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Abstract In this paper, a multi-lane multi-population microscopic model, which presents stop-and-go
waves, is proposed to simulate traffic on a ring-road. Vehicles are divided between human-driven and
autonomous vehicles (AV). Control strategies are designed with the ultimate goal of using a small number
of AVs (less than 5% penetration rate) to represent Lagrangian control actuators that can smooth the mul-
tilane traffic flow and dissipate the traffic instabilities, and in particular stop-and-go waves. This in turn
may reduce fuel consumption and emissions. The lane-changing mechanism is based on three components
that we treat as parameters in the model: safety, incentive and cool-down time. The choice of these param-
eters in the lane-change mechanism is critical to modeling traffic accurately, because different parameter
values can lead to drastically different traffic behaviors. In particular, the number of lane-changes and the
speed variance are highly affected by the choice of parameters. Despite this modeling issue, when using
sufficiently simple and robust controllers for AVs, the stabilization of uniform flow steady state is effec-
tive for any realistic value of the parameters, and ultimately bypasses the observed modeling issue. Our
approach is based on accurate and rigorous mathematical models. The interest, among others, is that such
mathematical model has been shown to allow a limit procedure that is termed, in gas dynamic termi-
nology, mean-field. In simple words, from increasing the human-driven population to infinity, a system of
coupled ordinary and partial differential equations are obtained. Finally, we explore collaborative driving
by assuming that a fraction of human drivers is instructed to drive smoothly to stabilize traffic. We show
that this approach also leads to dissipation of waves.

1 Introduction

Traffic flow displays various instabilities at high densi-
ties, and this is known as a congested phase. Such insta-
bilities may grow into persistent stop-and-go waves and
travel upstream to the flow of traffic. This phenomenon
is especially observed on highways, and was reproduced
in experiments [31,51]. There has been a large effort in
the recent decades to explain the origin of the such
waves, and its potential link to the nonlinearity of the
system (see for instance [11,43]). Waves may be gen-
erated by network features (bottlenecks, ramps etc.)
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as well as by drivers’ behavior (lane changing, strong
breaking, etc.). These waves are responsible for traffic
inefficiencies and increased fuel consumption. There is a
wide literature on traffic modeling by different research
communities, we refer the readers to [19,28,33] for gen-
eral discussions.

Traditional traffic management techniques include
variable speed advisory and variable speed limits.
However, the technological advancements in terms of
measurements and autonomy allowed the use of a
Lagrangian approach using autonomous vehicles as
Lagrangian actuators that are sparse along the road
network. A number of studies addressed the problem of
dampening waves to smooth traffic using autonomous
vehicles, both in simulation [12,25,42,52,53,60] as well
as in experiments [50,62]. The achieved results also
showed that at low penetration (around 5%), traffic can
be smoothed to a great extent in terms of fuel economy
(reduction up to 40%). The effects of connected auto-
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mated vehicles on traffic patterns were investigated in
[3,41]. In particular, long-range feedback may benefit
traffic flow and that car-following models with delay are
able to replicate the experimental results. The results
from the experiments were mostly in a confined setting
and only used one lane, with controls designed from
first principles and control-theoretic methods, [10,14].

The present paper aims at designing rigorous mathe-
matical models and control algorithms for a multi-lane
setting in a ring road. More precisely, we design a multi-
population model with human-driven and autonomous
vehicles. The microscopic dynamics is described by
a Bando-Follow-the-Leader model, proven to present
instabilities (generating in particular stop-and-go
waves), and tuned to experimental data. The lane-
changing mechanism is mainly based on MOBIL (“Min-
imizing Overall Braking Induced by Lane Changes”)
[59] and includes safety, incentive and cool-down time.
Safety poses constraints on acceleration/deceleration of
vehicles, incentive is based on the potential for higher
acceleration in a new lane and cool-down time allows
lane-changing only after a certain amount of time from
the last lane change. The resulting dynamics is of a
hybrid nature and heavily depends on the choice of
parameters for these three mechanisms.

In particular, we show in this article that the quan-
titative but also qualitative behavior of the dynamics
(persistent instabilities or not; number of lane-change;
speed variance) highly depends on the parameters of
the lane changing mechanism. Despite the variability of
traffic patterns, we show that we can still design sim-
ple control algorithms, which are robust and can stabi-
lize traffic with a low penetration rate for any choice of
parameters (in a physically relevant parameters’ space).
Finally, we show that a collaborative driving approach,
where a minority of vehicles would have ”good human
behavior”, would also bring some stability to the sys-
tem.

The hybrid model and control strategies are based on
accurate mathematical analysis. This type of rigorous
mathematical hybrid system, in turn, has been shown to
allow a limiting procedure, called mean-field, with the
population of human-driven cars sent to infinity. The
limiting controlled dynamics couples a partial differ-
ential equation for the human-driven car density with
a controlled hybrid system for the autonomous vehi-
cles. Optimal control problems have also been shown to
be compatible with the limiting procedure. This micro-
scopic model and microscopic control is a first-step to
allow control strategies to be designed for the limiting
dynamics and at different scales.

