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Abstract Ridership modeling is a growing field critical for Intelligent Transportation. Accurate traffic
prediction and early surge detection are vital components in designing public transit dispatching systems.
However, modeling Spatio-temporal traffic at a small geographic scale and fine time granularity is challeng-
ing due to the sparseness, low signal-to-noise ratio, and the large dimensionality of the mobility network
data. We propose a framework for edge-level traffic prediction to tackle these challenges, which addresses
the curse of dimensionality through a pipeline of appropriate network aggregation, nonlinear modeling, and
final edge-level disaggregation. Subsequently, we show that the low-dimensional aggregated space model
residuals are more suited for anomaly detection than raw ridership data. Our framework is evaluated using
the for-hire vehicle and taxi ridership dataset from the two airports in New York City, experimenting with
different network aggregation techniques and modeling paradigms. The results reinstate the superiority of
the proposed pipeline in ridership prediction and anomaly detection compared with single-model methods,
and help build up scenario design for transportation simulation and planning.

1 Introduction

Intelligent Transportation System is widely used in
public transit to solve problems in urban transporta-
tion systems like pollution, congestion, and inefficiency
caused by increasing mobility [1–3]. To design a pub-
lic transit system and scheduling, ensuring the sys-
tem’s resilience requires an understanding of the pro-
jected demand under regular and irregular conditions.
Hence, traffic demand prediction and anomaly detec-
tion become vital processes.

We design an accurate and efficient system to make
a short-term prediction and detect anomalous days in
urban networks in this study by leveraging the open-
source data available for New York City, one of the
major urban centers in the world. Taxi ridership data
form a respectable proportion of urban mobility in
New York and thus can be used as a reliably proxy
for urban mobility. A precise taxi pick-up and drop-
off volume prediction system supports decision-making
in dispatching cabs and for-hire vehicles to improve
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the taxi service [4,5]. The widely accepted conception
of anomalies comes from Hawkins [6]: ”An anomaly
is an observation which deviates so much from other
observations as to arouse suspicion that it was gen-
erated by a different mechanism.”. While regular on
a recurring basis, transportation flows are also sub-
ject to anomalous flows due to various events. National
holidays, extreme weather, disasters, game days, and
religious events cause significant surges [7] in traffic,
leading to issues with traffic management and con-
trol. Surges and anomalies are crucial stress points for
transport resource scheduling systems, often requiring
pre-emptive actions from the authorities. This paper
focuses on analyzing taxi ridership system behavior and
exception in two airports in New York City: John F.
Kennedy International Airport (JFK) and La Guardia
Airport (LGA). The idea is to leverage relevant urban
data, model the ridership prediction, and then find and
analyze various anomalies.

Transport data have complex spatial dependencies
and nonlinear temporal dynamics. Since transport data
comprise connected origins and destinations and have
a highly interdependent topological structure, model-
ing individual nodes cannot capture the interactions.
Furthermore, mobility is highly correlated with exter-
nal factors. In transportation hubs, pick-up volume
depends heavily on arrival flows, and it varies with the
weather, time, weekdays, and other elements. We build
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a dataset to capture critical external features. Then, we
experiment with different regression models capable of
modeling the influence of these external variables.

Our experimentation shows that nonlinear model-
ing techniques are more suited to mobility data. We
evaluate two complex nonlinear models for this task,
Random Forest and long short-term memory networks
(LSTM). We use lagged variables with Random Forest
to model temporal relationships, and LSTM is autore-
gressive in nature. We design a prediction model pre-
dicts ridership flows which considering the spatial rela-
tionships between nodes.

Subsequently, we apply residuals from prediction
models to surge detection. The most common approach
for anomaly detection is building a probabilistic model
of the normal behavior and categorizing anomalies as
events that have low likelihood according to the prob-
abilistic model [7,8]. These models have a shortcom-
ing in that they do not consider the externalities and
temporal dependencies of the variable in the study.
Unsupervised feature learning approaches like principal
component analysis (PCA) and autoencoders which are
commonly used before anomaly detection also have the
same flaw: they are not capable of modeling external-
ities like weather and day of the week. We formulate
a framework where an initial modeling phase corrects
externalities and temporal dependencies in the rider-
ship data. Then, residuals from this stage are used for
anomaly detection. Consequently, an anomaly is only
detected if the anomalous behavior cannot be explained
using the available external data and ridership history.
Since we use the taxi zone data and perform zone-level
predictions, the high-dimensional residual still poses a
problem for anomaly detection. Hence, we experiment
with multiple network aggregation techniques like PCA
and network community detection to reduce the dimen-
sions for anomaly detection.

Our main findings are summarized as follows:

1. we show that unsupervised learning-based anomaly
detection based on regression residuals outperforms
anomaly detection from ground truth ridership val-
ues;

2. we show that mobility networks have strong non-
linear spatial and temporal dependencies, and thus,
nonlinear models are better than legacy linear mod-
els for modeling purposes;

3. we provide empirical evidence that dimensional-
ity reduction is necessary before modeling high-
dimensional mobility network data;

4. our results show that community detection is a bet-
ter network aggregation technique when compared
to geographical and administrative aggregations in
anomaly detection;

5. our results show that autoregressive LSTM outper-
forms Random Forest, which uses lagged variables
for temporal modeling in the out-of-sample test.

2 Related work

2.1 Taxi ridership volume prediction

Traffic demand prediction is fundamental to building
a stable smart-city transportation system [9,10]. We
use taxicab and for-hired vehicle (FHV, e.g., Uber) as
they are major components [11,12] in this network. Taxi
demand prediction methodologies lay strong emphasis
on the complex spatial [13,14] and temporal [15,16]
relationships in the dataset and the need for models
that can exploit both. One challenge for mobility mod-
eling is that traffic flow is heterogeneous of predictabil-
ity across geographical regions [17].

