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Abstract The relevant dynamics underlying COVID-19 waves is described from an amplitude space per-
spective. To this end, the amplitude dynamics of infected populations is considered in different stages of epi-
demic waves. Eigenvectors and their corresponding amplitudes are derived analytically for low-dimensional
models and by means of computational methods for high-dimensional models. It is shown that the ampli-
tudes of all eigenvectors as functions of time can be tracked through the diverse stages of COVID-19 waves
featuring jumps at the stage boundaries. In particular, it is shown that under certain circumstances the
initial, outbreak stage and the final, subsiding stage of an epidemic wave are primarily determined by the
unstable eigenvector of the initial stage and its corresponding remnant vector of the final stage. The corre-
sponding amplitude captures most of the dynamics of the emerging and subsiding epidemics such that the
problem at hand effectively becomes one dimensional leading to a dramatic reduction of the complexity of
the problem at hand. Explicitly demonstrated for the first-wave COVID-19 epidemics of the year 2020 in
the state of New York and Pakistan are given.

1 Introduction

The pandemic of the Coronavirus disease 2019 (COVID-
19) claimed 2,000,000 lives worldwide in the year 2020
[1]. Despite the availability of vaccines since the begin-
ning of the year 2021 in some parts of the world, in the
first half of the year 2021 (i.e., from January 17 to July
4, 2021) 2,000,000 more deaths due to COVID-19 were
registered worldwide [2]. At the end of September 2021,
the death toll since the beginning of the pandemic was
at 4,700,000 people and a total of 231,000,000 individ-
uals had been diagnosed with the disease [3].

Epidemic outbreaks and waves such as COVID-19
waves observed regionally can be understood within
the framework of nonlinear physics as instability-
induced phenomena [4–6]. While in general for such
instability-induced phenomena the underlying relevant,
low-dimensional dynamics can be identified with the
help of amplitude equations [7–11], the identification
of the relevant dominant sub-dynamics of COVID-19
waves from an amplitude equation perspective is a
research field in its infancy.

In previous studies it has been pointed out that the
relevant unstable eigenvector [9] or order parameter
[7,11] determines the initial stage of a COVID-19 wave
[12–14]. In particular, it has been demonstrated that
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the dynamics of an epidemic converges towards the
dominant sub-dynamics along the unstable eigenvector
[15] and it has been recognized that the amplitude equa-
tion perspective based on eigenvalues and eigenvectors
naturally leads to a three-stage scheme of COVID-19
waves [16–19]. Such stage schemes in turn have been a
key tool to understand COVID-19 waves and possible
intervention impacts [20–26]. In particular, they can be
regarded as approximation to more fine-grained mod-
eling approaches that assume that model parameters
vary continuously (e.g., on a daily basis) [27,28]. How-
ever, what has not been discussed so far is an approach
to determine the amplitude dynamics for the outbreak
and subsiding stages of COVID-19 waves in general for
epidemiological models that involve an arbitrary num-
ber of infected compartments.

In Sect. 2, a fundamental decomposition of epidemic
models into infected and non-infected compartments
that has been frequently used in the literature [4,5]
will be discussed and it will be shown how to derive
amplitude equations of infected subsystems in arbitrary
dimensions. The stage concept of epidemics will be
introduced in Sect. 3.1 and stages of COVID-19 waves
will be discussed from the amplitude equation perspec-
tive both on an analytical (Sect. 3.2) and computa-
tional level (Sect. 3.3). The analytical discussion will
be restricted to SIR and SEIR models [29]. Both types
of models have been extensively used in the literature
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to examine COVID-19 waves [20,21,24,25,27,28,30].
The computational approach will be exemplified by
means of high-dimensional models.

2 Infected subsystems: an amplitude space
perspective

2.1 Model formulation and decomposition of states

Let us consider epidemics that can be described in
terms of individuals in n compartments or subpopu-
lations. The compartment sizes are described by the
variables X1, . . . , Xn ≥ 0 that form the state vector
X = (X1, . . . , Xn). The state space D0 is given by lRn

+.
The state is assumed to satisfy a compartmental model
[29] of the form

d
dt

X = N(X) . (1)

For analysis purposes, it has been suggested to split
the compartments into those of infected and non-
infected individuals [4,5]. Without loss of generality,
let the first m compartments with m ≥ 1 and m < n
denote various types of infected individuals and the
remaining compartments denote non-infected individ-
uals. Accordingly, X+ = (X1, . . . , Xm) and X− =
(Xm+1, . . . , Xn) denote vectors of the respective sub-
spaces D+ and D− (with D0 = D+ ∪ D−) and X =
(X+,X−). The disease-free state Xst is defined by
Xst = (X+

st,X
−
st) with X+

st = (0, . . . , 0). As indicated,
it is assumed that the disease-free state is a fixed point
(or stationary state) of Eq. (1). Let us split the right-
hand side function N into N = (N+,N−). Then Eq. (1)
can equivalently be expressed in terms of two coupled
dynamical systems like

d
dt

X+ = N+(X = (X+,X−)) ,

d
dt

X− = N−(X = (X+,X−)) . (2)

