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Abstract We investigate the effect of noise in an epidemic system. We have studied dynamics and com-
plexity for both the deterministic and its noise-induced model. We have verified the stochastic sensitivity
under the variation of noise strength and changing the initial conditions of the noise-induced system. It
confirms that noise can make significant perturbation in the stochastic sensitivity. To quantify the dynam-
ics, phase space analysis is done under both noisy and noise free conditions. The transition between regular
and chaotic dynamics has been examined by 0−−1 test. Corresponding complexity analysis is also done
using the weighted recurrence entropy method. Numerical results confirm the chaotic dynamics in the
noise-induced epidemic system within a larger region of parameters compared to the same in its noise free
part.

1 Introduction

Ecosystem is one of the highly nonlinear systems that
can be observed in many real word phenomena [1]. A
nonlinear system can produces various kind of long-
term dynamics [2–7]. Several studies have been done
for the ecosystems, that show existence of regular as
well as chaotic long-term dynamics [8–15, 27, 28]. The
most well-known chaotic illustration can be given by the
logistic map-a discrete system of animal reproduction
[8]. Chaotic behaviour has been also observed for the
continuous ecological system in many literature [9–19,
26]. In [27], it has been proved that chaos is one of
the destabilizing factors that can collapse ecosystems.
Further, a stabilizing effect of chaos is also observed in
[28] that implies re-immigration or rescue effect in the
ecosystem. Thus, chaotic dynamics is an obvious prop-
erty in ecosystems and hence the corresponding future
is almost unpredictable [17–19, 26].

Chaos in a nonlinear system is such a state that
shows sensitivity with initial condition [3–5]. In that
case, the system losses its memory with a small per-
turbation of the initial condition [3–5]. Chaos can be
investigated for both deterministic and stochastic sys-
tem [3–7, 29–33]. For a deterministic system, Lyapunov
analysis is one of the efficient methods for finding chaos
in the corresponding system [3–5]. To investigate chaos
in a stochastic system, the 0 − 1 test method is one of
the effective nonlinear tools [34–37].
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A chaotic system always has unpredictable
behaviour. So uncertainty is a ubiquitous prop-
erty of this system. For a stochastic phenomenon, it is
more than a deterministic phenomenon. It means that
the uncertainty increases as the system becomes more
and more random. The measure of uncertainty was
first introduced by C.E. Shannon [38]. Several entropy
measures have been developed and applied widely in
diverse domains of research [20–25]. Complexity in a
system can be characterized by measuring disorder
in the corresponding phase space [39–45]. Different
types of measures have been proposed to quantify
dynamical complexity of a system [41–48]. A weighted
recurrence based measure has been proposed in [48],
which can describe the different structural patterns
of the phase space. The proposed weighted entropy
measure correlates to the dynamics of the system
(discrete or continuous) [48].

Noise is an inherent feature that appears in different
forms in the real world phenomena. Several research
have been established on the effect of noise in different
systems [29–33, 45]. Further, the effect of noise in the
epidemic has been already established in the literature
[16–18]. So, noise-induced long-term analysis is one of
the best possible studies to approximate the dynamics
of a stochastic epidemic system. In [26], the chaotic phe-
nomenon and its relation with the diseases have been
investigated in the context of generalist predators. The
effect of noise is not examined for the system given in
[26]. We, therefore, studied the impact of noise on an
epidemic system using measures of chaos and complex-
ity.
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This article is organized as follows: In section 2, a
stochastic epidemic system is constructed. Section 3
described stochastic sensitivity [53] of the noise induced
epidemic system. Using 0 − 1 test method, dynamical
fluctuation is analyzed over the feasible ranges of dis-
ease reproduction and noise strength. The whole dis-
cussion is given in Sect. 4. Section 5 discusses the com-
plexity of the phase spaces based on weighted recur-
rence entropy analysis. Finally, a conclusion is given in
Sect. 6.

2 Construction of stochastic epidemic
model

We consider an epidemic model, proposed in [26], given
by

dx1

dt
= ax1 − Rx1x2 − ax1x4,

dx2

dt
= Rx1x2 − ax2x4 − x2,

dx3

dt
= bx3 − acx3x4,

dx4

dt
= d(x1 + x2 + x3)x4 − dx4, (1)

where x1, x2 are healthy and infected variables of the
susceptible species respectively. The variable x3 repre-
sents population of the immune prey species. The last
variable x4 indicates predator population of the system.
The parameters a, b represent the reproduction rate of
the prey species. R denotes the basic reproduction num-
ber of the disease. The parameters c and d is defined in
[26] by c = εy

εx
(εx,y are rates of individual prey species)

and d = δ
γ (δ, γ are the predator starvation rate in the

absence of prey and death rate of infected individual
prey species respectively). A complete pictorial repre-
sentation of the system (1) is given in Fig. 1.

