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Abstract This paper presents a dynamic system for estimating the spreading profile of COVID-19 in
Thailand, taking into account the effects of vaccination and social distancing. For this purpose, a compart-
mental network is built in which the population is divided into nine mutually exclusive nodes, including
susceptible, insusceptible, exposed, infected, vaccinated, recovered, quarantined, hospitalized, and dead.
The weight of edges denotes the interaction between the nodes, modeled by a series of conversion rates.
Next, the compartmental network and corresponding rates are incorporated into a system of fractional
partial differential equations to define the model governing the problem concerned. The fractional degree
corresponding to each compartment is considered the node weight in the proposed network. Next, a Monte
Carlo-based optimization method is proposed to fit the fractional compartmental network to the actual
COVID-19 data of Thailand collected from the World Health Organization. Further, a sensitivity analysis
is conducted on the node weights, i.e., fractional orders, to reveal their effect on the accuracy of the fit
and model predictions. The results show that the flexibility of the model to adapt to the observed data
is markedly improved by lowering the order of the differential equations from unity to a fractional order.
The final results show that, assuming the current pandemic situation, the number of infected, recovered,
and dead cases in Thailand will, respectively, reach 4300, 4.5 × 106, and 36,000 by the end of 2021.

1 Introduction

The mathematical modeling of infectious diseases has
been the foundation of infectious disease epidemiology
for more than a century [1]. In recent years, detailed
scrutiny of such diseases has become extensive because
of improvements in data analysis, computing methods,
diagnostic tests, and genome sequencing. Advances in
such methods enable researchers to deploy mathemati-
cal models to design practical schemes for disease con-
trol, and also develop and test mathematical and statis-
tical methods [2–6]. Mathematical models that describe
the spread of diseases are continually being developed
and are playing a fundamental role in promoting public
health strategies in many countries [7–10].
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In December 2019, a novel coronavirus, officially
called coronavirus disease 2019 (COVID-19) by the
World Health Organization (WHO), led to an outbreak
of atypical pneumonia, first in Wuhan, the capital city
of Hubei Province in China, and then expeditiously
flared out in the entire world [11]. As of October 01,
2021, there have been more than 230 million confirmed
cases, together with nearly 4.8 million deaths reports
in the world [12]. Throughout anti-epidemic struggles,
apart from medical, biological, and scientific research,
theoretical studies based on mathematical and statis-
tical modeling may thus significantly contribute to the
conception of outbreak attributes [13–15]. Forecasting
the trajectory of the spread accordingly helps countries
make informed decisions on the required actions to mit-
igate the spread of the disease.

Different models have thus far been proposed to
analyze COVID-19, but compartmental methods that
divide the population into compartments have dom-
inated epidemiological modeling area [16–19]. These
models assist in interpreting the way COVID-19 spreads
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and in forecasting regional pinnacles of the pandemic.
Compartmental models are broadly based on studying
the systems of differential equations. In this respect, dif-
ferential equations concentrate on the rate of changes
in a variable or a group of variables as time proceeds.
The most common model is the SIR, which divides a
population into susceptible (S), infected (I), and recov-
ered (R). The popularity of this model stems from its
simplicity in predicting a small number of parameters.
There are a number of studies that predict the spread
of COVID-19 by this method, e.g., see [20,21], and [22].

Various models have been similarly extracted from
the basic SIR model, which have thus far supple-
mented additional compartments to the SIR model [23].
One of the valuable models is the SEIR, namely, the
susceptible-exposed-infected-recovered model, which has
added the exposed compartment to the SIR structure
[24]. The exposed group refers to the phase between
the susceptible and the infected individuals. It com-
prises the population exposed to an infection but not
yet infected. The SEIR model is thus capable of ana-
lyzing the spread of diseases more accurately than the
basic SIR model [25]. Of note, a host of studies have
analyzed the COVID-19 pandemic through modified
versions of the SEIR model, e.g., see [26,27] and [28].