It is known that under certain circumstances the sta-
bility of the infected subsystem determines the stability
of the entire system [4,5]. Therefore, in what follows,
an amplitude equation description for the infected sub-
system will be developed. The benefit of this approach
is that the subsystem D+ involves a smaller set of vari-
ables as compared to the entire system. An amplitude
equation approach that focuses only on D+ makes the
analysis feasible. That is, when focusing on the infected
subsystem dynamics, it might be possible to derive ana-
lytical expressions that could not be derived for the
entire system. Likewise, when conducting a computa-
tional approach, the primary focus can be directed to
the dynamics in the subspace D+.

2.2 Amplitude space description of the infected
subsystem

The m-dimensional subspace D+ with state vector X
can be mapped to a m-dimensional amplitude space
described by the amplitude vector A = (A1, . . . , Am).
In this context, it is frequently assumed that the lin-
earized dynamics of the infected subsystem at the
disease-free fixed point is independent of the variables
of the non-infected subsystem [4,5]. Let u = X − Xst

denote a perturbation in D0 and

d
dt

u = Lu (3)

describe the linearized dynamics of Eq. (1) at Xst

with the linearization matrix L composed of coefficients
Lik. Then the aforementioned assumption that the lin-
earized infected system at Xst is independent of the
non-infected system implies that L can be decomposed
into three matrices L+, A, and B like

L =
(

L+ 0
A B

)
, (4)

where L+ is the upper, left-corner m × m matrix with
coefficients Lik and i, k ≤ m. Importantly, as indicated
in Eq. (4), Lik = 0 holds for all i ≤ m and k ≥ m + 1.
Consequently, the linearization of dX+/dt = N+(X) at
Xst is given by

d
dt

X+ = L+X+ , L+
ik =

∂

∂X+
k

Ni(Xst) , (5)

where L+ is the linearization matrix in D+. In what
follows, it is assumed that the matrix L+ exhibits m
linearly independent (right) eigenvectors vk associated
with the eigenvalues λk. If the vectors vk are taken
as column vectors, then they constitute the matrix M
defined by

M = (v1, . . . ,vm) , (6)

whose inverse matrix M−1 exists. Let wk describe the
rows of the inverse matrix like

M−1 =

( w1

. . .
wm

)
. (7)

Then, wivk = δik holds, where δik is the Kronecker
symbol. Accordingly, wi and vk form a biorthogonal
basis. wi are referred to as biorthogonal vectors or left
eigenvectors. The matrix M is also called diagonaliza-
tion matrix because M−1 L+ M = D holds, where D is
the diagonal matrix with eigenvalues λk. The amplitude
space spanned by the amplitude variables A1, . . . , Am

can be defined with the help of the mapping
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X+ =
m∑

k=1

vkAk ⇔ X+ = MA , (8)

which implies

Ak = wkX+ ⇔ A = M−1X+ . (9)

Equation (8) describes the superposition of a state in
D+ in terms of amplitude variables. As such, Eq. (8)
defines a mapping of points from the amplitude space
to the state space D+. Vice versa, Eq. (9) describes
a mapping of points from the state space D+ to the
amplitude space. To derive the evolution equations
for the amplitudes A1, . . . , Am, the dynamical system
dX+/dt = N+(X) is decomposed into the linear part
(5) and a remainder term R such that

d
dt

X+ = N+(X) = L+X+ + R(X+,X−) . (10)

Multiplying Eq. (10) by M−1 and using M−1X+ = A,
we obtain

d
dt

A = M−1L+X+ + M−1R(X+,X−) . (11)

Finally, X+ occurring in Eq. (11) is expressed like
X+ = MA and the identity M−1L+M = D is used,
which leads to

d
dt

A = DA + M−1R(MA,X−) . (12)

In addition, from Eq. (2) the evolution equation for X−
can be cast into the form

d
dt

X− = N−(X+,X−) = N−(MA,X−) . (13)

Equations (12) and (13) read in components

d
dt

Ak = λkAk + wkR(MA,X−) , (14)

d
dt

X−
j = N−

j (MA,X−) (15)

with k = 1, . . . ,m and j = m + 1, . . . , n, respec-
tively. Equations (15) for k = 1, . . . , m provide the m-
dimensional amplitude space description of the infected
subsystem of the epidemic under consideration. The
amplitude space description in general does not corre-
spond to an autonomous system. Due to the nonlinear
terms wkR the amplitude dynamics depends in gen-
eral on the non-infected variables X−, as indicated. Let
λmax denote the eigenvalue with the largest real part.
Then, we can distinguish between two cases.