Traditional approaches for traffic forecasting are
mostly based on techniques like AutoRegressive Inte-
grated Moving Average (ARIMA) model and Kalman
filtering [18,19]. Similarly, researchers model urban
mobility using taxi data leveraging ARIMA models [20].
Autoregressive integrated moving average (ARIMA)
[18] is the most widely used forecasting model and has
been extensively applied to traffic forecasting problems
[21,22]. SARIMA is a variant of ARIMA that also cap-
tures seasonal periodicity has also been used for traf-
fic forecasting [23]. These models produce predictions
for individual nodes and fail to capture the relation-
ships between nodes, which is a vital aspect of real-
world traffic networks. Vector ARMA (VARMA) [24]
and space-time ARIMA (STARIMA) [25] are two more
sophisticated variants that perform traffic forecasting
for multiple nodes in a network. These were initial steps
towards edge-level traffic forecasting which considers
spatial and temporal relationships. Ding et al. [26] pro-
posed an STARIMA model to predict traffic volume in
5 min on street links, and spatial features include aver-
age trip duration on links. Ravi et al. [27] applied a
vector autoregressive model to predict traffic volumes
on freeways including upstream and downstream. These
techniques have three shortcomings:

1. They only work on series that are stationary or sta-
tionary after differencing, while the non-stationarity
problem in urban transportation is complex and
might not necessarily be addressable with differenc-
ing.

2. They do not consider spatial and structural depen-
dencies that traffic networks exhibit and forecast
each sensor as an individual time series.

3. They suffer from the curse of dimensionality.

Most state-of-the-art models are deep learning-based
include deep multi-task multi-graph learning approach
[28], Spatio-Temporal Encoder–Decoder Residual Multi-
Graph Convolutional network [29], and Spatio-temporal
graph convolutional network [30]. Models that incorpo-
rate both spatial and temporal features into considera-

123



Eur. Phys. J. Spec. Top. (2022) 231:1655–1671 1657

tion have been shown to yield significantly improved
performance [31]. Zone-based taxi prediction [31–33]
is less challenge than OD-based prediction [29,34,35].
Furthermore, mobility is highly correlated with exter-
nal factors [36]. In transportation hubs, pick-up vol-
ume depends heavily on arrivals amount, and it varies
with the weather, time, weekdays, and other elements.
We build a dataset for this set of important external
features. Then, we experiment with different regression
models capable of modeling external variables.

While, Graph Neural Network (GNN) [37] is a pop-
ular and successful method in traffic prediction [38,39]
as it captures connections between nodes. However, this
feature brings no benefits to a star-structure network
as it merely propagates information between adjacent
nodes and neglects information between unconnected
nodes [40]. Hence, it is not an appropriate method in
our project as we are working on a star network: all
nodes in our graph are only connected to one node (JFK
or LGA).

A linear regression model with a large number of
engineered features [41] can also outperform the com-
plex time series model in out-of-sample datasets. We use
linear regression models as our baseline of aggregated
ridership prediction. Subsequently, we experiment with
a more robust nonlinear model, Random Forest. We
choose Random Forest regression as they have built-
in mechanisms to avoid overfitting. Bootstrapping and
random subsetting [42] of the feature space are used
for building weak classifiers, which are then ensembled
for the final prediction. This leads to good generaliza-
tion and avoids overfitting. Furthermore, using the Ran-
dom Forest for edge-level prediction allows modeling
the spatial and structural dependencies in the nodes.
Recurrent neural networks (RNN) are able to model
nonlinear temporal dynamics in sequence data and fore-
casting. However, traditional RNNs suffer from blowing
and vanishing gradients problems and thus make it diffi-
cult for them to capture long-term temporal dependen-
cies [43]. Besides, they rely on predetermined time lags.
Long-Short-Term Memory (LSTM) was proposed to
address these challenges [43]. Unlike traditional RNNs,
they can model these long-term dependencies using
memory units and gated structures. Furthermore, they
can automatically determine optimal time lags for the
dataset by learning when to open and close relevant
gates. Traffic data are known to have long-term tem-
poral dependencies, making LSTM a suitable modeling
technique.

Even previous models have impressive performance
in ridership prediction, our objective is to train a model
which not only returns reliable prediction but also pro-
vides insights on anomaly detection.

2.2 Anomaly detection in networks

The application of network anomaly detection is a
broad research area that is applicable in different
domains, including fraudulent activities in transactions
[44], social networks data [45,46], and transportation

networks [7,47,48]. One challenge in this field is the
lack of widely accepted labeled datasets for anomaly
detection [44] which can be used to benchmark differ-
ent approaches. Thus, in this work, we create our own
labeled dataset.

If the input data are high-dimensional, a dimen-
sion reduction step is usually applied before anomaly
detection. Lakhina et al. [49] applied Principal Compo-
nent Analysis (PCA) to network anomaly detection for
the first time using Principal Component reconstruc-
tion residuals as low-dimensional features for anomaly
detection. Also, reconstruction error from Autoencoder
[50] is also a common method to detect outliers. Lately,
Ringberg et al. [51] and Brauckhoff et al. [52] sug-
gested that PCA is not suitable for anomaly detection
because of parameter sensitivity and lack of temporal
correlation on a transformed dataset. An alternative
approach to reduce the graph data dimension is using
a graph aggregation technique like community detec-
tion. A Community is defined as a group of nodes in a
network which interact excessively frequently, and it is
a common substructure in networks [53]. Zhenzhang et
al. [54] applied community detection in complex evolu-
tionary networks for the first time. GNN and its vari-
ants have an advantage in network analysis as they cap-
ture relationships between nodes. However, they have
no superiority, while there is no connection between
neighbors [40].