Some studies have proposed the fractional SIR model,
where one or, feasibly, both sub-compartments are
raised by exponents that are usually less than unity
[29]. The reason is that the infection transmits out-
wards from an infected population to the whole popu-
lation through the early stages of an epidemic. Within
this framework, where susceptible is much greater than
infected it is better to scale them as a fractional power.
Given the decreasing number of infected people over the
general population in real world, the exponent is antic-
ipated to be larger than 1/2. Furthermore, the power
of the susceptible population, which is notably higher
than that of the infected population, may be negligible
at least in the initial stages of an epidemic.

Deploying fractional exponents stemmed from a
growth model, called the Norton–Simon–Massagué
(NSM) model [30]. This model was created to explain
the growth of biological organisms through applying
determined energy principles. The governing differen-
tial equation reads

dG(t)
dt

= p1G(t)α(t) − p1G(t), (1)

where p1 and p2 measure anabolism growth and defuse,
respectively. Equation 1 may be simplified as declar-
ing the net growth rate of a biological organism out-
come of the balance between synthetic and degradative
mechanisms. Meanwhile, the rate is proportional to the
growth volume G(t) with a power function and the rate
of the latter process relates linearly with G(t). It is thus
vital to mention that the two exceptional cases of Eq. 1
are power-law, where p1 = 0, and second-type growth,
where p1 = 2/3, to explain the tumor growth [31]. Dif-
ferent types of fractional compartmental models have

been applied to a number of infectious diseases, e.g.,
see [32–38].

Despite the fact that these models are convincing
instruments and typically allow practical intuition into
grasping the growth and the spread of diseases within
designated populations, they suffer from one major
flaw; that is, with the increase of the number of com-
partments, the number of model parameters increases,
making it difficult for the model to properly fit the data.
In other words, there is a trade-off between increasing
the computational node and the regression accuracy. To
cover new aspects of the problem, such as quarantine,
hospitalization, and vaccination, it is necessary to add
new components to the problem to make model more
realistic [39,40]. This, on the other hand, increases the
number of model parameters, greatly adds to the com-
plexity of the problem, and in turn reduces the accuracy
of the fit.

To address this issue, this paper puts forward a time-
variant SEIVR-QH network, comprised of nine nodes:
(1) susceptible, (2) insusceptible, (3) vaccinated, (4)
exposed, (5) infected, (6) quarantined, (7) recovered,
(8) hospitalized and (9) dead. In a novel development,
the differential equation is expressed in fractional form,
described shortly. The conventional form of compart-
mental networks employs first-order differential equa-
tions. In contrast, introducing the fractional form here
in this paper facilitates the formulation of differen-
tial equations in non-integer, fractional orders, which
leads to significant flexibility for the model to describe
the observed data. This model has several unknown
parameters that must be estimated to fit the model
to the actual data. It requires a multi-objective opti-
mization to select the optimal parameters by minimiz-
ing the error between the actual data and the model
outputs. In addition, this optimization process requires
solving the system of fractional differential equations in
each iteration which is a complex task. To this end, a
two-step back analysis is proposed in this paper based
on Monte Carlo sampling. A comparison is made here
between the capability of the proposed method and that
of other optimization techniques, such as the particle
swarm optimization (PSO) used in [41]. First, PSO is a
deterministic optimization algorithm and Monte Carlo
sampling is an inherently probabilistic method. In other
words, the system parameters in the latter are mod-
eled as random variables. The back analysis proposed
in this study is a two-step algorithm. That is, first,
the Monte Carlo sampling method is used to identify
the samples that lead to the closest realizations to the
target time histories. The results are then introduced
into the second stage of the back-analysis algorithm to
obtain the optimal parameters. This leads to the prob-
abilistic characteristics of the optimal model parame-
ters, such as the mean and standard deviation, using
the output of the first step. In addition, the determin-
istic optimal parameters can be obtained as the mean
values. Therefore, the proposed back analysis can pro-
vide both probabilistic and deterministic parameters,
while the PSO method only yields optimal deterministic
results. Second, the modeling approach in the present
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paper is based on the fractional form of the system of
differential equations. The performance of PSO in the
optimization of fractional equations has not yet been
evaluated. In contrast, Monte Carlo sampling method
is robust in handling such complex systems of fractional
networks proposed in this study. Finally, the fractional
order of the proposed differential equations also needs
to be optimized along with other model parameters.
Hence, the problem here involves differential equations
of varying order, which is intractable in the classical
PSO. That is, the classical PSO does not allow the
optimization of the order of differential equations as
the change in the order will fundamentally change the
objective function and affect the process of calculating
the cost function. In contrast, Monte Carlo sampling
is based on the generation of random samples and the
fractional order is yet another random variable in this
analysis, which can be readily handled.