2.3 Epidemic outbreak

If lR{λmax} > 0 holds the disease-free fixed point X+
st =

(0, . . . , 0) in D+ is an unstable fixed point. Let k(max)
define the index of the eigenvalue λk(max) = λmax. For
illustration purposes, let us assume that there is only a
single positive eigenvalue (for an example in this regard
see the SEIR model in Sect. 2.5). In this case, the fixed
point X+

st ∈ D+ corresponds to a saddle point with
one unstable direction defined by the unstable eigenvec-
tor vk(max). All other directions in D+ are character-
ized by stable eigenvectors. Consequently, the dominant
dynamics takes place along vk(max). The corresponding
amplitude Ak(max) increases in magnitude during the
initial stage of the epidemic [12,15]. Using the termi-
nology of synergetics [7,11], the unstable eigenvector
may be considered as order parameter of the infectious
disease outbreak and the corresponding amplitude as
order parameter amplitude.

2.4 Subsiding epidemic driven by the linear system

Amplitudes may decay in magnitude for two reasons.
First, if lR{λmax} > 0 holds then due to the impact
of the nonlinear terms the amplitudes A1, . . . , Am may
converges to zero despite the fact that the maximal
eigenvalue exhibits a positive real part and the epidemic
subsides. Second, in contrast to this kind of subsiding
of an epidemic driven by nonlinear terms, let us con-
sider the case lR{λmax} < 0 and let us assume that
the linear terms in Eq. (14) dominate over the nonlin-
ear terms. Furthermore, just as in the special case of
a single positive eigenvalue λmax discussed above that
is qualitatively different from all other (negative eigen-
values) λj with j �= k(max), let us assume that there
exist a gap in the eigenvalue spectrum between λmax

and the remaining eigenvalues λj with j �= k(max).
To describe this gap, we consider the time constants
τmax = 1/λmax and τj = 1/lR(λj). If |λmax| � |lR(λj)|
then τmax 	 τj holds. Consequently, the dynamics of
Ak(max) along vk(max) is slow relative to the dynamics of
the amplitudes in other directions. In other words, the
amplitudes Aj with j �= k(max) quickly decay to zero,
while Ak(max) decreases slowly. If so, the subsiding of
an epidemic is determined by dynamics of Ak(max) and
direction vk(max).

2.5 SIR and SEIR models

The derivation of the amplitude equations (14) holds
for arbitrary dimension m. To begin with, let us briefly
consider the trivial case of m = 1. To this end, let
us consider the susceptible-infectious-recovered (SIR)
model [29]

d
dt

S =−βI

N
S ,

d
dt

I =
βI

N
S − γI ,

d
dt

R = γI, (16)

where β > 0 denotes the effective contact rate and γ is
the recovery rate of infectious individuals related to the
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recovery period T like γ = 1/T . We have m = 1, n = 3,
X = (I, S,R). The space D+ is one dimensional with
X+ = I. The space D− exhibits the state vector X− =
(S,R). Let us consider the fixed point Xst = (0, N, 0)
with Sst = N and perturbations u = (u1, u2, u3) with
u1 = I, u2 = S − N , u3 = R. Linearization of the
evolution equation of I at the fixed point yields the
eigenvalue λ = β − γ [31]. Formally, the subspace D+

can be mapped to a one-dimensional amplitude space
describe by the variable A1. In fact, both spaces are
identical, which implies I = A1. Substituting I = A1

and S = N + u2 into the evolution equation of I (see
Eq. (16)), we obtain the amplitude equation

d
dt

A1 = λA1 + u2p(A1) (17)

with p denoting the linear function p(A1) = βA1/N .
From the evolution equations of S and R, we obtain

d
dt

u2 = −(N + u2)p(A1) ,

d
dt

R = γA1 . (18)

Equations (17) and (18) correspond to the explicit
forms of Eqs. (14) and (15), respectively, in the case of
the SIR model.

Next, let us illustrate the case m = 2 that was worked
out previously [12,15] for the susceptible–exposed–
infectious–recovered (SEIR) model defined by [29]

d
dt

S = −βI

N
S ,

d
dt

E =
βI

N
S − αE ,

d
dt

I = αE − γI ,
d
dt

R = γI , (19)

where β > 0 and γ > 0 denote the effective contact
rate and the recovery rate again. The parameter α is
the rate of progression from being exposed but non-
infectious to being infectious. We have m = 2, n = 4,
X = (E, I, S,R), X+ = (E, I), and X− = (S,R). In
what follows, we are interested in studying outbreaks
of novel infectious diseases such as COVID-19. In this
case, it is generally assumed that the whole population
of interest is initially susceptible to the virus. Accord-
ingly, the fixed point of interest reads Xst = (0, 0, N, 0)
with Sst = N . In this case, the linearization matrix L+

is given by

L+ =
(−α β

α −γ

)
(20)

and exhibits the eigenvalues

λ1,2 = −α + γ

2
±

√
(α + γ)2

4
+ α(β − γ) , (21)

where the plus sign holds for λ1 and the minus sign
for λ2. From Eq. (21) it follows for any parameter set

α, β, γ > 0 that λ2 < 0 holds and λ1 = λmax > λ2.
For β > γ (β < γ) we have λ1 > 0 (λ1 < 0). The
eigenvectors of L+ read

vi =
(

vi,E
vi,I

)
=

1√
(λi + α)2 + β2

(
β

λi + α

)
.