At the anomaly detection stage, clustering is the most
common machine learning technique. Prior work has
shown that soft clustering methods are more flexible
and feasible as they consider the nature of the data [55].
Gaussian Mixture Model (GMM) has been introduced
to network anomaly detection in 2006 by Tran et al.
[56], and it is shown to be a better choice than K-means
when clusters have different sizes and correlations.

Supervised learning methods are applied to anomaly
detection in Spatio-temporal datasets as well [47,57].
Kong et al. applied a one-class support vector machine
to detect urban anomalies based on prediction residu-
als from LSTM. This paper proves that residuals from
Random Forest outperform LSTM in anomaly detec-
tion.

Based on the literature review, we identify four main
challenges in temporal network anomaly detection:

1. A lack of a generally applicable method that works
on different mobility networks.

2. Low signal-to-noise ratio makes separating normal
and abnormal data points harder.

3. A lack of widely accepted labeled datasets for
anomaly detection.

3 Data and preprocessing

3.1 Outgoing traffic volumes from airports

The vehicle’s outgoing datasets are collected from two
major transportation hubs in New York City, includ-
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Fig. 1 Experiment pipeline

ing JFK and LGA. New York City Taxi and Limou-
sine Commission provides yellow taxi, green taxi, and
for-hire vehicles’ trip records [58] include fields cap-
turing pick-up and drop-off dates/times, pick-up/drop-
off locations. The pick-up/drop-off locations are aggre-
gated into 263 taxi zones, where JFK and LGA act as
two taxi zone units. Here, we only take yellow taxis
and for-hire vehicles into account, as green taxis are
not allowed to pick up passengers in Manhattan. We
aggregate the traffic volume by date. The summary of
aggregated datasets is in Table 5.

3.2 Arrival flights and trains volumes

We assume that the arrival passengers’ amount at each
transportation hub affects the outgoing traffic volume
in a specific time lag. Thus, we collected flight arrival
data to predict the traffic volume. Flight datasets came
from the Bureau of Transportation Statistics in JFK
and LGA in 2018.

Bureau of Transportation Statistics only records
domestic flights. According to Port Authority traffic
report, about 39% JFK flights (38,260 in 97,853) and
7% LGA flights (2,301 in 29,911) are international.
And international flights usually have higher passenger
capacity. Therefore, lacking international flights might
limit the capacity of our models to explain associated
ridership fluctuations.

3.3 External datasets: weather data and flight
arrival data

Taxi ridership volume from transportation hubs is
determined by the combination of incoming passengers’
population, the possibility of choosing a taxi, and the
available taxi amount. The demand for taxis at trans-
portation hubs and in the city influence each other,
according to [59]. During inclement weather, the vol-
ume of trips within Manhattan increases. As frequent
and short trips bring more income to drivers, airports
become less attractive to taxi drivers [60]. Our weather
dataset is collected from Aviation System Performance
Metrics data, supplied by National Oceanic And Atmo-
spheric Administration.

Besides weather conditions, the temporal variations,
such as day-of-week, and time-of-day, significantly
impact on the taxi supply and demand market. Dr.
Kamga found that on weekend nights, taxis have the
highest average revenue, which is caused by higher pick-
up rates and relatively shorter distance trips [61].

3.4 Urban anomaly events

We set two events datasets separately for each trans-
portation hub to validate our anomaly detection results
and events types, including national holidays, extreme
weather (snow and storms) days, and major flight
delays and cancellations for airports. Details are in
Appendix A Table 7.

Extreme weather includes two types: winter storm
and thunderstorm wind. Snow will not melt away
immediately, the impact will last longer, so the days
after winter storms are regarded as winter storm days,
as well. Airport events are collected from news from
01/01/2018 to 12/31/2018, and most of them are
related to extreme weather days in other cities and
states. For example, on Dec 21, a winter storm hit
the east coast, and even this day is not recorded as
a storm event in New York City, it still led to one-third
of flights being delayed in LGA, and more than 15%
flights delayed in JFK [62].

4 Methodology

Our study has two distinct objectives, developing an
accurate traffic prediction model and analyzing the
usability of this model for traffic surge detection. Both
objectives influence our choice of methodology. The
whole process is visualized in Fig. 1. Input datasets
include taxi ridership data, weather data, and flight
arrival data. Initially, we experiment with an array
of hypothesis/modeling paradigms on non-spatial one-
dimension timeseries ridership prediction. Then, select
the most suitable model for edge-level traffic prediction.
Subsequently, we choose the best-performing model and
study its utility for surge detection.
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We formulate a framework where an initial modeling
phase corrects externalities and temporal dependencies
in the ridership data. And residuals from this stage are
used for anomaly detection. Consequently, an anomaly
is only detected if the anomalous behavior cannot be
explained using the available external data and rider-
ship history. Throughout this paper, we refer edge-level
data as taxi-zone wise, no aggregation data.

Mobility network data are usually very high-
dimensional, and linear machine learning methods do
not perform well with high-dimensional data, especially
when the dataset size is not many times larger than
the number of dimensions. This is a generic issue with
machine learning models and is referred to as the curse
of dimensionality. The curse of dimensionality can be
detrimental to both the ridership prediction and subse-
quent anomaly detection. Furthermore, edge-level data
have a low signal-to-noise ratio, and some level of aggre-
gation is required to address this issue.