The content of the paper is organized as follows. In
Sect. 2, the proposed time-variant fractional SEIVR-
QH network is presented, and the deterministic form of
the problem is formulated. In Sect. 3, the main frame-
work of the Monte Carlo-based back analysis is intro-
duced and applied to the actual data of Thailand. In
Sect. 4, a sensitivity analysis [42] is conducted to inves-
tigate the influence of the fractional order of the differ-
ential equation on the regression accuracy. Finally, the
research is summarized and concluded in Sect. 5.

2 Deterministic fractional SEIVR-QH
network

2.1 Fractional calculus

In this paper, the modeling formulation is derived by
the Caputo derivative in fractional calculus. Several
researchers have applied fractional derivatives in sci-
ence and engineering, e.g., see [43].

Definition 1 Given a positive real number η and an
integrable function f : [a, b] → R, the fractional integral
of f of order η is defined as [44]:

Iη
a+f(t) =

1
Γ(η)

∫ t

a

(t − τ)η−1f(τ)dτ,

a < t < b and 0 < η < 1, (2)

where Γ denotes the Gamma function.

Definition 2 The Caputo fractional derivative, where
D = d/dt, is defined as [44]:

CDη
a+f(t) = DnIn−η

a+

[
f(t) −

n−1∑
k=0

f (k)(a)
k!

(t − a)k

]
.

(3)

If f is a function of class Cn, its fractional derivative
is represented by the following expression:

CDη
a+f(t) =

1
Γ(n − η)

∫ t

a

(t − τ)n−η−1f (n)(τ)dτ,

n − 1 < η < n, (4)

where Γ represents the Gamma function.

2.2 Deterministic SEIVR-QH network

In this paper, an extended fractional SEIR network,
called the SEIVR-QH, is applied to develop a determin-
istic model for the spread of COVID-19. In the defini-
tion of this network, the population is divided into nine
nodes. First, the whole population is considered sus-
ceptible (S), which can become exposed (E) or can be
immunized by observing social distancing (P ) or being
vaccinated (V ) against the disease. Depending on the
social exposure, exposed cases can be transmitted to
the infected stage (I). If an individual is diagnosed with
the disease, they will be quarantined (Q) based on the
disease severity and infection spread. If the infection is
severe, the patient will then be hospitalized (H). Con-
sequent to treatment via hospital-based medical care
or self-medication, nearly all quarantined cases recover
(R) and some die (D) because of the disease severity.
The relationship between these nine states is depicted
in the network shown in Fig. 1.

The mathematical relationships among the nine
states in the model are expressed by a system of frac-
tional differential equations, as follows:

CDη
a+S(t) = −β

S(t)I(t)
N

− αS(t) − ρS(t), (5)

CDη
a+E(t) = β

S(t)I(t)
N

− γE(t), (6)

CDη
a+I(t) = γE(t) − δI(t), (7)

CDη
a+Q(t) = δI(t) − Q(t)(λ(t) + κ(t) + ζ), (8)

CDη
a+H(t) = ζQ(t) − H(t)(ψ + φ), (9)

CDη
a+R(t) = λ(t)Q(t) + ψH(t), (10)

CDη
a+P (t) = αS(t), (11)

CDη
a+V (t) = ρS(t), (12)

CDη
a+D(t) = κ(t)Q(t) + φH(t), (13)