(22)

The perturbation u = X − Xst = (E, I, u3, R)
involves u3 = S − N ≤ 0. The amplitude equations
can be found in previous studies [12,13,15] and read

d
dt

A1 = λ1A1 + C1u3p(A1, A2) ,

d
dt

A2 = λ2A2 + C2u3p(A1, A2) (23)

with

C1 =
v2,I
|M | , C2 = − v1,I

|M | , p =
β

N
(v1,IA1 + v2,IA2),

(24)

where |M | denotes the determinant of the eigenvector
matrix: |M | = v1,Ev2,I − v2,Ev1,I = β(λ2 − λ1)/(Z1Z2)
and Zi =

√
(λi + α)2 + β2. The dynamics of the non-

infected system is given by

d
dt

u3 = −(N + u3)p(A1, A2) ,

d
dt

R = γ(v1,IA1 + v2,IA2) . (25)

Furthermore, the mappings (A1, A2) → (E, I) and
(E, I) → (A1, A2) read explicitly

E = v1,EA1 + v2,EA2 , I = v1,IA1 + v2,IA2 (26)

and

A1 =
v2,IE − v2,EI

|M | , A2 =
v1,IE − v1,II

|M | . (27)

The amplitude space description of the SEIR model
will be used below to show how to describe stages of
COVID-19 epidemics in amplitude space. and how to
track characteristic changes across such stages.

3 Stages of COVID-19 epidemics:
characterization in amplitude space

3.1 Epidemic stages

Frequently the impact of intervention measures to stop
the spread of COVID-19 has been studied with the help
of epidemic models [16–22,32–41]. In this context, it is

123



Eur. Phys. J. Spec. Top. (2022) 231:3403–3418 3407

often assumed that a given period of interest can be par-
titioned into several intervals or stages [20–26]. During
each stage, the parameters of the virus-human system
under consideration are assumed to be approximately
constant. In contrast, across stages these parameters
vary. Let us assume a number of s stages j = 1, . . . , s.
Each stage j is given by an interval [tj−1, tj ] such that t0
and ts denote the initial and end time points, respec-
tively, of the total period of interest. Model parame-
ters can then be considered as step functions over time.
They change discontinuously at the stage boundaries
tj . This implies for the amplitude space description of
the system under consideration that the key character-
istics such as eigenvalues and eigenvectors vary across
stages. To track an epidemic through a sequence of
stages in amplitude space, for each stage the matrix
L+, the eigenvalues λk, eigenvectors vk and other coef-
ficients must be computed that occur in the amplitude
equation description defined by Eqs. (14) and (15). The
benefit of the amplitude space description is that under
appropriate conditions (see Sect. 2.2) it allows us to
determine for each stage the dominant dynamics.These
ideas will be illustrated in what follows for analytical
and computational approaches.

3.2 Analytical approach

Let us consider an epidemic model for which the ampli-
tude space description in terms of Eqs. (14) and (15)
is explicitly given. For illustration purposes, let us con-
sider the SEIR model discussed in Sect. 2.2 for which
the amplitude space description is given in form of
Eqs. (23) and (25). Given the model parameters α, β, γ
in stage 1 and the initial state X(t0) and the cor-
responding state X+(t0) = (E(t0), I(t0)) in the sub-
space of the infected compartments, the initial ampli-
tude vector A(t0) can be computed from A(t0) =
M−1(Stage 1)X+(t0), which is explicitly given by Eq.
(27). Subsequently, the state space equations (19) and
the evolution equations (23) and (25) of the amplitude
space description can be solved numerically for stage
1. At the end of stage 1, that is, at the time point t1,
it is assumed that at least one of the model param-
eters α, β, γ changes. The new initial state of stage 2
is given by the final state X+(t1) of stage 1. Using
this final state as initial state of stage 2, the initial
amplitudes A(t1) of stage 2 can be computed from
A(t1) = M−1(Stage 2)X+(t1). In general, this implies
that the amplitudes described by the vector A change
in a discontinuous manner at the stage boundary t1.
That is, A(t1) computed from stage 1, in general, does
not correspond to the initial stage A(t1) computed for
stage 2. The reason for this is that the basis of the
amplitude space (given for the SEIR model in terms of
the eigenvectors v1 and v2) in stage 2 in general dif-
fers from the basis of the amplitude space used in stage
1. In short, while the state X+(t) as function of time
is a continuous function at t1, the amplitudes A1 and
A2 of the SEIR model (and in general the amplitudes

A1, . . . Am) are functions of time that are discontinuous
at the stage boundary t1.