The paper is organized as follows: in Sect. 1.1, we dis-
cuss existing models in the literature and present our
models. In Sect. 2, we study the influence of the lane-
changing parameters on the traffic behavior. In Sect. 3,
we see how autonomous vehicles can be used to smooth
traffic instabilities, in particular stop-and-go waves in a
robust way (with respect to the change in lane-changing
parameters). In Sect. 4, we discuss the potential of col-
laborative driving where both collaborative drivers and
non-collaborative drivers co-exists. In Sect. 5, we dis-

cuss the potential of this model to allow a mean-field
procedure.

1.1 Existing traffic models in the literature

A multilane model is typically composed of two compo-
nents: longitudinal dynamics for each lane and a lane-
change mechanism. Due to the different scales that can
be represented in vehicular traffic, one can also clas-
sify traffic models by modelling longitudinal dynamics
for each lane into two typical categories: micro-models
and macro-models. For general discussions about traffic
models at different scales, we refer to the survey papers
[2,8,46].

(a) Micro-model
There are many different micro-scale traffic models. We
show several continuous time models here that are well
understood and used regularly: the Intelligent Driver
Model (IDM), the Bando model, and the Follow The
Leader (FTL) model. For the IDM, introduced in [58],
the longitudinal dynamics for a lane are written:

⎧
⎨

⎩

ẋi = vi,

v̇i = a

(

1 −
(

vi

v0

)δ

−
(

s∗(vi,Δvi)
si

)2
)

,

where s∗(vi,Δvi) = s0 + viT + viΔvi

2
√

ab
, given model

parameters v0, s0, T, a, b. Here, v0 is a maximal target
speed that could be chosen as 30 m.s−1, s0 is a min-
imum distance that could typically be chosen as 2m,
T is a characteristic time (or safe timeheadway) that
could be chosen as 1.5 s, a a maximal acceleration and
b a maximal comfortable deceleration that could be cho-
sen respectively as 1 m.s−2 and 2 m.s−2.

For the Bando model, introduced in [7], the longitu-
dinal dynamics for a lane are written:

⎧
⎨

⎩

ẋi = vi,

v̇i = α

(

V (Δxi) − vi

)

,

where V (·) is the optimal velocity function that depends
on the space headway, Δxi = xi+1 − xi, in front of the
ith vehicle (see (2)).

For the FTL model, introduced in [21] (see also [29,
Eq. (19)–(20)]), the longitudinal dynamics for a lane
are written:

{
ẋi = vi,

v̇i = β vi+1−vi

(xi+1−xi−lv)2 .

Not all models recreate stop and go traffic waves.
Regarding this phenomena, the IDM or a combination
of the Bando model and FTL, so-called “Bando-FTL
model”, is usually used [11,14,57], although a modi-
fied version of the original Bando model including some
delays (see [5]) could also be used. The well-posedness
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of the Bando-FTL model and its delayed version were
studied in [24]. For the Bando-FTL, the longitudinal
dynamics for a lane are written:

{
ẋi = vi,

v̇i = α(V (xi+1 − xi) − vi) + β vi+1−vi

(xi+1−xi−lv)2 ,
(1)

where vi is the velocity of the ith car and xi is its loca-
tion. The constant α is the weight for the Bando model
and β is the weight of the Follow-the-leader model. V
is still the optimal velocity function given by [7,14]

V (x) = Vmax

tanh(x−lv
d0

− 2) + tanh(2)
1 + tanh(2)

, (2)

where lv is the length of the car, and d0 is the mini-
mal distance for the optimal velocity model (see Table
1). The Bando-FTL model is primarily studied in this
paper. This model has been used in the past, for
instance in [11,14], and has several advantages:

– the FTL model represents the competing dynamics
between drivers and deals with the safety issues by
applying a large braking value when a vehicle is too
close to the leading vehicle. This portion is at the
origin of the stop-and-go waves.

– the Bando model enables realistic uniform flow
steady-states: for the density of cars on the road,
there is a unique uniform flow equilibrium (h, v∗(h)),
where h is the equilibrium headway and v∗(h) is the
equilibrium speed, which decreases with h. Different
optimal velocity profiles may be used, but then car
passing is difficult to prevent and unrealistic large
acceleration may be generated, see [6,35].

– Because the FTL portion already incorporates a
safety criteria, given reasonable initial conditions,
the Bando-FTL model usually does not require an
additional fail/safe condition. The model is also gen-
erally more robust than the widely used Intelligent
Driver’s Model (IDM) [58].

Moreover, if we consider N vehicles on a multilane ring-
road with only human-driven vehicles, the traffic is rep-
resented by the variables (xj

i , v
j
i )i∈{1,...,nj}, j∈J , where

j is the lane number, nj is the number of vehicles in
lane j. The dynamics of these variables still follows the
Bando-FTL model (1) with the notations vj

nj+1 := vj
1

and xj
nj+1 := xj

1 to take into account the ring-road
geography.