To construct the stochastic version of (1), we incor-
porate noise Φ(α) for the healthy population rate. The
noise Φ(α) is taken as 1

f noise. Incorporation of noise
in the deterministic system and its converted system is
shown in Fig. 1. The reason for inducing the 1

f -noise
can be stated as follows: (i) 1

f -noise has long-range
dependence [49–52]. It affects the long-term dynamics
of the system, ii) fluctuation of 1

f -noise can be observe
in many physical phenomena [49–52]. As the dynamics
of an epidemic depend on the interaction of prey and
predator populations, the effect of 1

f -noise is an obvious
phenomenon in the epidemic system. The constructed

noise-induced epidemic model is then given by

dx1

dt
= ax1 − Rx1x2 − ax1x4 + KΦ(α),

dx2

dt
= Rx1x2 − ax2x4 − x2,

dx3

dt
= bx3 − acx3x4,

dx4

dt
= d(x1 + x2 + x3)x4 − dx4,

(2)

where function Φ(α) represents 1
f power noise and K its

strength respectively. We fix a = 7
400 , b = 0.0208, c =

1.5, d = 0.3098 as taken in [26]. We only variate R, K
by R ∈ [1, 1.5] and K ∈ [0, 0.5] respectively.

In the following section, we investigate stochastic sen-
sitivity of the system (2) under the variation of noise
strength (K ) and initial condition.

3 Stochastic sensitivity

To quantify stochastic sensitivity, we consider 4D
attractors of the system (2) with the initial condition
(x1(0), x2(0), x3(0), x4(0)) = (1, 0.2, 0.4, 0.1). As this
system possesses an equilibrium state for a = 7/400, b =
0.0208, c = 1.5, d = 0.3098, R = 1.0205 [26], we consider
(1, 0.2, 0.4, 0.1) as an equilibrium point and call it x̄.
According to the definition of quasipotential [53], the
function v(x ) of the 4D attractors is given by

v(x) ≈ 1
2
(x − x̄, φ(x)(x − x̄)),

where x = (x1(t), x2(t), x3(t), x4(t)). It can be approxi-
mated by Gaussian density function ρ(x,K) of the ran-
dom trajectory flow in the attractors, where

ρ(x,K) ≈ Nexp(− (x − x̄,W−1(x − x̄))
2K2

),

where W = φ−1(x̄) and N being a normalized constant
[53].

The density function ρ(x,K) of the random state in
the neighbourhood of x̄ can be geometrically described
by a confidence ellipsoid [53]. The confidence ellipsoid
is defined as

(x − x̄,W−1(x − x̄)) = K2Γ(P ),

where P represents fiducial probability. Here, Γ(P ) is
an inverse of P (Γ) which is defined by

P (Γ) =
φn(Γ)
φn(∞)

, φn(Γ) =
∫ √

Γ

0

e− t2
2 tn−1dt.
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Fig. 1 Representing the
conversion of deterministic
(SYSTEM-1) to
noise-induced (SYSTEM-2)
epidemic system. Green
arrow indicates the
conversion from SYSTEM-1
to SYSTEM-2. Left arrow
with ⊕ sign indicates the
induction of noise φ(α) to
the healthy population rate
ẋ1. The corresponding noise
affected growth is given by
ẋ1 + Kφ(α). The
SYSTEM-1 and SYSTEM-2
are given by (1) and (2)
respectively. The curved
arrows associated with the
species are indicated
intermediate relations