Given the initial states X+(t1) and A(t1) for stage 2
and the model parameters for stage 2, the state dynam-
ics and amplitude dynamics for stage 2 can be com-
puted numerically again from Eq. (19) and Eqs. (23)
and (25), respectively. If s = 2, then the analysis is com-
pleted after the second stage. If s > 2, then the second
stage is followed by another stage and the aforemen-
tioned procedure is repeated until all stages have been
processed.

Let us illustrate these general considerations for a
simulated epidemic that is computed from the SEIR
model (19) and involves two stages S1 and S2 that
both are characterized by positive eigenvalues. It is
assumed that in stage 1, λ1 is positive and relatively
large. At the end of stage 1, the effective contact rate
β is reduced (which mimics the impact of intervention
measures) such that λ1 decreases but is still positive
in stage 2. The remaining parameters α and γ remain
constant across S1 and S2. For the simulation we used
α = 0.1/d, γ = 0.4/d, N = 10000, β(S1) = 2.0/d
for the first 20 days and β(S2) = 1.0/d after day 20.
From Eq. (21) it then follows that λ1(S1) = 0.22/d
and λ1(S2) = 0.10/d. The entire simulation period was
ts = 100 days and t0 = 0. We used as initial conditions
E(0) = 10 exposed individuals, I(0) = 0 infectious indi-
viduals, and S(0) = N − E(0) − I(0) susceptibles.

Figures 1 and 2 show different aspects of the simu-
lated epidemic. The solid lines in panels A and B of
Fig. 1 show the trajectories E(t) and I(t), respectively,
as computed from Eq. (19). The dashed lines show how
E(t) and I(t) evolve if β would not change at t1 = 20
days. Comparing the solid lines with the dashed lines,
the impact of the decrease of the effective contact rate
is visible. Accordingly, the increase of the exposed and
infectious individuals becomes less dramatic when β is
changed from β(S1) to β(S2) < β(S1). Panel A of Fig. 2
shows the amplitudes A1 and A2 computed from Eqs.
(23) and (25). In particular, at t1 = 20 days the ampli-
tudes have been set to their respective initial values
A1(t1) and A2(t1) of stage 2. On the relatively large
scale of 2000 individuals for A1, a small discontinu-
ity of A1 can be seen at t = 20 days in the top sub-
panel of panel A. The expected discontinuity of A2 is
clearly visible in the bottom subpanel of panel A. Panel
B shows the trajectory X+(t) = (E(t), I(t)) as phase
curve in the E–I subspace. The phase curve describes
a loop that starts and ends close to the disease-free
state E = I = 0. Importantly, the directions of the
unstable eigenvectors v1 of stages 1 and 2 are depicted
in panel B as well. Panel B illustrates that in stage
1 the trajectory X+(t) follows the eigenvector v1 of
stage 1. When β changes at t1 the trajectory quickly
adjusts to follow the new eigenvector v1 of stage 2. Sub-
sequently, the trajectory branches off from the direction
specified by v1 of stage 2, completes the loop, and con-
verges towards the disease-free state. Panel C highlights
the adjustment dynamics at the beginning of stage 2.
The unstable eigenvector v1 determines the dynamics
in stage 1 and part of the dynamics in stage 2. The sta-
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Fig. 1 State space description of the first example of a
simulated two-stage epidemic. The solid lines show plots of
E (A) and I (B) versus time for the SEIR model (19) with

a sudden change of β at t = 20 days. The dashed lines
indicate the dynamics if β would remain unchanged. Model
parameters and initial conditions see text

Fig. 2 Amplitude and state space description of the first
example of a simulated two-stage epidemic with a sudden
change in β at t = 20 days. A The amplitudes A1 and A2 as

functions of time. B The phase curve of the epidemic in the
E-I subspace. The directions of v1 are shown as a dotted
lines for stages 1 and 2, respectively. C A detail of B

ble eigenvector v2 plays a negligible role during these
periods. Likewise, the amplitude A2 during the first 20–
30 days is large as compared to |A2| and in this sense
dominates the dynamics during that initial period. In
summary, the unstable eigenvector or order parameter
and its amplitude play the key role in the simulated
epidemic outbreak, as discussed in Sect. 2.2.

The equivalence of the state space description (19)
of the SEIR model and the amplitude space descrip-
tion of the SEIR model via Eqs. (23) and (25) can be
illustrated in two ways. First, the amplitude dynamics
A1(t) and A2(t) can be used to compute the time course
of the state variables E(t) and I(t) in a given stage j
like

X+(t)=
m∑

k=1

vk(Stage j)Ak(t)=M(Stage j)A(t).