To take into account physical limitations of real cars,
we also cap the acceleration to 2.5 m·s−2 and the decel-
eration to 4 m·s−2. It has been shown that this model
produces stop-and-go waves in lane j if [11]

α

2
+

L2β

(nj)2
< V ′

(
nj

L

)

, (3)

where V ′ is the derivative of function V (x) in Eq. (2),
and L is the length of the road.
(b) Lateral dynamics and lane-change mechanism
Regarding the Bando-FTL model, we include a lane
changing mechanism suggested by Treiber et al. in [59].
Several models of lane changing dynamics have been
explored [64], such as 1. Gipps-type lane changing [22,
30,63], and 2. Utility theory based lane changing [1,54].
In Gipps-type lane changing, the driver’s behavior is
governed by maintaining a desired speed and being in
the correct lane for an intended maneuver. These types
of lane changes depend on parameters corresponding
to an incentive and an acceptable level of risk for a
collision, where some differentiate between cooperative
and forced lane changes. Characteristics distinguishing
utility theory based lane changing are a hierarchical
decision-making process, desirability versus necessity,
and the consideration of multiple driver types (driver
behavior heterogeneity).

A regular vehicle changes lane if and only if

– It is safe to do so: changing lane does not imply a
huge braking for the vehicle behind.

– It has an acceleration incentive: the expected accel-
eration after changing lane is higher than the
expected acceleration from not changing lane.

– A certain amount of time has passed from the time
of the vehicle’s last lane change to the current time.
We refer to this as the lane change “cooldown time.”

In mathematical form, if we denote i as the vehicle
changing lane and j as the potential new lane, we have

ãj
i > ai + ΔI (incentive),

ãj
i > −Δs, ãj

fol(i) > −Δs (safety),
t > t0 + τ (cooldown time).

(4)

Here ai is the acceleration of the vehicle changing
lane in the original lane, ãi is the expected acceleration
in the new lane, ãj

fol(i) is the expected acceleration of its
follower in the new lane, ΔI is a constant representing
the threshold incentive and Δs represents the threshold
safety. For the cooldown time equation, t0 represents
the last time a lane change occurred for the considered
vehicle, and shows that the time of the next lane change
should be greater by a threshold value τ .

There are two main advantages to using acceleration,
instead of speed, to model lane-change: (1) the lane-
change decision-making process is dramatically simpli-
fied; (2) one can readily calculate accelerations with an
underlying microscopic longitudinal traffic model, see
[64]. We also point out that the lane-change mecha-
nisms lead to discrete dynamics of the vehicles. The
presence of both continuous dynamics and discrete
dynamics of vehicles motivate us to consider a hybrid
system, see [9,20,23,45,55].

A natural question is to wonder about the influence
of the lane-changing mechanisms on the stability of the
system and whether such a model reduces traffic insta-
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Table 1 Parameters used for the simulations

Parameter Value Description

N 24 Number of vehicles per
lane

J 3 Number of lanes
lv 4.5 Length of a car [m]
d0 2.5 Minimal distance for

optimal velocity model
β 20 Weight FTL
α 0.5 Weight OV
dt 0.02 Timestep size for the

simulation
tf 1000 Final time of the

simulation [s]
Max-dec 4 Maximum deceleration

[ m·s−2]
Max-acc 2.5 Maximum acceleration

[ m·s−2]
Iter-lc 50 Iteration for lane

changing, dependent on
dt

τ 5 Cool down duration after
lane change [s]

k 1 Constant in control law
AV

c1 0.5 Speed variance threshold
for AV changing lane

t1 10 Time to average speed
variance for AV changing
lane [s]

t2 10 AV cool down duration
after lane change [s]

bilities when adding the lane-changing mechanisms, or
on the contrary, whether it produces even stronger traf-
fic instabilities. We show in the next section that the
model heavily depends on the parameters of the lane-
changing mechanisms. Besides this, the possible behav-
iors are extensive. As the lanes are coupled, there are
scenarios where one lane can produce instabilities such
as stop-and-go waves while another lane does not.

2 Strong influence of the lane-changing
parameters on the traffic behavior

In this section, we study the effect of the threshold
parameters ΔI and Δs and we show that different val-
ues of these parameters can lead to radically different
behaviors for the traffic flow. To illustrate this phenom-
ena, we fix a given initial condition where all lanes have
the same number of cars (in this case 24 cars for the
middle lane of length 240 m, see Table 1 for a summary
of the parameters used), and all the cars are initially
located within 1m from their steady-state location (the
steady-state location corresponds to a uniform spac-
ing). Then we perform traffic simulations over 1000s
with ΔI ranging from 0.6 to 3 m·s−2 and Δs ranging

Fig. 1 Number of lane changes without control in the sys-
tem given different threshold values for incentive and safety

from 0.5 to 5 m·s−2. Note that in our model, the max-
imum acceleration allowed by the car is 2.5m·s−2 and
the maximum deceleration allowed by the car is 4m·s−2.
The explanation for the choice of the range on ΔI and
Δs is as follows: requiring an incentive ΔI of 3m·s−2 to
change lane means that you can only change lane when
your lane is decelerating and you can accelerate strongly
in the neighboring lane, whereas a safety threshold Δs

of 5m·s−2 means that we do not require any safety since
the vehicles cannot brake more strongly anyway. We
expect that the higher the request on the incentive is,
the lower the number of lane changes. Similarly, the
higher the security threshold (hence the lower security
required), the higher the number of lane changes. These
expectations were confirmed in Fig. 1, where we plot the
number of lane changes over the total length of the sim-
ulation for each combination of parameters ΔI and Δs.