S(0) = S0, E(0) = E0, V (0) = V0, Q(0) = Q0,

I(0) = I0, R(0) = R0, P (0) = P0,

V (0) = V0,H(0) = H0, (14)

where α is the protection rate, β indicates the infection
rate, ρ stands for the vaccination rate, γ is the aver-
age latency time, δ denotes the rate at which infected
cases enter into quarantine, ζ refers to hospitalization
rate, λ is the time-variant quarantine recovery rate, κ
is the time-variant mortality quarantine rate, and ψ
and φ are hospitalization recovery and mortality rates,

123



3430 Eur. Phys. J. Spec. Top. (2022) 231:3427–3437

Fig. 1 Relationship between different nodes

respectively. The constraint S + E + V + Q + I + R +
P + D + H = N , (S,E, I,Q,H,R, P, V,D) ∈ R

+9, is
applied, where N is the entire target population.

Theorem 1 There is a unique solution for the frac-
tional SEIVR-QH model. Moreover, the solution is non-
negative.

Proof Let f(x) ∈ C[0, b] and Dηf(x) ∈ C(a, b] for 0 <
η ≤ 1, f(x) is the Lebesgue measure. Then,

f(x) = f(a) +
1

Γ(η)
Dηf(ξ)(x − a)η, (15)

with 0 ≤ ξ ≤ x, ∀x ∈ (a, b). If Dηf(x) ≥ 0,∀x ∈ (0, b),
then the function f is non-decreasing, and if Dηf(x) ≤
0,∀x ∈ (0, b), then the function f is non-increasing for
all x ∈ [0, b]. Afterwards, all the conditions in Theo-
rem 3.1 from [45] are met and there is a unique and
non-negative function in (0,∞), which is the solution
of Eq. (1). There is also a need to show that the domain
R

+9 is positively invariant. Since the following holds:

CDη
a+S |S=0 = 0,

CDη
a+E |E=0 = β

S(t)I(t)
N

≥ 0,

CDη
a+I |I=0 = γE(t) ≥ 0,

CDη
a+Q |Q=0 = δI(t) ≥ 0,

CDη
a+H |H=0 = ζQ(t) ≥ 0,

CDη
a+R |R=0 = δQ(t) + ψH(t) ≥ 0,

CDη
a+P |P=0 = αS(t) ≥ 0,

CDη
a+V |V =0 = ρS(t) ≥ 0,

CDη
a+D |D=0 = κ(t)Q(t) + φH(t) ≥ 0, (16)

on each hyper-plane bounding the non-negative orthant,
the vector field points into R

+9. �	

Theorem 2 Consider the initial value problem of
Eqs. (5)–(14), with η satisfying 0 < η ≤ ∞, to eval-
uate its equilibrium points. Let

CDη
a+S(t) = 0, (17)

CDη
a+E(t) = 0, (18)

CDη
a+I(t) = 0, (19)

CDη
a+H(t) = 0, (20)

CDη
a+Q(t) = 0, (21)

CDη
a+R(t) = 0, (22)

CDη
a+P (t) = 0, (23)

CDη
a+V (t) = 0, (24)

CDη
a+D(t) = 0. (25)

Then, the equilibrium points are

1. A disease-free equilibrium PF = (1, 0, 0, 0, 0, 0, 0, 0)
2. An endemic equilibrium point PE = (S∗, E∗, I∗, Q∗,

H∗, R∗, P ∗, V ∗,D∗), where S∗ =
α + ρ

γ
E∗, I∗

=
γ

δ
E∗, and Q∗ =

δI∗

λ + κ + ζ
.