(28)

Equation (28) has been written to hold for the general
case of an epidemic model with n state variables and
m infected compartments. We substituted the ampli-
tude functions shown in panel A of Fig. 2 into Eq. (28).
In doing so, we obtained the graphs E and I, which
are plotted as full circles in panel A and B of Fig. 1.
As expected, the curves E and I derived from Eq.
(28) are identical with the functions E and I obtained
by solving Eq. (19) directly. A second way to demon-
strate the equivalence of the state space and amplitude
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space descriptions is to derive the amplitude vector A
from the state vector X+ without solving the amplitude
equations (23). That is, we may compute A in a given
stage j from

A(t) = M−1(Stage j)X+(t) ⇔
Ak(t) = wk(Stage j)X+(t) . (29)

Again, Eq. (29) holds in general, that is, for any
n-dimensional epidemic model (1) that involves m
infected compartments and satisfies the requirements
discussed in Sects. 2.1 and 2.2. We applied Eq. (29) to
the state functions E(t) and I(t) shown in panels A and
B of Fig. 1. The amplitudes thus obtained are shown in
panel A of Fig. 2 as full circles. As expected, the ampli-
tudes A1 and A2 based on Eq. (29) are identical with
the amplitudes A1 and A2 computed directly from Eqs.
(23) and (25).

Next, we modeled a two-stage epidemic for which
the effective contact rate drops in the second stage
low enough to change the fundamental form of the
epidemic. That is, we modeled a bifurcation induced
by the impact of highly effective intervention mea-
sures: a change from an unstable disease-free fixed point
E = I = 0 with λmax > 0 to a stable one with
λmax < 0. For the simulation we used again α = 0.1/d,
γ = 0.4/d, N = 10,000, and β(S1) = 2.0/d for the
first 20 days. After day 20 we put β(S2) = 0.3/d.
From Eq. (21) it then follows that λ1(S1) = 0.22/d and

λ1(S2) = −0.02/d. We used the same initial conditions
as in the previous simulation. Figure 3 presents the
simulation results. Panel A shows the trajectories E(t)
and I(t) as computed from Eq. (19). At day 20 there
is a change from the increasing trend of the number
of exposed individuals to a decreasing one. The num-
ber of infectious individuals follows this trend change
with a short delay. Panel B present the amplitudes
A1 and A2 as functions over time as computed from
Eqs. (23) and (25). As expected, A1 dominates the
amplitude dynamics and increases dramatically in stage
1, while A2 remains almost constant. At day 20, the
basis of the amplitude space description changes and
the amplitudes exhibit discontinuities. Panel C high-
lights the discontinuity for A1. In stage 2 the fixed
point E = I = 0 exhibits two negative eigenvalues.
The simulation reveals that the linearized model (see
Eq. (5)), which implies dAj/dt = λjAj , captures the
essential dynamics in stage 2: both amplitudes rapidly
approach zero in a more or less exponential manner
indicating that the epidemic is vanishing. Note that E
and I are continuous functions at the stage boundary
t1, whereas A1 and A2 exhibit jumps at that bound-
ary. Nevertheless, A1 captures not only qualitatively
but also quantitatively most of the dynamics of E. The
reason for this is that for the selected parameters we
have v1,E = 0.99 in stage 1 and v1,E = 0.97 in stage
2. Since E = v1,EA1 + v2,EA2 holds (see Eq. (26)) and
|A2| � A1, we obtain E(t) ≈ v1,EA1(t) ⇒ E(t) ≈

Fig. 3 Second example of a simulated two-stage epidemic
for the case in which the disease-free fixed point becomes
stable at t = 20 days due to a sudden change of β. A and B
Show state and amplitude space trajectories as computed
from Eq. (19), on the one hand, and Eqs. (23) and (25),

on the other hand. C Shows a detail of the function A1 to
highlight the discontinuity of A1 at t = 20 days. D Shows
the phase curve E(t)-I(t) (solid line) and the directions of
v1 for stages 1 and 2 (dotted lines)
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A1(t). Panel D shows the trajectory X+(t) in the E-I
subspace. The directions of the eigenvector v1 for stages
1 and 2 are shown as well. Panel D demonstrates that
during stage 1, X+(t) follows the unstable eigenvector
v1. When λmax becomes negative at t1 = 20 days, the
trajectory quickly converges to the direction defined by
the new eigenvector v1 of stage 2, which corresponds in
S2 to a stable eigenvector. The fast approach towards
the direction specified by v1 indicates that there is gap
in the eigenvalue spectrum as discussed in Sect. 2.2. In
fact, for stage 2 we obtain λ1 = λmax = −0.02/d and
λ2 = −0.48/d and the corresponding time constants
τj = 1/|λj | given by τ1 = 47.9 days and τ2 = 2.1 days,
respectively. That is, A2 exhibits a time constants that
is by a factor 24 smaller than the time constant of A1.
In this sense, A2 describes a fast dynamics, while A1

describes a slow dynamics. The slow dynamics deter-
mines the vanishing of the simulated epidemic as can
be seen in panel D.

Finally, the equivalence of the state space and ampli-
tude space descriptions was examined. Just as for the
previous example, we computed states from Eq. (28)
and amplitudes from Eq. (29). That are plotted as filled
circles in panels A and B of Fig. 3. We found that the
solutions thus obtained were identical to the solutions
obtained directly from the respective evolution equa-
tions.