To summarize our pipeline, we use a dimension reduc-
tion technique to transform the edge-level network data
in a reduced feature space. Then, we perform rider-
ship prediction in this aggregated space and use dis-
aggregation techniques to attain edge-level prediction.
Anomaly detection uses the low-dimensional residuals
of the aggregated space surge isolation.

4.1 Dimension reduction and network aggregation

Once an edge-level prediction model is developed, it is
still a challenge to use this high-dimensional residual
data for anomaly detection. Most prior works address
this issue by adopting a two-stage approach [49,51,52],
where low-dimensional representation is learned before
applying anomaly detection techniques on the latent
representation. We address this issue by experiment-
ing with different spatial and structural aggregations
and dimension reduction techniques. Then, we perform
modeling and residual generation in these aggregated
spaces to get low-dimensional residuals for anomaly
detection. Since comparing the performance of ridership
prediction with modeling at different aggregated spaces
is hard, we include a disaggregation step that trans-
forms the aggregated space back to edge level using
inverse PCA or multiplying the aggregated demand by
edge-level weights. The edge-level weights are the yearly
edge-level demand divided by yearly aggregated-level
demand.

Different aggregations and dimension reduction tech-
niques that we experimented with are discussed below.
At the dimension reduction stage, we aggregated the
dataset in three different ways:

1. spatial aggregation that aggregates 263 taxi zones
to 5 boroughs;

2. topological aggregation: uses a community detection
algorithm to aggregate taxi zones to 6 or 24 com-
munities;

3. linear dimension reduction that applies the princi-
pal component analysis method to reduce the raw
dataset to 6 or 24 dimensions.

The following subsections introduce more details of
dimension reduction and network aggregation tech-
niques.

Principal component analysis: Edge-level predic-
tion results in a pipeline including dimension reduc-
tion techniques are from an inverse transformation of
predicted components from dimension reduction. We
choose PCA, because it minimizes the reconstruction
error, and the transformation is invertible. Also, the
main message of our pipeline is to show the utility of
each phase, and PCA is the simplest suitable method
to demonstrate the utility of the dimension reduction,
while other more advanced methods like kernel PCA or
autoencoders could be considered. This model learns
a linear transformation that projects the data into
another space, where the variance of the data defines
vectors of projections. By restricting the dimension to a
certain number of components that account for most of
the variance of the data set, we can achieve dimension
reduction. We perform PCA to get a low-dimensional
space which we use for ridership modeling. Inverse PCA
is used to get edge-level prediction performance. We
try with different numbers of principal components and
choose the best-performing one for each hub.

Spatial aggregation: New York City is divided into
administrative divisions termed as boroughs. There are
five boroughs in New York named Bronx, Brooklyn,
Manhattan, Queens, and Staten Island. The spatial
breakdown of the city into boroughs is available in the
Appendix Fig 5.

Community detection: provides a spatial topo-
logical aggregation for taxi zones, while borough-level
aggregation ignores the interaction between taxi zones.

A community is a collection of nodes in a network
that interact significantly. In community detection, the
algorithm compares the actual edge weight with the
average expected value for each edge in the original net-
work. The edges with positive relative strength scores
represent particularly strong network connections and
are placed inside the community, while edges with neg-
ative scores are placed between the communities. This
process maximizes the modularity score and determines
the optimal partitioning. Therefore, community detec-
tion provides a way of aggregation that preserves topo-
logical and structural information as opposed to crude
spatial aggregation. Our community detection results
come from [7] which collected yellow cabs, green cabs,
and for-hire vehicles trip within the New York City
from Jul 01, 2017, to Dec 31, 2018. 263 taxi zones are
aggregated to 6 or 24 communities. The visualization of
community detection results is available in Appendix B
Figs. 6 and 7. We try different granularities of commu-
nity detection as our aggregation step before ridership
prediction and use the best-performing granularity for
each hub. For these experiments, we use weighted dis-
aggregation, which is described below.

Weighted disaggregation: This technique is used
to convert the aggregated ridership data in community
and borough space back to network space. We learn
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a linear transform from the historical data that shows
the average fractional contribution of each edge towards
the community or borough that it resides in. For each
unit u of aggregated space uni (which can be a single
community or a borough)

Ru =
∑

e∈u

Be ∗ Re, (1)

where Ru is the ridership of that unit u in aggregated
space, Re is the rider of edge e, and Be is the fractional
contribution that is learned from historical data.

4.2 Ridership prediction

We frame the ridership prediction problem as an hourly
edge-level prediction for the mobility network based on
external variables and ridership history.

As an initial experiment, we compare different mod-
els for network-wide aggregated 1-dimension ridership
timeseries at the hourly level. In this stage, we com-
pare a linear regression, a hybrid model (combined with
linear regression and autoregressive integrated moving
average), Random Forest regressor, and LSTM. The
success of Random Forest model and LSTM emphasizes
the ridership’s long-term temporal dependencies.

Subsequently, we frame the problem as hourly rid-
ership prediction at edge level. This modeling is per-
formed on both aggregated and original networks. For
this task, we only evaluate two highly nonlinear mod-
els, Random Forest, and LSTM. Both models perform
network-wide prediction enabling them to model rela-
tionships between network nodes. Random Forest uses
lagged variables, while LSTM uses autoregressive mod-
eling to model temporal relationships. Furthermore, we
explore combinations of different models, aggregation,
and disaggregation methods. Models evaluated in this
experiment include the following.