For n = 4, P (Γ) is given by P (Γ) = 1−e
Γ
2 (1+0.5Γ) and

the corresponding 4D confidence ellipsoid is defined as

ξ2
1

λ1
+

ξ2
2

λ2
+

ξ2
3

λ3
+

ξ2
4

λ4
= K2Γ(P ), (3)

where ξj = (x − x̄, νj); j = 1, 2, 3, 4 (νi being eigenvec-
tor for the eigenvalues λj ; j = 1, 2, 3, 4 of the stochastic
sensitivity matrix W ). As λjs measure stochastic sen-
sitivity of a system, maxj=1,2,3,4 λj is also effective for
the same. We call maxj=1,2,3,4{λj} as Λmax and calcu-
late its fluctuation over K ∈ [0.001, 0.1] (R = 1.0205)
and Ii ∈ [(1 + 0.0002 ∗ i, 0.2, 0.4, 0.1)] (R = 1.0205,
K = 0.005). The corresponding oscillations are shown
in Fig. 2a and b respectively. From Fig. 2a, it can
be observed that Λmax has nonlinear increasing trend
for K ∈ [0.001, 0.1] (R = 1.0205). It indicates sensi-
tivity of (2) increases nonlinearly with the increasing
noise strength. On the other hand, a sharp increas-
ing trend in Λmax can be observed in Fig.2b for Ii ∈
[(1 + 0.0002 ∗ i, 0.2, 0.4, 0.1)] with R = 1.0205, K =
0.005. It implies increasing stochastic sensitivity in (2)
for a small perturbation of x̄. Further, oscillations in
Λmax are calculated over (K, Ii) ∈ [0.001, 0.1] × [(1 +
0.0002∗ i, 0.2, 0.4, 0.1)]. The corresponding contour plot
is visualized in Fig. 2c. From the figure, it can be seen
that the Λmax is increasing according to increase of
noise strength K within a small neighourhood of x̄. So,
this analysis indicates effectiveness of power noise on
increasing the stochastic sensitivity in the system (2).

We now investigate the dynamics of the system (2)
under the variation of basic reproduction number (R)
of the disease and noise strength (K ).

4 Quantifying dynamics of the noise free
and noisy epidemic model

To quantify the dynamics, we first characterize the
asymptotic dynamics of (2) using phase space analy-
sis. The phase space analysis is done under the varia-
tion of both R ∈ [1, 1.5] and K ∈ [0, 0.5] respectively.
Some of the phase spaces are projected in 2D (see the
Fig. 3). From Fig. 3a, periodic orbit can be observed. It
indicates regular asymptotic dynamics of the system at
(K = 0, R = 0). On the other hand, irratic movement
in phase trajectory can be observed in 3b-d. It indicates
complex asymptotic dynamics of the same system with
the respective cases (K = 0.2, R = 0), (K = 0, R =
1.15), (K = 0.5, R = 1.5). In this way, we have exam-
ined nature of long-term dynamics of (2) for R ∈ [1, 1.5]
and K ∈ [0, 0.5]. However, chaos cannot be confirmed
from these phase space analysis. To characterized reg-
ular and chaotic dynamics, we have implemented 0 − 1
chaos test method.

In this method, a solution {x(k)}L
k=1 (L being the

length of the solution) is considered of a system. Then,
{x(k)}N

k=1 is decomposed into two components pμ, qμ,
where

pμ(n) =
n∑

k=1

x(k) cos(kμ), qμ(n) =
n∑

k=1

x(k) sin(kμ).

(4)

In (4), the value of μ can be chosen from the inter-
val (0, π) for each n (= 1, 2, .., L). The cloud consists of
(pμ, qμ) can be characterized by two types of geometric-
regular and Brownian motion like structures [34–37].
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Fig. 2 a and b represents Λmax vs. K and Ii plots respectively. Variation in Λmax with K ×Ii are given in c. The associate
colour bar indicates values of Λmax

Fig. 3 (a)–(d) represent 2D phase space of the system (2) with (K = 0, R = 0), (K = 0.2, R = 0), (K = 0, R =
1.15), (K = 0.5, R = 1.5). Corresponding (p, q) plots are given in (e)-(f) respectively. To calculate p and q , we have
considered x1 solution component of (2)

The regular and Brownian motion like structures indi-
cates non-chaotic and chaotic signature in the system
respectively [34–37]. The cloud of (pμ, qμ) is known as
(p, q)-plot.

We investigate (p, q)-plots for the system (2) for R ∈
[1, 1.5] and K ∈ [0, 0.5]. Some of the plots are shown in
Fig. 3e-h at (K = 0, R = 0), (K = 0.2, R = 0), (K =
0, R = 1.15), (K = 0.5, R = 1.5) respectively.