3.3 Computational approach

The computational approach is based on Eqs. (1), (5),
(6), and (29). Accordingly, an epidemiologic model that
is given in the form of Eq. (1) is solved numerically. The
linearization matrix L+ and the eigenvector matrix M
(see Eqs. (5) and (6)) are computed for each stage of
the epidemic of interest. Subsequently, the amplitudes
as functions of time are computed from Eq. (29). Let
us illustrate the computational approach for first-wave
COVID-19 epidemics that have been fully worked out
as three-stage epidemics in the literature but for which
the relevant eigenvectors and amplitudes have not been
derived.

First, let us consider the first-wave COVID-19 epi-
demic of 2020 in the state of New York. In an initial
study, a ten-variable generalized SEIR model was devel-
oped to examine the COVID-19 outbreak in the state
of New York [39]. In a subsequent study, the model was
used to examine the time course of the entire first-wave
COVID-19 epidemic in the state of New York during
the first half of 2020 [19]. Detailed descriptions of the
model can be found in Refs. [19,39]. In what follows the
model will be reviewed only briefly. The compartmental
model addresses both non-quarantined and quarantined
individuals. On the side of the non-quarantined individ-
uals, it describes susceptible (Su), exposed (Eu), and
symptomatic infectious (Iu) individuals. On the side of
the quarantined individuals, the model describes sus-
ceptible (Sq), exposed (Eq), hospitalized symptomatic
infectious (Ih), and hospitalized symptomatic intensive
care unit (ICU) cases (Iicu). Moreover, asymptomatic

infectious COVID-19 cases (Ia) constitute a compart-
ment of their own. Finally, the model also addresses the
compartment of recovered COVID-19 cases (R) and the
compartment of COVID-19 associated deaths (D). The
model equations read [19,39]

d
dt

Su = −k0Su + k1Sq ,

d
dt

Sq = (1 − p)k0Su − (θjk0 + k1)Sq ,

d
dt

Eu = (1 − q)pk0Su − k2Eu ,

d
dt

Eq = qpk0Su + αEu + θjk0Sq − k3Eq ,

d
dt

Iu = f1σuEu − k4Iu ,

d
dt

Ih = f2σuEu + rσqEq + φIu + σaIa − k5Ih ,

d
dt

Ia = (1 − f1 − f2)σuEu + (1 − r)σqEq − k6Ia ,

d
dt

Iicu = = νIh − k7Iicu ,

d
dt

D = δuIu + δhIh + δaIa + δicuIicu , (30)

where k0 denotes the force of infection [29] or rate con-
stant

k0 = β
Iu + ηaIa + ηhIh

N − θq(Eq + Ih + Iicu)
. (31)

The model involves the parameters p, q, f1, f2, θj , θq,
α, σu, σq, φ, r, ν, δu, δh, δa, δicu, ηa, ηh, k1, ..., k7, and
β, which are semi-positive. The parameters denote the
probability of infection per contact (p), proportion of
being quarantined (q), proportion of exposed Eu who
transition to Iu (f1), proportion of exposed Eu who
transition to Ih (f2), efficacy of quarantine (θj), general
efficacy of quarantine (θq), quarantine rate of exposed
Eu (α), incubation period of exposed Eu (1/σu), incu-
bation period of exposed Eq (1/σq), isolation rate of Iu
(φ), proportion of exposed Eq who transition to Ih (r),
rate of progression to ICU case (ν), death rate of non-
isolated infectious Iu (δu), death rate of isolated infec-
tious Ih (δh), death rate of asymptomatic cases Ia (δa),
death rate of ICU patients (δicu), reduced infectiousness
for asymptomatic cases (ηa), reduced infectiousness for
isolated cases Ih (ηh), removal rate of Sq (k1), removal
rate of Eu (k2), removal rate of Eq (k3), removal rate
of Iu (k4), removal rate of Ih (k5), removal rate of Ia
(k6), and the removal rate of Iicu (k7). Note that the
model equation for the recovered is not presented above
because it does not play a role for the subsequent dis-
cussion.

In Ref. [39], the model was fit to death data observed
during the COVID-19 epidemic in the state of New
York. Moreover, the parameter β was used to account
for the impacts of intervention measures such as physi-
cal distancing between people and wearing face masks.
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To study the impact of such intervention measures the
parameter β was varied while all remaining parame-
ter values were fixed. Consistent with this approach
and in line with previous three-stage epidemic mod-
els [16,18], in Ref. [19] a three-stage application of
the model (30) was discussed in which β was varied
throughout three stages. The analysis focused on the
five infected compartments Eu, Eq, Iu, Iu, Ih. While the
individuals in intensive care units were also infected,
they were neglected in the analysis because individuals
Iicu could not affect the stability of the disease-free fixed
point (they were assumed to be perfectly isolated, see