4.2.1 Linear regression

We formulated the linear regression model for total out-
going traffic prediction from each hub. We use lagged
variables to model temporal dependencies. The model
formulation is shown below

RIDERSHIPt = β0 + β1 ∗ ARRIVALt,m,n

+β2 ∗ TimeofDayt

+β3 ∗ DayofWeekt, (2)

where variables’ explanation is in Appendix A Table 8.

4.2.2 Hybrid model

A hybrid model is the combination of the ordinary least
square linear regression and autoregressive integrated
moving average. Since the normal linear regression
model does not incorporate temporal relationships in

ridership prediction, we combined it with AutoRegres-
sive Integrated Moving Average (ARIMA). Based on
the result, we combined linear regression with ARIMA
and introduced a new variable arPredt

arPredt = ˆRIDERSHIP′
t − ˆRIDERSHIP′

t−1

(3)
RIDERSHIP′

t = RIDERSHIPt − RIDERSHIPt−1

(4)
ˆRIDERSHIP′

t = μ + φ1 ∗ RIDERSHIP′
t

+... + φ8 ∗ RIDERSHIP′
t−8

+θ1 ∗ εt−1 + ... + θq∗, εt−4 (5)

where φ are the parameters of the autoregressive part,
θ are the parameters of the moving average, and ε are
error terms. ε are independent, identically and normally
distribution with zero mean.

ARIMA model is applied here to get time series pre-
diction arPredt from the linear combination of lagged
RIDERSHIP values and the error terms whose values
occurred at various times in the past. Then, we add
arPredt into the previous OLS model as a new vari-
able. The resulting regression equation is shown below

ˆRIDERSHIP′
t = β0 + β1 ∗ ARRIVAL

+β2 ∗ arPredt + β3 ∗ TimeofDayt

+β4 ∗ DayofWeekt. (6)

4.2.3 Random Forest

Ensemble learning has been successfully applied to
improve the performance of regression and classifica-
tion tasks. Two branches of ensemble learning in trees
are boosting [63] and bagging [42]. In boosting, succes-
sive trees give extra weight to misclassified examples
by earlier trees. In bagging, all trees are constructed
separately on bootstrapped samples of data. Both use
majority voting for ensembled prediction. Random For-
est [64] is a further modification of bagged trees, where
a subset of available features is picked randomly to pick
the best split for each node in the tree. Random Forests
are less prone to overfitting which is a big problem for
modeling from high-dimensional data. This is because
Random Forest is an ensemble of weak predictors and
incorporates feature pruning within the algorithm. Fur-
thermore, they are capable of modeling nonlinear spa-
tial and temporal dynamics.

We use Random Forests for nonlinear modeling for
both edge level and aggregated space as they are rel-
atively robust to overfitting which is a general hazard
for predictive modeling based on high-dimensional data
[65]. Furthermore, they have built-in support for mul-
tivariate regression, which we use for direct edge-level
prediction using a single model. We perform a random
grid search and n-fold cross-validation for the search of
optimal model parameters. Our experiments uncovered
that the data have strong temporal correlations which
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we exploited using time-lagged features. Grid search
showed that the model performed the best when given
ridership history of preceding 12 h as a part of lagged
features.

4.2.4 LSTM

We designed an LSTM model for taxi zone-level rider-
ship prediction. The model is composed of an aggrega-
tion layer, LSTM layers, and a disaggregation layer.
The aggregation layer is matrix multiplication that
transforms the data from edge level to an aggregated
community level, and this layer is fixed and initial-
ized to 24 community partition. LSTM layer consists
of a stack of LSTM cells that consumes the sequential
data in community space and outputs the prediction in
low-dimensional latent space. The disaggregation layer
is a linear transformation (fully connected layer with-
out nonlinearity) that projects the prediction to taxi
zone space. The whole model is trained end to end
using adams optimizer. Bayesian optimization is used
to tune design parameters like sequence context length
and number of LSTM layers and model hyperparame-
ters like learning rate.

4.3 Anomaly detection

Residual analysis is a method to study the residual
between real data and estimated data in regression
problems [66]. Generally, large errors are more likely
to be anomalies. We applied log transformation to
shape errors as normally distributed and eliminate the
impact from the range of real values [67]. We experi-
ment with residuals with and without log transforma-
tion and report the best-performing version

error′ = log(Ridership − ˆRidership

+min(Ridership − ˆRidership)). (7)

Anomaly detection is a special case of imbalanced
classification, to avoid overfitting, we applied an unsu-
pervised learning clustering algorithm to cluster pat-
terns in ridership. A Gaussian mixture model is a
probability-based clustering model that assumes all
data points are from a combination of multiple Gaus-
sian distributions with unknown parameters [68]. Anoma-
lies are defined by the threshold of the rank of log-
likelihood returned by the Gaussian Mixture Model.
We use an iterative model-fitting approach similar to
expectation maximization: the first step is to fit a GMM
model on the entire residual dataset and get the likeli-
hood of each data point. Then, drop data points below a
likelihood threshold, and refit the model on remaining
data points, applying the trained model to the whole
residual dataset again. Finally select data points hav-
ing likelihood below the previous threshold. This itera-
tion is done until data points selected before and after
converge to the same dataset. We have experimented
with 100 threshold values, ranging from the bottom 1%

to 99% percentile of likelihood. The threshold of log-
likelihood rank to divide days into anomalies and nor-
mal days is discussed in Sect. 5.3

For Gaussian Mixture Model Component Selection,
we run models with 1–5 components on each resid-
ual dataset and use Bayesian Information Criterion
(BIC) criteria for the selection of optimal components.
According to the scikit-learn users’ guide [69], model
selection for Gaussian Mixture Model could be based on
information-theoretic criteria and the Bayesian Infor-
mation Criterion is a better choice. Then, we used
the number of the component which yields the low-
est Bayesian Information Criterion score for the further
iterated Gaussian Mixture Model. The optimal number
of GMM components varies with hubs and prediction
methods, and the final choice of the hyper-parameter is
available in Sect. 5.2.