In Fig. 2, for each simulation, we compute the speed
variance for each lane and at each time-step, and find
the average of the value over the last 300 s and across
the three lanes. We then average this over 100 sim-
ulations with random initial conditions. We see that
in some cases the speed variance is close to 0, which
suggests that the system reached equilibrium. In other
cases the speed variance has a high value, suggesting
that the system still undergoes some stop-and-go waves.

These speculations seems to be clear when looking
at the instantaneous speed variance over time for Fig. 3
with parameter values Δs = 4 m·s−2, ΔI = 0.6 m·s−2

and Δs = 0.5 m·s−2 ΔI = 3 m·s−2, respectively. We
see that for Δs = 4 m·s−2 and ΔI = 0.6 m·s−2, the
system approaches a uniform flow after 200 s, while
for Δs = 0.5 m·s−2 and ΔI = 3 m·s−2, it does not
and traffic instabilities persist in the system. Compar-
ing this to Fig. 1, one can note that in the area with a
very small incentive threshold and a very large safety
threshold, there are (logically) a large number of lane-
changes but no apparent traffic instability, a safety vari-
ance close to 0 and a high average velocity. This is

123



Eur. Phys. J. Spec. Top. (2022) 231:1689–1700 1693

Fig. 2 Speed variance and average speed of the system without control given different threshold values for incentive and
safety

something that can seem counter-intuitive. In fact in
this situation lane-changes happens each time there is
a slight difference of speed in the lane, and nearly no
matter unsafe it is. This seems to result in an homog-
enization of the traffic. Of course, this could contra-
dict real-life experience because in this extreme case
the lane-changes are very non-human (they are in par-
ticular extremely dangerous).

3 Using autonomous vehicles to smooth
traffic instabilities

Traffic flow is very particular in that a single individual
can have a global effect on the entire dynamic of the
flow. This is found in both micro and macro models
and can be understood from a simple example: a single
individual can be a bottleneck and thus influence the
traffic across the entire system. Given this, the section
serves to investigate the following: is it possible to dis-
sipate and prevent traffic instabilities by simply adding
a single AV that follows a prescribed acceleration? And
if so, what prescribed acceleration should be given to
these cars to smooth traffic efficiently?

When adding an AV to the system, the equations are
modified as follows: the lane of the AV is denoted by
j and the car’s number is denoted by 0. From this, we
have

ẋ0(t) = v0(t),
v̇0(t) = u(t),

(5)

where u is a control law that can be chosen. Using AVs
to smooth traffic flow has already been studied in both
theory and experiments in a single lane context [14]. In
particular, from [14], the author uses two very simple
controllers, one proportional and one slightly propor-
tional integral controller. From the theoretical analy-
sis and experiments, the author demonstrated the effi-

ciency of such simple controllers to smooth stop-and-go
waves in a single lane ring-road, with a reduction of fuel
consumption of up to 40%. However, when the traffic
is multi-lane, the problem becomes more difficult for
several reasons:

– The lane-changes add complexity to the dynamics
of the system and impacts the stability of the stop-
and-go waves, potentially making them harder to
smooth.

– The AV only belongs to one lane but can dissipate
and prevent waves on all three lanes. Hence, on two
lanes, the lane-changes are represented by the cou-
pling between waves.

– The model is very sensitive to errors from the
parameters, as shown in the previous section, and
these errors could lead to simulations that are far
from the ground truth.

The controller we use in our setting is a proportional
controller where the ideal command is given as follows:

u(t) = −k (v0 − vtarget) ,

vtarget = v∗
(

nj + lv
Lj

)

,
(6)

where lv is the average length of a car, k is a constant
design parameter, Lj is the length of lane j and nj is the
total number of cars in the jth lane. Recall that v∗(h)
is the steady-state speed of the system corresponding
to the steady-state headway h. vtarget is the speed of
the uniform flow steady-state we would like to reach.
This ideal command does not take into account to pre-
vent the AV from crashing into another car. To tackle
this, one could add a safety mechanism where the AV
would brake if it is too close to its leader. However, even
with a safety mechanism, the AV can still get stuck in
stop-and-go waves. This is because vtarget would be too
high compared to the current velocity of the cars in
front of the AV. The AV would then try to increase its
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Fig. 3 Speed variance and average speed over time for dif-
ferent threshold values. Up left:speed variance with incen-
tive threshold = 0.6 m.s−2 and safety threshold = 4 m.s−2,
Up right: the average speed per lane with the same incentive

and safety thresholds. Down left: speed variance with incen-
tive threshold = 3 m.s−2 and safety threshold = 0.5 m.s−2,
Down right: the average speed per lane with the same incen-
tive and safety thresholds

speed until it is too close to the vehicle in front, then
it would brake, and then increase its speed again, thus
maintaining a stop and go wave. Due to this, we add
the following features to our control:

