi-
cally it does not exceed 10 s. Therefore, this amount of
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Fig. 5 Estimates of t value of the Student’s t test for stan-
dard deviations and excess kurtosis of wavelet coefficients
of EEG signals for n = 128 and different number k of seg-
ments for averaging. The critical value tc, related to the
significance level p < 0.05, is shown by a black solid line

data enables diagnosing the effects of anesthesia in the
dynamics of the brain. When analyzing these effects for
experimental data with transient processes, the dura-
tion of the required data sets increases by a factor of
2–3, i.e., records up to 30 s should be used.

4 Conclusion

Transient processes contain important information
about the dynamics of the system, which can be used
to identify features of complex behavior when the sys-
tem changes its state under the influence of exter-
nal forces, variations in internal parameters or interac-
tions between components. The exclusion of such infor-
mation simplifies the analysis of experimental data,
since a significantly wider set of signal processing tools
can be applied, but this strongly reduces the possi-
bility of studying the adaptive properties of the sys-
tem. Extracting information from short data sets is a
way to conduct a more thorough analysis of inter-state
transitions, which is useful for characterizing the dura-
tion of the transient process and its features. Based
on this ideology, here we consider the possibility of
reducing the amount of data for MWA to preserve a
reliable separation between different types of complex
oscillations. Using the model of two interacting Rössler
systems, which describes the chaos–hyperchaos transi-
tions, we show that these changes can be detected from
the sequences of return times into the Poincaré section,
including about 64 samples, if transient processes are
excluded from consideration. When time series contain
such transients, their duration should increase, and the
necessary amount of data depends on the rate of change
of the parameter. Thus, for fast changes with short tran-
sients (switching the control parameter), transforma-
tions of chaotic oscillations into hyperchaotic ones and
vice versa were identified by about 128 return times. For

a slower change in the parameter (for example, with its
linear growth), this amount of data was about twice
as large as in the case of switching. Nevertheless, the
possibility of using sufficiently short data segments for
diagnostic purposes was confirmed. This conclusion is
valid for other transitions, e.g., for transitions between
synchronous and asynchronous chaotic oscillations in
the model of two interacting Rössler systems (in the
vicinity of the bifurcation line). Further, we have also
demonstrated the ability to diagnose inter-state transi-
tions in brain dynamics based on EEG processing. In
particular, the state of artificial sleep was recognized
based on segments with a duration of less than 10 s for
data sets without transients and less than 30 s for EEG
signals with transient processes.
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