4.4 Evaluation

Since we are predicting ridership at multiple dimen-
sions, the performance evaluation metrics will be a
series R2 values, one R2 value for each dimension. To
generate a general R2 which describes the overall pre-
dicting model performance in the whole city, averaged
R2 is applied. Instead of a uniformly weighted average,
variance-weighted R2 is used to evaluate the predic-
tion of all the traffic prediction models. Since it is not
possible to fairly compare the models at different aggre-
gation levels directly, we use disaggregation to get taxi
zone-level predictions for all models, enabling one-to-
one out-of-sample comparison. To evaluate the anomaly
detection performances, we used the area under the
precision-recall curve, as it is preferred over the area
under the ROC curve (AUROC) when dealing with a
highly imbalanced dataset [70], which is true in our case
with anomalies being very sparse

Precision = TruePositives/(TruePositives
+FalsePositives) (8)

Recall = TruePositives/(TruePositives
+FalseNegatives). (9)

5 Results and discussion

Prediction models are evaluated at first, the model that
has the best performance in total demand prediction
will be applied to estimated edge-level demand and fur-
ther anomaly detection combined with different aggre-
gation methods.

5.1 Demand prediction

Random Forest and LSTM give the best results for
total outgoing ridership prediction for each hub. Ran-
dom Forest models capture nonlinear temporal dynam-
ics and spatial dependencies in the dataset. Further-
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Table 1 Total outgoing variance weighted R2

Model JFK LGA

Linear regression 0.795 0.877
Hybrid model 0.793 0.875
Random forest regressor 0.892 0.939
LSTM 0.826 0.895

more, they are an ensemble of multiple regressors
trained using bootstrapping, increasing their gener-
alizability to unseen data. And LSTM is inherently
designed for timeseries datasets. Hence, they were able
to consistently outperform linear regression (Table 2).

Table 1 compares the performance of different pipelines
for edge-level prediction. However, not all the approaches
are compatible or reasonable to combine, for exam-
ple, LSTM–PCA–inverse PCA and Random Forest–
community–learnable disaggregation. PCA and inverse
PCA cannot be combined with an LSTM, because a
neural network could naturally perform dimensional-
ity reduction and reconstruction. Moreover, we have
an LSTM pipeline using community-based aggregated
input, LSTM to predict, and disaggregates prediction
results to edge level using a high-dimension output
layer. However, this high-dimension output layer dis-
aggregation method cannot be combined with RF. It
is supposed to be connected with the LSTM prediction
layers and tuning parameters in all stages sequentially.

Our proposed LSTM model outperforms RF in pre-
diction for the same aggregation level. 24 community
LSTM is better than 24 community RF and taxi zone-
level LSTM is better than Taxi Zone-level RF. This
shows that an autoregressive nonlinear model is better
than a nonlinear model that uses lagged variables.

Modeling in aggregated space and disaggregating into
edge-level produces better results than direct model-
ing in taxi zone space. This validates our hypothe-
sis that dimension reduction is vital for modeling on
high-dimensional transportation networks and shows
that our proposed framework of dimensionality reduc-
tion, modeling, and dimension expansion is better than
direct edge-level modeling. Additionally, we note that
the reason other aggregation schemes do not work as
well as PCA and learnable aggregation might be that
the adopted disaggregation technique was too simple.
Whereas learnable disaggregation and inverse PCA are
better disaggregation steps than weighted disaggrega-
tion, resulting in better taxi zone level R2.

Comparing our results with two related works turns
out that our model outperforms previous methods. In
Short-Term Forecasting of Passenger Demand under
On-Demand Ride Services: A Spatio-Temporal Deep
Learning Approach [32], Hangzhou (a major city in
China) is divided 7×7grids, while the whole city’s area
is 6505 mi2, so we compared their results to our 24-
community aggregated prediction results as New York
City is only 307 mi2. Besides, as the total ridership
amount in Hangzhou is not mentioned in this paper,
we cannot compare RMSE or MAE with it, only R2

is applicable. The highest R2 in this project is 0.820,
and we have different model performances in differ-
ent transportation hubs, but all stations have a bet-
ter performance: 0.865 in JFK, 0.929 in LGA. Another
related work is Taxi Demand Prediction Using Parallel
Multi-Task Learning Model [34], which predicts NYC
taxi ridership at taxi zone level, but the discrepancy
is they trained model on the first 10 months and fore-
cast the upcoming 2 months, temporal granularity is
2-hour, while we only predict the next hour based on
external data and ridership in the past 12 h. In this
work, they did not provide R2, but as we have the same
research area, MAE and RMSE are applicable in this
case. In their best model, the average MAE is 14.499,
and RMSE is 22.441. However, our highest MAE is 1.2,
and the highest RMSE is only 3.2. While it is hard to
find a previous work with identical spatial and tempo-
ral granularity to conduct the model performance com-
parison, our models still show superiority in predicting
performance.

5.2 Anomaly detection

Table 3 shows the normalized area under precision–
recall at JFK and LGA. Random selection refers to ran-
domly assigning each observation as an anomaly, and
the model failed to capture any signal from the dataset.
This serves as a reference point to compare the perfor-
mance of our different methodologies. And scores from
other methods are normalized by this value.