2.3 Numerical solution

The system of fractional differential equations is written
in the matrix form, as follows:

CDη
a+Y (t) = A(t) · Y + F (t) where 0 < η ≤ 1,

(26)

Y = [S,E, I,H,Q,R, P, V,D]T, (27)
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A(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α − ρ 0 0 0 0 0 0 0 0
0 −γ 0 0 0 0 0 0 0
0 γ −δ 0 0 0 0 0 0
0 0 δ −κ(t) − λ(t) − ζ 0 0 0 0 0
0 0 0 −ψ − φ ζ 0 0 0 0
0 0 0 φ λ(t) 0 0 0 0
α 0 0 0 0 0 0 0 0
ρ 0 0 0 0 0 0 0 0
0 0 0 φ κ(t) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

F (t) = S(t)I(t)
[−β

N
,

β

N
, 0, 0, 0, 0, 0, 0, 0

]T

. (29)

To solve the matrix form of the given system, the
Adams–Bashforth–Moulton predictor–corrector
method is used in two steps. First, the prediction
step calculates a rough approximation of the desired
quantity, typically employing an explicit method. Sec-
ond, the corrector step refines the initial approximation
recruiting another means, typically an implicit method.
For more details, see [46].

3 Monte Carlo sampling for back analysis

At this point, the formulation of SEIVR-QH network,
the fractional form of the differential equations, and its
solution are established. The problem at hand is to esti-
mate the unknown weights of the network, namely β,
α, γ, δ, λ0, λ1, κ0, κ1, ζ, ρ, ψ, and φ, such that the pro-
posed SEIVR-QH network best describes the observed
data. To this end, a novel two-step optimization algo-
rithm is established in this section using Monte Carlo-
based back analysis to obtain the optimal weights when
η is assumed as unity [47–50]. A sensitivity analysis is
then used in the next section to investigate the influ-
ence of fractional order in the regression accuracy. To
implement the back-analysis approach, the parameters
involved in the problem, i.e., weights of the network, are
defined as random variables. This makes it possible to
consider a range of variation for these parameters and
evaluate the predictions obtained by their various com-
binations. To better understand the parameters’ com-
bination, suppose the parameters are placed in a lat-
tice, in which the x-axis and y-axis are the parameters
within the arranged set of ranges, then the variety of
these parameters with different values is supposed as
a random walk on this lattice. The range of variations
defined for each random variable is shown in Table 1.

Next, 10,000 realizations are generated for each ran-
dom variable. This process takes 30 min on a PC
equipped with a 64 GB of random access memory
(RAM) and an Intel Core i7-5820K central processing
unit (CPU). Then, by introducing each set of realiza-
tions into the system of differential equations, a new

SEIVR-QH problem is established that is solved using
the method describe previously. This leads to 10,000
distinct predictions of the spread of the disease over
time. The resulting database of I, R, D, and V is then
used as the input of the back-analysis algorithm in the
next step. The process described for implementing the
Monte Carlo sampling is schematically shown in Fig. 2.

To implement the back-analysis method, the actual
observations of COVID-19, i.e., I, R, and D in Thai-
land, are compiled from the World Health Organization
(WHO) online database [12]. In addition, the number of
daily vaccinations is obtained from the Johns Hopkins
University database [51]. The whole dataset is available
on “Mendeley Data” [52]. The results are plotted in
Fig. 3 from 2021-02-28 to 2021-08-30. This figure also
demonstrates intervals of ±15% above and below the
observed data. This is here considered as an allowable
interval, and used as a filter to select the closest cases
to the observed data among the 10,000 realizations of
I, R, D, and V . This means that the allowable area is
defined by a sample-selection criterion that leads the
algorithm towards finding the best available fit. The
process described for the selection/rejection of samples
is schematically shown in Fig. 4.

By applying the proposed filter to the data, 40 out of
10,000 samples fall within the allowable interval. Next,
a new criterion is defined for a second-round selection
to find the best sample from the previously selected 40
samples. For this purpose, the root mean square error

Table 1 Random variables and their corresponding ranges
of variation

No. Parameter Distribution function Minimum Maximum

1 β Uniform 0.0 10.0
2 α Uniform 0.0 0.5
3 γ Uniform 0.0 0.05
4 δ Uniform 0.0 0.5
5 λ0 Uniform 0.0 0.5
6 λ1 Uniform 0.0 0.5
7 κ0 Uniform 0.0 0.5
8 κ1 Uniform 0.0 0.5
9 ζ Uniform 0.0 0.1
10 ρ Uniform 0.0 0.1
11 ψ Uniform 0.0 0.1
12 φ Uniform 0.0 0.1
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Fig. 2 Steps of using Monte Carlo sampling in combination with the SEIVR-QH network