• (quasi-stationary steady-state strategy) As men-
tioned, we are trying to make the AV not get stuck
in a stop and go wave as it tries to reach an ideal
steady-state speed that is higher than the speed of
its leader. To deal with this, we start by stabilizing a
smaller speed, and then we slowly raise the stabiliz-
ing speed to the ideal steady state speed. In control
literature, this is referred to as following a contin-

uous path of a steady-state. This is only possible
because adding the AV allows the number of pos-
sible steady-states to go from a single steady-state
to a continuous range. In mathematical terms, the
control law becomes

u(t) = −k(v0 − v̄d(t)), (7)

where vd is given by

⎧
⎨

⎩

vd(t) =vmin + (v̄∗(h∗) − vmin)
t

ttr
, for t ∈ [0, ttr],

vd(t) =v̄∗(h∗), for t ≥ ttr

(8)
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Fig. 4 Speed variance for different safety and incentive thresholds. Left: without control, right: with control

ttr is the time of transition and v∗(h∗) is the ideal
steady-state speed.

• (safety mechanism) When the AV starts to get close
to its leading vehicle we change the target speed to
the speed of the leading vehicle for safety.

(a) Lateral controller
In a multilane framework, another interesting means of
control for the AV is having the ability to change lanes,
and this is referred to as a lateral controller. Given the
results from [14], traffic can be stabilized with one AV
per lane in the case that the AVs cannot change lanes.
However, if AVs can change lanes and have good lateral
controllers, then traffic can be stabilized in multilane
ring-roads with potentially even a single AV. Our lateral
controller is the following: the AV changes lane if and
only if

– the safety conditions (4) are satisfied (just like for a
regular vehicle).

– the speed variance in another lane averaged on the
last t1 seconds, is higher than the speed variance in
the AV’s lane, also averaged on the last t1 seconds.
This difference has to be larger than a threshold
(noted c1 in Table 1).

– the AV has not been changing lanes in the last t2
seconds.

We denote the AV’s lane by j0, and the last time the
AV changed lane as t0 (t0 = 0 if the AV never changed
lane). From this, we have

– t > t1 and there exists j ∈ {1, ..., 3} \ {j0} such that

∫ t

t−t1

1

Nj

Nj∑
i=1

(vji )
2(s)− 1

N2
j

⎛
⎝

Nj∑
i=1

vji (s)

⎞
⎠

2

ds

> c1 +

∫ t

t−t1

1

Nj0

Nj0∑
i=1

(vj0i )2(s)− 1

N2
j0

⎛
⎝

Nj0∑
i=1

vj0i (s)

⎞
⎠

2

ds.

(9)

– t > t2 + t0.
– the safety condition (4) is satisfied with i = 0 and

j = j0.

The main difference between the regular vehicles and
the AV is that the incentive for the AV is to go in the
lane with the highest speed variance. This is different
to an incentive that is based on acceleration. Averag-
ing and threshold values are included to account for the
stochastic nature of the measurements, and to avoid the
AV changing lanes constantly, which could destabilize
the system. Note that this lateral controller assumes
a global knowledge of the state of the system, which
might be a limitation in practice. Nevertheless, with
V2V connectivity coupled to the fact that this infor-
mation is only accessed at a reduced frequency (cooling
time t2 and evaluation time t1 are set as 10s) we can
hope of reconstructing the knowledge of the speed vari-
ance with an observer. In lack of V2V, side sensors and
history could also allow to construct at least a rough
estimate of this quantity.

(b) Results
In this section, we show that similar simple controllers
not only manage to smooth traffic instabilities in partic-
ular stop-and-go waves in a multi-lane setting, but also
hold a large range of parameters ΔI and Δs. We run
two batches of simulations with a fixed initial condition
with random perturbations as in Fig. 2 and different
parameters of ΔI and Δs. For each set of parameters
we run 100 simulations and average the results over
the 100 simulations and the 300 last seconds. The first
batch in the experiment is similar to the previous sec-
tion in that there are no AVs. In the second batch of
the experiment, we turn an AV on. The AV is initially
in the middle lane. In Fig. 4, for simulations with and
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Fig. 5 Speed variance over time for different threshold parameters. Left: without control, right: with control

without the AV, respectively, we represent the speed
variance averaged over the 300 last seconds and the
three lanes, for each pair of parameters ΔI and Δs. We
see a significant difference between the speed variance
of the system without control (left) and without con-
trol (right): the speed variance when adding the AV is
always below 0.5m.s−1, namely ten times smaller that
the case without control.

Note that the reduction of speed variance and dissi-
pation of waves is effective over all the range of param-
eters ΔI and Δs. Moreover, there is a single AV in this
simulation, therefore the penetration rate (fraction of
AV in the total traffic) is below 2%. To illustrate what
is going on, we represent in Fig. 5 the speed variance
over time in all three lanes, where ΔI = 3 m·s−2 and
Δs = 0.5 m·s−2, both with and without a controller.
As expected, we see that the AV is stabilizing mostly
one lane that reaches uniform flow, but despite the very
weak coupling of the lanes (due to the very small num-
ber of lane changes), it is still enough to roughly dis-
sipate the waves that form in the other lanes. On the
other hand, when there is no AV, the speed variance
remains high. Note that the y-axis in the figure with
the control only goes to 4.5 m·s−1 while the axis of the
figure without the control goes to 9 m·s−1.