Residuals from Random Forest based on 24-
communities aggregated datasets achieve the best per-
formance in anomaly detection at both JFK and LGA.
And based on BIC results, the number of components
in GMM is 3 for anomaly detection in both JFK and
LGA taxi ridership. This establishes the superiority of
topological aggregation over crude spatial aggregation,
and linear dimension reduction. This result makes sense
as the geospatial locations and connections define inter-
actions between taxi zones. For example, even LGA is
located in Queens, community detection results show
a stronger bond with and midtown Manhattan other
than Queens. Besides, high-dimension residuals outper-
form low-dimension residuals. As fluctuations caused
by anomalies could be diluted in highly aggregated
datasets. Furthermore, residuals from prediction mod-
els with high R2 values do not promise better per-
formance in anomaly detection. For example, at 24-
communities’ modeling space, LSTM beats Random-
Forest in prediction but does not perform as well in
anomaly detection. The potential reason is that LSTM
captures more pre-anomaly signals and adapts quickly
to temporal trend changes, thus being poor in anomaly
detection. Community detection aggregated networks
based on topology instead of an arbitrary administra-
tive region and generated a dataset more likely to cap-
ture anomalies in networks.
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Table 2 Variance weighted R2 from different pipelines

Model Modeling space Disaggregation JFK R2 LGA R2

TaxiZone Aggregated Taxi Zone
anormal
days

TaxiZone Aggregated Taxi Zone
anormal
days

RF Taxi Zone – 0.545 – 0.520 0.766 – 0.742
RF Borough Weighted 0.491 0.865 0.463 0.623 0.929 0.621
RF PCA-6 Inverse PCA 0.568 0.807 0.533 0.775 0.873 0.753
RF PCA-24 Inverse PCA 0.553 0.624 0.51 0.766 0.702 0.724
RF Comm-6 Weighted 0.512 0.859 0.481 0.68 0.925 0.667
RF Comm-24 Weighted 0.538 0.816 0.514 0.713 0.907 0.698
LSTM Comm-24 Weighted 0.537 0.855 0.546 0.727 0.912 0.708
LSTM Pipeline Comm-24 Learnable 0.586 – 0.661 0.776 – 0.750

Table 3 Area under precision–recall curve at three trans-
portation hubs

Model Modeling space JFK LGA

Random selection 1.0 1.0
RF City 1.331 1.448
RF Taxi Zone 0.985 2.752
RF Borough 3.060 1.086
RF PCA-6 4.270 1.358
RF PCA-24 1.711 1.575
RF Comm-6 4.149 1.521
RF Comm-24 4.356 3.005
LSTM Comm-24 3.596 1.340

5.3 Spatial footprint of anomalies

We aim at detecting interpretable and distinctive spa-
tial patterns of anomalies. Anomalies have different
types and different scopes of influence. An event could
lead to overestimation or underestimation of the pre-
diction, and the effect could be global or local. The
following methods are based on outputs from Comm24-
RandomForest pipeline as it has the best performance
in anomaly detection.

The first step is to locate a reasonable threshold
from the anomaly detection framework to label anoma-
lies and regular days. The framework has 100 itera-
tions in total, the threshold of likelihood in iterations
from 0.01 to 1.00 to divide anomalous days and normal
days. To determine a proper threshold, we compare the
mean absolute error of taxi-zone-level prediction val-
ues between anomalies and ordinary days (Appendix B
Figs. 8 and 9). The threshold at JFK is 13%, which
means that days below the bottom 13% likelihood will
be labeled as anomalies, and the threshold at LGA is
5%. In total, JFK has 47 anomalous days, and LGA has
18.

The next step is to investigate anomalies’ spatial
footprints. We applied the Gaussian Mixture Model to
cluster detected anomalous days based on community-
level residuals from Comm24-Random Forest. Same as
anomaly detection, the number of components in a

GMM is selected from the one returns the lowest BIC.
At JFK, we have 4 different types of anomalies, 10
anomalies in type 0, 13 in type 1, and both type 2 and
type 3 have 11 anomalies. LGA anomalies are divided;
each type has 9 anomalies.

To measure the impact on prediction from anoma-
lies in different types, we calculated normalized residual
and the consistency

R′ =
T − T ′ + 1

T + 1
, (10)

where R′ is normalized residuals, T is actual ridership,
and T ′ is predicted ridership

C =
D′

D
, (11)

where C is the consistency. For one community, if the
average of residuals from one cluster of anomalies is
greater than 0, then D′ is the number of days that
normalized residuals are positive, and if the average of
residuals are below 0, then D′ is the number of days
that normalized residuals are negative.

We observe four types of anomalies for taxi+FHV
ridership at JFK and and two at LGA. Figures 2 and
3 are direction and consistency of impact from differ-
ent clusters of anomalies for JFK ridership. At the first
glance, we conclude that, on average, type 1 anomalies
lead to underestimation in the entire NYC, while type
0, type 2, and type 3 anomalies have different impact
directions at different communities. Also, anomalies in
type 3 have a constant impact in most communities,
while in other types, effects are only consistent in some
communities. For example, more than 80% (8 days out
of 10) of type 0 anomalies lead to overestimation at
East Staten Island, Long Beach, Crown Heights, Asto-
ria, Long Island City, and Bronx. In contrast, anoma-
lies of the same type have different impact directions at
other locations. It is also clear that anomalies (13 days)
in type 1 lead to underestimation in the entire New
York City in average, and the underestimating impact
is constant in at least 11 out of 13 days at West Staten
Island, Long Beach, South Brooklyn, East Queens, and
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Fig. 2 Normalized residual distribution at JFK

Fig. 3 Consistency distribution at JFK

Table 4 Detected events in JFK ridership

Type 0 Type 1 Type 2 Type 3

Federal holidays and the day before or after it 3 3 2 1
Extreme weather 1 1 2 0
Airport event 0 1 0 0
Other 6 8 9 10
Total 10 13 13 11

South Bronx. However, the impacts of type 1 anomalies
are not consistent in all communities. Type 2 anoma-
lies are consistent at the least amount of communities,
only at Ease Staten Island, Long Beach, and downtown
Brooklyn.