(a) (b) (c) (d)

Fig. 3 The allowable interval defined above and below the observed data for a infected, b recovered, c dead, and d
vaccinated cases

(RMSE) between the predicted time series of I, R, D,
and V in each sample and the observed time series is
calculated for each of the 40 samples, as follows:

θ1,i =

√√√√tnow∑
t=0

(
I(t) − IS

i (t)
)2

, (30)

θ2,i =

√√√√tnow∑
t=0

(
R(t) − RS

i (t)
)2

, (31)

θ3,i =

√√√√tnow∑
t=0

(
D(t) − DS

i (t)
)2

, (32)

θ4,i =

√√√√tnow∑
t=0

(
V (t) − V S

i (t)
)2

, (33)

where θ1,i, θ2,i, θ3,i, and θ4,i are the RMSE of the
ith sample for the infected, recovered, dead, and vac-
cinated, respectively; I(t), R(t), D(t) and V (t) are
the actual measurements of infected, recovered, dead,
and vaccinated cases, respectively; and IS

i (t), RS
i (t),

DS
i (t), and V S

i (t) are the time series of infected, recov-
ered, dead, and vaccinated cases for the ith sample,
respectively, computed using the proposed SEIVR-QH
model. The results for θ1, θ2, θ3, and θ4 are shown in
columns 2–5 and 8–11 of Table 2. Next, by combining
the RMSEs of I, R, D, and V using a square root of the
sum of squares, the final selection criterion, denoted by
θt, is defined:

θt =
√(

θ1,i

)2 +
(
θ2,i

)2 +
(
θ3,i

)2 +
(
θ4,i

)2
. (34)

The results of θt are shown in columns 6 and 12 of
Table 2. The previously selected 40 samples are then
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Fig. 4 Schematic diagram of the proposed back-analysis method

Table 2 RMSE for 40 samples

No. θ1 (×104) θ2 (×104) θ3 (×106) θ4 (×102) θt (×106) No. θ1 (×104) θ2 (×104) θ3 (×106) θ4 (×102) θt (×106)

1 3.96 2.05 4.69 3.09 4.69 21 9.45 1.87 4.35 2.86 4.35
2 5.07 2.26 4.63 2.90 4.63 22 3.09 2.38 4.60 3.49 4.60
3 10.30 2.31 4.39 2.77 4.40 23 8.36 2.47 3.85 3.25 3.85
4 2.50 1.83 3.52 1.39 3.52 24 5.60 2.44 4.16 3.50 4.16
5 5.15 2.02 4.25 3.20 4.25 25 10.70 2.26 4.44 2.74 4.45
6 5.19 1.99 4.65 2.84 4.65 26 8.33 2.08 4.59 2.36 4.59
7 6.77 2.45 4.55 2.03 4.55 27 2.51 2.38 4.07 3.28 4.07
8 4.11 2.42 4.58 2.70 4.58 28 3.86 2.51 4.17 2.28 4.17
9 4.79 2.00 4.44 3.22 4.44 29 7.62 2.52 4.09 3.10 4.09
10 7.83 2.44 3.83 2.47 3.83 30 9.81 2.29 4.54 2.53 4.54
11 4.27 2.45 4.23 2.94 4.23 31 6.65 2.31 4.67 1.95 4.67
12 10.00 2.15 4.44 2.64 4.44 32 7.08 2.53 4.17 1.82 4.17
13 8.13 2.02 4.66 2.36 4.66 33 7.84 2.52 4.18 1.95 4.18
14 2.53 2.34 4.45 2.79 4.45 34 3.48 2.46 4.22 2.59 4.22
15 4.17 2.39 4.38 2.42 4.38 35 6.65 2.35 3.90 3.44 3.90
16 9.64 2.07 4.52 3.19 4.52 36 4.50 2.25 4.56 3.06 4.56
17 5.36 2.28 4.61 3.08 4.61 37 9.45 2.33 4.48 3.47 4.48
18 5.41 2.11 4.46 1.69 4.46 38 9.44 2.06 4.73 2.63 4.73
19 7.52 2.38 4.61 3.34 4.61 39 10.00 2.42 4.62 3.03 4.62
20 4.36 2.31 4.17 3.19 4.17 40 5.81 2.13 4.54 1.93 4.54

sorted according to θt and the sample corresponding
to the lowest θt, i.e., sample 4 in Table 2, is selected as
the best fit. The optimal values of the parameters corre-
spond to this sample are reported in Table 3. The time
series of I, R, D, and V corresponding to the optimal
parameters are also shown in Fig. 5.