4 Collaborative driving

Another promising approach that could highly impact
traffic inefficiencies, including dissipation of traffic
instabilities is the collaborative driving behavior of the
drivers. Collaborative driving (CD), also combined with
autonomy [15,61], is an important emerging aspect of
Intelligent Transportation Systems (ITS). CD is often
times based on communication with various possible

approaches proposed in the literature [26,32,40,44,47,
49], and needs to take into account human behavior
[34,56].

Here, we take the simple approach of assuming that
a fraction of the human drivers is instructed to target
specific preferred speed, while keeping a smooth and
safe driving. This represents an offline centralized con-
trol mechanism, with decentralized human actuators.
The target speed may be communicated daily or for
times of day. More precisely, denoting S the number of
vehicles in collaborative driving and I the rest of the
vehicles in the lane, we have

⎧
⎨

⎩

ẋi = vi, i = 1, . . . , n,

v̇i = αi(V (xi+1 − xi) − vi) + βi
vi+1 − vi

(xi+1 − xi − lv)2
,

(10)

where n is the number of vehicles, αi = α and βi = β
if i ∈ I, αi = αS and βi = βS if i ∈ S, with α and β
such that (3) holds and αS and βS satisfy the opposite
inequality

α

2
+

L2β

(n)2
> V ′

(n

L

)
. (11)

We present here numerical simulations suggesting that
such a collaborative behavior allows to recover some
stability of the flow and decreases speed variance and
car accelerations, and hence energy consumption. How-
ever, while promising, these results also suggest that
AVs are much more efficient at recovering stabilities of
the flow with a very small penetration rate.

In Fig. 6, we present simulations where the propor-
tion of cars p varies from no collaborative behavior to
100% of drivers following this collaborating behavior.
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As expected, when p = 0 (no collaborative behavior)
the system has a large speed variance, while when p = 1
the system is stable and hence the speed variance is
close to 0. However, what is interesting to see is that as
soon as p > 0, that is to say as soon as some vehicles
starts to have a collaborative behavior, the global speed
variance of the system diminishes. In Fig. 6 we ran sim-
ulations on a single lane ring-road of 258m with 25 cars
during 1000s an starting close to the steady-state equi-
librium with random initial conditions. Among the 25
cars the number of cars with a collaborative behavior
was 25 (p = 1), 12 (p = 0.48), then 8 (p = 0.32), 6
(p = 0.24), 5 (p = 0.20), 4 (p = 0.16), 3 (p = 0.12), 2
(p = 0.08), 1 (p = 0.04), 0 (p = 0). For each of these
proportions we ran 40 simulations for which we com-
puted the instantaneous spatial speed variance between
cars averaged over the last 100 s of the simulation, and
then averaged it over the 40 simulations. Despite being
less effective than control AVs at low penetration rate
this observation is an incentive to look more in details
at collaborating behaviors. For instance, in these sim-
ulations, the cars with collaborative behaviors are as
evenly distributed in the traffic, and it would be inter-
esting to see if there is any difference when they are
clustered.

5 Future works: macro- and mean-field
model

5.1 Macro-model

In this paper we consider a micro-model, which gives
us a better understanding of the dynamics and behav-
ior of individual cars, and thus a more accurate measure
of fuel consumption. However, when the number of cars
becomes high, the analysis for optimization and optimal
control can become computationally unfeasible. There-
fore many macroscopic models (macro-model) have
been derived to study the behavior of traffic flow at
a larger scale. In these models, the dynamics are dis-
tributed and represented by partial differential equa-
tions. The first models were scalar, such as the cele-
brated but limited Lighthill–Whitham–Richards model,
where the density of cars on the road is the only vari-
able and the speed is a decreasing function of density
[39,48]. These models regained interest with the emer-
gence of more realistic second-order models [4,16,36].
These models included two equations where both the
density and speed were included as variables. The first
equation often represents a transport density, while the
second equation represents the effect from acceleration.
Second order macro-models can also represent traffic
waves more easily. One can cite in particular the study
of “jamitons” waves [17]. A harder question when deal-
ing with macro-models is the question of the inter-
actions between the AVs and the regular traffic flow.
While for micro-models, this interaction is relatively
easy to represent accurately (one only needs to give

Fig. 6 Speed variance with respect to proportion of cars
with a collaborative behavior

the AV a different acceleration law than the other vehi-
cles), the interaction between the AVs and the rest of
the traffic flow in a macro-model raises several issues:

– Should the AVs also obey there own macro-model
and, if so, how are the two macro-models coupled?

– Should the AVs be represented as individual cars
and how should the microscale and macroscale be
coupled?

One proposition to interact these two models is in the
form of an ODE–PDE system, which is given in [13].
Several works were even developed to show that this
system makes sense mathematically (i.e. are well posed)
and exhibits the expected behavior [27,37,38]. For the
above reasons, we restricted ourselves to microscopic
modelling in this paper, even though a macro-scale
model may be promising to design efficient controllers
that can dissipate traffic instabilities, in particular stop-
and-go waves.

5.2 Mean-field models

In this section, we go further and talk about the mean-
field models on vehicular traffic.