We also explore the temporal patterns in clustered
anomalies: consecutive days are more likely to be clus-
tered into the same group. Tables 3 and 4 show the
contribution of different types of anomalies in different
clusters. Besides our labeled events like federal holidays,
detected abnormalities include observed holidays like
the day before/after Christmas day. It can be observed
that certain types of events are contributing more to
some clusters. The future step of this task is to examine
the exact events of these clusters to generate a group of
representative scenarios for travel demand anomalies.

6 Conclusion

We evaluate prediction and anomaly detection meth-
ods for the taxi ridership with the destination in the
two transportation hubs in New York City—JFK and
LGA airports. Our study emphasized that transporta-
tion data have strong nonlinear temporal and spatial
dependencies, and hence, the nonlinear Random Forest
prediction model outperforms the baseline linear model.
Furthermore, we find that leveraging LSTM deep learn-
ing techniques could improve spatio-temporal traffic
modeling.

Our work addresses the challenge of modeling high-
dimensional network data. The proposed pipeline
approach for predictive ridership modeling utilizes
appropriate spatial aggregation, nonlinear modeling,
and subsequent disaggregation back to the original spa-
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tial scale. This way, it outperforms the direct ridership
modeling on the original spatial resolution leading to
poor anomaly detection due to the lack of consideration
of the underlying network topology. And the compari-
son of different aggregation techniques showed that net-
work community-based aggregation performs the best
for the prediction as well as further anomaly detection,
highlighting the importance of accounting for the net-
work topology.

We consider the assumptions used in preparing the
list of the labeled anomalous events as a potential limi-
tation of this study. Since the complete ground truth
data for the anomalies are not present, our analysis
assumes that the collected events should represent the
major anomalies in the mobility network. Besides, as
our list of anomalous events is not exhaustive, detect-
ing anomalies other than those listed does not nec-
essarily mean a shortcoming of the approach. There-
fore, our ability to evaluate the anomaly detection per-
formance is limited by the comprehensiveness of the
labeled anomalous events.

We have observed that our proposed pipeline frame-
work of dimensionality reduction, modeling, and disag-
gregation outperforms the direct modeling and anomaly
detection for the original transportation network. Fur-
thermore, we note that when we jointly optimize
the modeling and disaggregation step using gradient
descent in our pipeline LSTM model, it results in supe-
rior performance. This might warrant further study
considering a model where all three stages, including
the aggregation, are jointly trained for optimizing pre-
diction accuracy. Further evaluations of the modeling
and anomaly detection methodology could also involve
the graph neural network embedding of the mobility
network [https://arxiv.org/abs/2105.03388].
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Appendix A Tables

See Tables 5, 6, 7, and 8.

Table 5 Summary of aggregated outgoing traffic data sets

Vehicle type Explanation Outgoing traffic volume
JFK LGA

FHV For-hire vehicle (Uber, Lyft, etc.) 3,499,760 3,099,427
Yellow Yellow taxi cab 2,577,485 2,894,811
Total The sum of FHV and Yellow 6,077,245 5,994,238

Table 6 Arrival record dataset at transport hubs

Name Explanation Unit Arrival count Record count
JFK LGA JFK LGA

Arrival BTS detailed statistics arrivals Per flight 129,954 171,104 129,954 171,104

Table 7 Events datasets’ description

Federal holiday Extreme weather Airport event

Days in JFK 10 6 4
Days in LGA 10 6 1
Data source Official holidays [71] National Centers for Environmental Information [72] news

Table 8 Hybrid model variables explanation

Variable Explanation Range

RIDERSHIPt Number of selected type of ridership at
window index = t

JFK, LGA

ARRIVALt,m,n ARRIVALt,m,n =
arrivalt−m+arrivalt−m+1 + ... + arrivalt−n

arrivalt is arrival flight/passenger amount
at window index = t

Arrival

DayofWeekt Dummy variables indicating whether t is
onMON, ...,
SUNTimeofDayt = IfMont + ... + IfSunt

0,1

TimeofDayt Dummy variables indicating whether t is on
[0am–1am], ..., [23pm–24pm].

0, 1

β β1 = (β1,t−m, ..., β1,t−m)T

β2 = (β2,1, ..., β2,7)
T β3 = (β3,0, ..., β3,23)

T
–

t Window index, where window size is 1 hour. 0, ..., (365*24*60 / window-1)
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Appendix B Figures

See Figs. 4, 5, 6, 7, 8, 9, 10, and 11.

Fig. 4 Boroughs New York

Fig. 5 Taxi zones New York

Fig. 6 Taxi zones to 6 communities

Fig. 7 Taxi zones to 24 communities
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Fig. 8 JFK threshold of anomalies in mean absolute error

Fig. 9 LGA threshold of anomalies in mean absolute error

Fig. 10 Normalized
residual distribution at
LGA
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Fig. 11 Consistency
distribution at JFK
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