4 Sensitivity analysis

As described in Sect. 2, the fractional form of the
SEIVR-QH model, i.e., η ≤ 1, provides a new degree
of freedom to the compartmental system and provides

the algorithm with further flexibility compared to the
conventional differential equations of the first order, i.e.,
η = 1. This subsequently enables the system to better
fit the actual data. Since the back analysis presented in
this paper is implemented by four objective functions
that must be optimized simultaneously to ensure that
the number of infected, recovered, dead, and vaccinated
cases matches the actual data, this flexibility is key in
achieving accurate results. To make use of the fractional
differential equation system to fit the SEIVR-QH net-
work to the collected data of COVID-19 in this paper,
the order of the equations is defined as a decision vari-
able that assumes values less than unity. Thereafter,
the new fractional problem is solved and the resulting
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(a) (b) (c)

Fig. 5 Model predictions corresponding to the optimal parameters

Table 3 The optimal values of parameters

No. Parameter Value No. Parameter Value

1 β 5.1769 7 κ0 0.0360
2 α 0.1599 8 κ1 0.1239
3 γ 0.0294 9 ζ 0.0061
4 δ 0.3246 10 ρ 0.0837
5 λ0 0.1773 11 ψ 0.0010
6 λ1 0.3034 12 φ 0.0015

fit is assessed for improvement in the prediction accu-
racy. To make use of the fractional differential equa-
tion system to fit the SEIVR-QH network to the col-
lected data of COVID-19, the order of the equations is
defined as a decision variable that assumes values less
than unity. Then, the new fractional problem is solved
and the resulting fit is assessed for improvement in the
prediction accuracy.

For this purpose, assuming the optimal parameters
obtained in Sect. 3, 11 different values of the decision
variable that represent the fractional order are consid-
ered, including η = 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9, 0.95 and 1. Next, a fractional form of SEIVR-
QH problem is defined corresponding to each η and
analyzed separately by the method presented in Sect. 2.
The results of each case are then stored in the form of
time series I, R, and D. Table 4 shows the θ1, θ2, and
θ3, as well as θt for different values of η. In addition,
the corresponding time series of I, R, and D are plotted
against different η in Fig. 6.

As seen, the best result is obtained for η = 0.9. In
other words, assuming η = 0.9, a better fit to data is
obtained and θt is minimized. Compared to the assump-
tion of η = 1, the value of θt has changed from 3.52×106

to 2.58 × 106, i.e., a reduction of 27% in the error mea-
sured. According to the new results, the number of
infected, recovered, and dead at the beginning of 2022
in the Thailand will, respectively, reach about 4300,
4.65 × 106 and 36,000. In addition, by November 2022,
the number of infected will fall below 1500, indicating
that the disease will be under control in the Thailand.
It is noteworthy that these results are based on the fit
obtained by the fractional model, which is more accu-
rate and reliable than the results reported in Sect. 3.