Microscopic models describe the details of the traffic
flow by studying each individual vehicle’s microscopic
properties like its position and velocity. The trajectories
of the vehicles are predicted by means of ordinary differ-
ential equations (ODEs). Macroscopic models, assume
a sufficiently large number of vehicles on the road and
treats vehicular traffic as fluid flow. In particular, the
evolution of the traffic density μ is governed by par-
tial differential equations (PDEs). Thus, by capturing
and predicting the main phenomenology of microscopic
dynamics, macroscopic models can provide an overall
and statistical view of traffic. One can also use a cou-
pled ODE-PDE system to model the dynamics of a
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small number of AVs and a large number of regular
vehicles on a single lane. This is clearly a combination
of the microscopic and macroscopic models using mul-
tiple scales together.

The relationship between the two different scale
models, microscopic and macroscopic models, can be
both formally and rigorously established via mean-field
approach by taking the number of vehicles N to go
to infinity. Let (xi, vi) be the position-velocity vector
of the i-th vehicle and μ be the density distribution
of infinitely many vehicles in the space of position and
velocity. The dynamics of the finitely many vehicles can
be described by

{
ẋi = vi,

v̇i = H ∗ μN (xi, vi), i = 1, . . . , N,
(12)

where H : R × R
+ �→ R is a convolutional kernel and

μN (t) = 1
N

∑N
i=1 δ(xi(t),vi(t)) is a probability measure.

The dynamics of the infinitely many vehicles can be
described by

∂tμ + v · ∇xμ = ∇v · [(H ∗ μ)μ]. (13)

Furthermore, one can rigorously derive the mean-field
limit of the finite-dimensional ODE system (12), and
the infinite dimensional mean-field limit (13) (a Vlasov–
Poisson type PDE), see [18]. We also want to point out
that the above mean-field approach is different with the
so called “mean-field games” approach. For the mean-
field games approach, one assumes many agents with
perfect knowledge of the system and gives a strategy
to solve a game, then passes it to the limit as in the
mean-field approach.

For the multi-lane and multi-class traffic that includes
AVs and regular vehicles, one can only consider a mean-
field limit for the dynamics of the regular vehicles
compared to the finitely many AVs governed by con-
trol dynamics. The lane changing maneuvers of the
infinitely many regular vehicles lead to a source term
of the Vlasov–Poisson type PDE. The limit process
from a finite-dimensional controlled ODE system to
an infinite-dimensional controlled coupled ODE-PDE
system can be established in generalized Wasserstein
distance. Additionally, one can also consider optimal
control problems associated to the controlled ODE and
coupled ODE-PDE systems where the cost functions
represent, for instance, fuel consumption. Moreover, we
have the following theorem, see [18].

Theorem 1 The optimal solution to the optimal con-
trol problem of the ODE system converges to the optimal
solution of the optimal control problem of the coupled
ODE-PDE system as the number of regular vehicles N
goes to infinity.

Note that Theorem 1 implies that one can design con-
trols in the microscopic level and be able to pass the
limit to get the control in the mean-field limit level.

6 Conclusion

In this paper, we presented a hybrid multi-lane micro-
model for traffic flow in a ring-road. This model exhibits
stop-and-go waves, and we show that the safety and
inventive thresholds in lane changing conditions highly
impact the behavior of the system. We use a single AV
as a means of control for dissipating traffic instabil-
ities, including stop-and-go waves, and we show that
even simple controllers can be very efficient in reduc-
ing traffic, whatever the thresholds of the lane changing
conditions. Additionally, this can be shown to be a very
good basis to derive a controller for mean-field models,
when we consider a mean-field limit for the dynamics
of infinitely many regular vehicles and control dynamics
for finitely many AVs.
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Rat, Raphael Stern, Rahul Bhadani, Benjamin Seibold,
Jonathan Sprinkle, Daniel B Work, and Benedetto Pic-
coli. Feedback control algorithms for the dissipation of
traffic waves with autonomous vehicles. In Computa-
tional Intelligence and Optimization Methods for Con-
trol Engineering, pages 275–299. Springer, 2019

15. Z. Dong, W. Shi, G. Tong, K. Yang. Collabo-
rative autonomous driving: Vision and challenges.
In 2020 International Conference on Connected and
Autonomous Driving (MetroCAD), pages 17–26 (2020)

16. S. Fan, Y. Sun, B. Piccoli, B. Seibold, D.B. Work. A col-
lapsed generalized aw-rascle-zhang model and its model
accuracy. arXiv:1702.03624 (2017)

17. M.R. Flynn, A.R. Kasimov, J.-C. Nave, R.R. Rosales,
B. Seibold. Self-sustained nonlinear waves in traffic flow.
Phys. Rev. E 79(5), 056113 (2009)

18. Massimo Fornasier, Benedetto Piccoli, Francesco Rossi,
Mean-field sparse optimal control. Philos. Trans. R. Soc.
A: Math. Phys. Eng. Sci. 372(2028), 20130400 (2014)

19. M. Garavello, K. Han, B. Piccoli. Models for vehicular
traffic on networks, volume 9 of AIMS Series on Applied
Mathematics. American Institute of Mathematical Sci-
ences (AIMS), Springfield, MO (2016)