From the figures, it can be observed that the deter-
ministic structure can only be found in Fig. 3e. The
remaining (p, q)-plots shows always Brownian motion
like geometry. So, Fig. 3e indicates non-chaotic dynam-
ics at (K = 0, R = 0) and Fig. 3f-h indicate chaos in
(2) with (K = 0.2, R = 0), (K = 0, R = 1.15), (K =
0.5, R = 1.5) respectively. Further, chaos is quantified
for both the system (1)and (2) with R ∈ [1, 1.5] (fixed
K ) and K ∈ [0, 0.5] (fixed R) respectively.

To quantify chaos, we have implemented a measure
τμ (Based on pc, qc) proposed by Gottwald et.al [35],
which can quantifies chaotic as well as non-chaotic

dynamics of a system, where

τμ = lim
n→∞

log MDμ(n)
log n

. (5)

Here, MDμ(n) is called mean square displacement of
the components pμ, qμ, given by

(6)

MDμ(n) = lim
N→∞

1
N

L∑
k=1

[pμ(k + n) − pμ(k)]2

+ [qμ(k + n) − qμ(k)]2.

Figure 4a shows fluctuation of τμ over R ∈ [1, 1.5] with
K = 0 (blue) and K = 0.2 (red) respectively. It can
be observed from the figure that, τμ < 1 and ≈ 1 over
the respective R ∈ [1, 1.14] and R ∈ (1.14, 1.5]. How-
ever, τμ ≈ 1 for all R ∈ [1, 1.5] can also be observed
in the same figure. It indicates chaotic paradigm of
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Fig. 4 a Represents τµ vs. R(∈ [1, 1.5]) curves with K = 0 (blue) and K = 0.2 (red) respectively. b Represents τµ vs. K
oscillation with R = 1.01. τµ(K, R)-matrix plot is given in c with (K, R) ∈ [0, 0.15] × [1, 1.1]. The coloured bar indicates
values of τµ(K, R)

the system (2) increases over R ∈ [1, 1.5] compare to
the same of (1). On the other hand, Fig. 4b indicates
that the system can have stochastic chaos for noise
strength K ∈ [0.15, 5] with the fixed R = 1.01. From
both the observations, it can therefore assure that the
noise can enhance complexity in the system (1). Fur-
ther, oscillation in τμ over (K,R) ∈ [0, 0.5] × [1, 1.5] is
investigated. We only show the oscillation for (K,R) ∈
[0, 0.15] × [1, 1.1]. The corresponding contour plot is
given in Fig. 4c. From the figure, it can be investigated
that system (1) can produced chaos for most of the
region (K,R) ∈ [0, 0.5] × [1, 1.5]. It can also verified
that the same system shows chaotic phenomena for the
region [0, 0.5]× [1, 1.5]− [0, 0.15]× [1, 1.1]. So, the entire
analysis confirms existence of larger chaotic paradigm
can be obtained for the system (2) compare to same in
(1).

To investigate complexity of the system, we have
applied recurrence weight based entropy method [48].
The following section discusses on finding complexity
in (1) with noise free and noisy conditions.

5 Quantifying complexity of the noise free
and noisy epidemic model

Weighted recurrence (WR) is first developed by Eroglu
et al, based on finite dimensional phase space of a non-
linear system [48]. For an n-dimensional phase space
P = {xi ∈ Rn} (i, j = 1, 2, .., N) (N being the length
of the trajectory of the phase space), WR is denoted by
ωij and defined as

ωij = e−dij . (7)

Here, dij represents distance between two points
xi, xj ∈ Rn and it is calculated by dij = ‖xi − xj‖.
As dij quantifies dispersion between the trajectories,
disorder in the phase space can be characterized by
[ωij ]-matrix plot. However, values of ωij are always lies
between 0 and 1 as it is defined as exponential decay of

dij . We observed nature of [ωij ]-matrix plots with the
variation of R ∈ [1, 1.5] and K ∈ [0, 0.5]. Figure 5a-d
represents some of the [ωij ]-matrix plots of the system
(2) with (K = 0, R = 0), (K = 0.25, R = 0), (K =
0, R = 1.15), (K = 0.5, R = 1.5). From Fig. 5a, it
can be observed that there exists only two variation in
the [ωij ]-matrix. It indicates almost homogenous trajec-
tory’s pattern in the corresponding phase space. On the
other hand, various patterns for the ωij can be inves-
tigated in Fig. 5b–d. It signifies heterogeneous move-
ments in the respective phase trajectory. In this way, we
have characterized disorder in the system dynamics for
R ∈ [1, 1.5] and K ∈ [0, 0.5]. Similarly, probability dis-
tribution is further investigated by constructing sample
space M = {ξ : ξ = 1