5 Conclusion

In this paper, a compartmental network is estab-
lished using fractional SEIVR-QH to predict the spread
profile of COVID-19 in Thailand. To this end, the
proposed network is employed in a Monte Carlo-based
back analysis in which network weights, including β,
α, γ, δ, λ0, λ1, κ0, κ1, ζ, ρ, ψ, and φ, are defined
as random variables. By generating a set of random
samples for each random variable, the Monte Carlo-
back analysis is used to find realizations of parameters
whose predictions fall within a desired interval around
the observed data. Thereafter, the RMSE criterion is
applied to the selected samples to find the best fit to
the Thailand data. Finally, a sensitivity analysis is con-
ducted to investigate the effect of the order of the frac-
tional operator on the accuracy of the fit. The primary
results of this study are as follows:

• Monte Carlo-back analysis identified 40 samples in
close proximity of the observed data, having RMSE
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Table 4 RMSE values for different η

No. η θ1 (×104) θ2 (×104) θ3 (×106) θ4 (×102) θt (×106)

1 0.50 4.20 2.16 4.07 1.90 4.07
2 0.55 5.29 2.29 3.89 2.19 3.89
3 0.60 5.55 2.12 3.54 1.77 3.54
4 0.65 2.96 2.12 3.59 1.41 3.59
5 0.70 3.14 2.26 3.87 2.19 3.87
6 0.75 5.72 2.21 4.10 2.00 4.10
7 0.80 4.49 2.22 4.20 2.22 4.20
8 0.85 3.39 2.27 3.43 2.03 3.43
9 0.90 2.12 1.81 2.58 1.15 2.58
10 0.95 4.74 2.21 3.37 1.90 3.37
11 1.00 2.50 1.83 3.52 1.39 3.52

(a) (b) (c)

Fig. 6 The resulting fit on the data for different η

values between 3.52×106 and 4.73×106. The best fit
between them provides the optimal network weights
as infection rate, β = 5.1769, protection rate, α =
0.1599, infectious to quarantine rate, δ = 0.3246,
average latent time, γ = 0.0294, time-dependent
recovery rate, λ0 = 0.1773 and λ1 = 0.3034, time-
dependent mortality rate, κ0 = 0.0360 and κ1 =
0.1239, hospitalization rate, ζ = 0.0061, vaccination
rate, ρ = 0.0837, hospitalization to recovery rate,
ψ = 0.0010, and hospitalization to mortality rate,
φ = 0.0015.

• The results of sensitivity analysis showed that the
accuracy of data fitting is greatly improved by
changing the fractional order, so that the θt of
the best fractional fit, i.e., η = 0.9, reaches about
2.58 × 106, while that for the ordinary case, i.e.,
η = 1, is bound to 3.52 × 106. This means that the
fractional form of the SEIVR-QH network improves
the accuracy by about 27%.

• The optimal output of the fractional SEIVR-QH
network showed that by the end of 2021, the num-
ber of people infected (active), recovered and dead
in Thailand will reach 4300, 4.65 × 106 and 36,000,
respectively.

• The resulting number of infected cases also shows
that the number of active cases fall below 1500 by
November 2022, indicating that the disease will be
under control in Thailand.

Although the compartmental networks benefit from
simple configuration and straightforward implementa-
tion, they suffer from a common problem; that is,
if compartments and computational nodes are added,
their complexity is greatly increased, making it diffi-
cult to optimize the network to adapt to the data. The
method proposed in this paper, however, enables the
compartmental network to be expanded to the required
size without concerning the complexity of the network
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and the size of the differential equation system. In other
words, one can simply add the required nodes, such as
reinfection after recovery and vaccine side effects, and
then use Monte Carlo sampling method to optimize the
network. This will be studied by authors in the future.
Moreover, SEIVR-QH parameters are assumed as vari-
ables in the back analysis and incorporated in matching
of the time histories. However, in addition to the model
parameters, the fractional order of the differential equa-
tions is also defined as random variables and employed
in the formulation of the Monte Carlo sampling method.
This allows for a higher flexibility to fit the model to the
data and thus, increases the model accuracy. Secondly,
the probabilistic characteristics of the order of the dif-
ferential equation, namely the mean and the standard
deviation, are obtained from the optimal results of the
first stage of the back analysis. This research is a prac-
tical step in defining the randomized fractional problem
in solving the differential equations of disease spread.
This is the subject of ongoing research by the authors
on modeling the spread of COVID-19.

Data Availability Statement This manuscript has asso-
ciated data in a data repository. [Authors’ comment: All
data used in this paper are uploaded in Mendeley Data and
are accessible via [51].]
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