20. Mauro Garavello, Benedetto Piccoli, Hybrid necessary
principle. SIAM J. Control. Optim. 43(5), 1867–1887
(2005)

21. D.C. Gazis, R. Herman, R.W. Rothery. Nonlinear
follow-the-leader models of traffic flow. Oper. Res. 9(4),
545–567 (1961)

22. P.G. Gipps. A model for the structure of lane-changing
decisions. Transp. Res. Part B: Methodol. 20(5), 403–
414 (1986)

23. R. Goebel, R.G. Sanfelice, A.R. Teel, Hybrid dynamical
systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

24. Xiaoqian Gong and Alexander Keimer. On the well-
posedness of the “bando-follow the leader” car fol-
lowing model and a “time-delayed version”. Preprint,
2022. Researchgate https://doi.org/10.13140/RG.2.2.
22507.62246.

25. Maxime Guériau, Romain Billot, Nour-Eddin [El
Faouzi], Julien Monteil, Frédéric Armetta, and Salima
Hassas. How to assess the benefits of connected vehicles?
a simulation framework for the design of cooperative
traffic management strategies. Transportation Research
Part C: Emerging Technologies, 67:266 – 279, 2016

26. S. Halle, J. Laumonier, and B. Chaib-Draa. A decen-
tralized approach to collaborative driving coordination.
In Proceedings. The 7th International IEEE Confer-
ence on Intelligent Transportation Systems (IEEE Cat.
No.04TH8749), pages 453–458, 2004

27. Amaury Hayat, Thibault Liard, Francesca Marcellini,
and Benedetto Piccoli. A multiscale second order model
for the interaction between av and traffic flows: analysis
and existence of solutions. Preprint, 2021

28. Dirk Helbing, Traffic and related self-driven many-
particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

29. Dirk Helbing, Traffic and related self-driven many-
particle systems. Rev. Mod. Phys. 73(4), 1067 (2001)

30. Peter Hidas, Modelling lane changing and merging in
microscopic traffic simulation. Transportation Research
Part C: Emerging Technologies 10(5–6), 351–371 (2002)

31. Rui Jiang, Mao-Bin Hu, HM Zhang, Zi-You Gao, Bin
Jia, Qing-Song Wu, Bing Wang, and Ming Yang. Traffic
experiment reveals the nature of car-following. PloS one,
9(4):e94351, 2014

32. Nevin Vunka Jungum, Razvi M. Doomun, Soulaksh-
mee D. Ghurbhurrun, and Sameerchand Pudaruth. Col-
laborative driving support system in mobile pervasive
environments. In 2008 The Fourth International Con-
ference on Wireless and Mobile Communications, pages
358–363, 2008

33. Boris S Kerner. The physics of traffic. Physics World,
12(8):25–30, 1999

34. Rinta Kridalukmana, Hai Yan Lu, and Mohsen Nader-
pour. A supportive situation awareness model for
human-autonomy teaming in collaborative driving. The-
oretical Issues in Ergonomics Science, 21(6):658–683,
2020

35. Hajar Lazar, Khadija Rhoulami, and Moulay Driss Rah-
mani. A review analysis of optimal velocity models. Peri-
odica Polytechnica Transportation Engineering, 44:123–
131, 01 2016

36. Jean-Patrick Lebacque, Salim Mammar, and Habib Haj
Salem. Generic second order traffic flow modelling.
In Transportation and Traffic Theory 2007. Papers
Selected for Presentation at ISTTT17Engineering and
Physical Sciences Research Council (Great Britain)
Rees Jeffreys Road FundTransport Research Founda-
tionTMS ConsultancyOve Arup and Partners, Hong
KongTransportation Planning (International) PTV AG,
2007

123

http://arxiv.org/abs/1702.03624
https://doi.org/10.13140/RG.2.2.22507.62246.
https://doi.org/10.13140/RG.2.2.22507.62246.


1700 Eur. Phys. J. Spec. Top. (2022) 231:1689–1700

37. Thibault Liard and Benedetto Piccoli. On entropic solu-
tions to conservation laws coupled with moving bottle-
necks. Technical report, June 2019. working paper or
preprint, 2019

38. Thibault Liard, Benedetto Piccoli, Well-posedness for
scalar conservation laws with moving flux constraints.
SIAM J. Appl. Math. 79(2), 641–667 (2019)

39. M. J. Lighthill and G. B. Whitham. On Kinematic
Waves. II. A Theory of Traffic Flow on Long Crowded
Roads. Royal Society of London Proceedings Series A,
229:317–345, May 1955

40. Shou-Pon. Lin, Nicholas F. Maxemchuk, The fail-safe
operation of collaborative driving systems. Journal of
Intelligent Transportation Systems 20(1), 88–101 (2016)

41. Sanghoon Oh, Linjun Zhang, Eric Tseng, Wayne
Williams, Helen Kourous, and Gabor Orosz. Safe deci-
sion and control of connected automated vehicles for an
unprotected left turn. In Dynamic Systems and Control
Conference, volume 84270, page V001T10A005. Ameri-
can Society of Mechanical Engineers, 2020
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