N

∑T
j=1 ωij} (T being number of

events). For (K = 0, R = 0), (K = 0.25, R = 0), (K =
0, R = 1.15), (K = 0.5, R = 1.5), the corresponding
(ξ) vs. ξ curves are shown in Fig. 5e-f respectively. From
the figures, it can be seen that only two peaks are exist
in Fig. 5e. It indicates only two variation in ξ and hence
no disorder in the corresponding phase space. However,
large number of peaks can be observed in all the remain-
ing figures (see Fig. 5f-h). It signifies highly disordered
phase spaces for the system (2) with (K = 0.25, R =
0), (K = 0, R = 1.15), (K = 0.5, R = 1.5). So, results
of probability distribution correlates with the nature of
respective [ωij ]-matrix plots as well as system dynam-
ics.

Hence, disorder in the system (2) can be character-
ized using weighted recurrence.

To quantify the disorder, we used weight recurrence
entropy (S ) given by

S = −
∑
ξ∈M

p log p, (8)

where p ≡ p(ξ) calculated between ξ + dξ (dξ being the
small perturbation in ξ).

Figure 6a shows fluctuation in S over R ∈ [1, 1.5]
with K = 0 (blue) and K = 0.2 (red) respectively.
It can be observed from the figure that, S ∈ [0.5, 2.9]
is increasing with R ∈ [1, 1.14] (K = 0). It indicates
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Fig. 5 a Weighted recurrence plots for the system (2) with (K = 0, R = 0), (K = 0.25, R = 0), (K = 0, R = 1.15), (K =
0.5, R = 1.5) respectively. The corresponding probability density curves are shown in b. To count probability p(ξ), we have
considered 50 bins
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Fig. 6 a Represents S vs. R(∈ [1, 1.5]) curves with K = 0 (blue) and K = 0.2 (red) respectively. b Represents S vs. K
oscillation with R = 1.01. S(K , R)-matrix plot is given in c with (K, R) ∈ [0, 0.15] × [1, 1.1]. The coloured bar indicates
values of S(K , R)

that the complexity of the non chaotic dynamics is lies
between 0.5 and 2.8. It can be also observed that S > 3
with R ∈ (1.14, 1.5] (K = 0). Further, oscillation in S is
always greater than 3 can be seen in the same figure. On
the other hand, Fig. 6b indicates that the system pro-
duces complexity greater than 3 for K ∈ [0.15, 5] with
the fixed R = 1.01. Both the phenomena, strongly cor-
relates with the dynamical fluctuations shown in Fig. 5a
and b. In the next, we compute oscillation in S over
(K,R) ∈ [0, 0.5] × [1, 1.5]. Fig. 6c shows fluctuation in
S only for (K,R) ∈ [0, 0.15] × [1, 1.1]. From the figure,
it can be investigated that the system (1) reveals phase
spaces with S > 3 for most of the region (K,R) ∈
[0, 0.15] × [1, 1.1]. The region of S > 3 can also be veri-
fied over the region [0, 0.5] × [1, 1.5] − [0, 0.15] × [1, 1.1].
The entire analysis is thus strongly correlated with the
dynamical variation shown in Fig. 4c.

6 Conclusion

In this research, our main aim is to find the effect of
noise in a nonlinear epidemic system and its complex-
ity. To assure the impact of noise on the system, a
stochastic sensitivity analysis is performed. The results
indicate that noise strength is one of the major factors
to enhance chaos in the system. Biologically it means
a stable epidemic system can be more unpredictable at
some extension of noise. The dynamical fluctuation was
analyzed under the variation of K and R. It confirms
chaotic dynamics can be observed in the system for a
wide range of (K , R). Finally, weighted entropy analy-
sis is applied to investigate the complexity of both the
noise free and noisy epidemic systems. It also assures a
larger region of high complexity for the noise induced
system than the same for the noise free system. As com-
plex dynamics correspond to a destabilizing ecosystem,
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our analysis confirms that the noisy epidemic system
can be more unpredictable compared to the same in its
deterministic part. In this way, we have established the
effect of noise on the epidemic system.
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