Eqs. (30) and (31)). Focusing on the five-dimensional
subspace X+ = (Eu, Eq, Iu, Iu, Ih) the three stages were
defined as follows. Stage 1 was defined as the stage
of the unstable disease-free fixed point with β such
that there was at least one positive eigenvalue. Stage 2
was defined as the bifurcation point at which interven-
tion measured lowered β such that all eigenvalues with
positive real parts became zero. Stage 3 was defined
as the subsiding stage in which intervention measures
pushed the parameter β to an even lower level such that
all eigenvalues exhibited negative real parts. The fixed
model parameters and the parameters β for the three
stages can be found in Ref. [19]. Here we only report
the eigenvalues λ1, . . . , λ5 of the five-dimensional sub-
systems as obtained from L+ at the disease-free fixed
point with X+ = (0, 0, 0, 0, 0). They are reported in
Table 1. By definition, stage 1 exhibited an eigenvalue
with a positive real part. Stage 2 exhibited as a max-
imal eigenvalue with zero real parts. Finally, stage 3
exhibited eigenvalues for which all real parts were neg-
ative.

Panel A of Fig. 4 shows the death data [42] during the
observation period considered in Ref. [19], which was
March 1 to June 30. In addition, it shows the model
fit D(t) to the data for the best-fit parameters. That
is, Eq. (30) was solved numerically for the three stages
to obtained D(t). The two vertical lines indicate the
boundaries between stages 1 and 2 and stages 2 and 3,
respectively.

In Ref. [19], the relevant eigenvectors and amplitudes
were not determined. Therefore, let us apply the com-
putational approach outlined in the beginning of the
section to examine the evolution of the epidemic. As
can be seen in Table 1, in stage 1 there was only one
eigenvalue with positive real part. Consequently, there
was one unstable eigenvector (order parameter) v1(S1).
Likewise, in stage 3 there was one real-valued eigen-
value with a maximal real part. The corresponding sta-

ble eigenvector v1(S3) is considered as the remnant of
the unstable eigenvector v1(S1) of stage 1. According to
our discussion in Sect. 2.2, the order parameter and the
corresponding remnant order parameter should deter-
mine the dynamics of stages 1 and 3. Panel B of Fig. 4
shows the phase curves of the COVID-19 epidemic as
obtained from the solutions Eu, Eq, Iu, Ih, Ia of Eq. (30)
in the two-dimensional subspaces Eu–Eq, Eu–Iu, Eu–
Ih, and Eu − Ia. The eigenvectors v1(S1) and v1(S3)
were computed from the matrix L+, see Eq. (5) for
stages 1 and 3, respectively. L+ itself for the model
(30) and X+ = (Eu, Eq, Iu, Iu, Ih) reads

L+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−k2 0 (1 − q)pβ (1 − q)pβηh (1 − q)pηa

α −k3 qpβ qpβηh qpβηa

f1σu 0 −k4 0 0

f2σu rσq φ −k5 σa

(1 − f1 − f2)σu (1 − r)σq 0 0 −k6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

The projections of v1(S1) and v1(S3) are plotted in
panel B as well. As can be seen, the epidemic followed
closely the unstable eigenvector v1(S1) and its remnant
v1(S3) in stages 1 and 3, respectively.

The trajectories Eu, Eq, Iu, Ih, Ia were substituted
into Eq. (29) to obtain the amplitudes A1, . . . , A5 as
functions of time over the three stages. As such the
eigenvectors v1, . . . ,v5 were defined as the eigenvectors
related to the eigenvalues λ1 to λ5 listed in Table 1.
That is, the eigenvalues were sorted according to the
magnitudes of the real parts as shown in Table 1. Using
this assignment of the indices 1–5 to the eigenvalues,
the eigenvector indices 1–5 were assigned in the same
way. As a result, the indices 1–5 of the amplitudes were
assigned in this way as well: A1 to A5 for all three stages
were defined as the amplitudes corresponding to the
eigenvalues listed in Table 1.

Figure 5 illustrates the time course of the amplitudes
A1, . . . , A5. Panel A shows the real-valued amplitudes
A1, A2, A3 related to the eigenvalues that exhibited the
largest real parts and were real-valued in all three stages
(see Table 1, rank 1 to 3). Panels B and C show the
real- and imaginary-parts of the amplitudes A4 and A5

related to the two remaining eigenvalues. These eigen-
values and their corresponding amplitudes were real-
valued in stage 1 but assumed complex numbers in
stages 2 and 3 (see Table 1 again). As can be seen in
panel A, in stages 1 and 3, the amplitude A1 played
the dominant role among the three amplitudes A1, A2,
and A3. Comparing panel A with panels B and C it
also becomes clear that A1 with respect to A4 and A5

played the dominant role in stages 1 and 3. This is con-
sistent with the phase curves shown in panel B of Fig. 4
that suggest that the epidemic evolved primarily along
the eigenvector v1 in stages 1 and 3. During stage 2, A1

remained almost constant (see panel A of Fig. 5) due to
the fact that λ1 = 0. During stage 2, the amplitudes A2

and A3 (panel A) and the imaginary parts of A4 and
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Table 1 Eigenvalues of the three stages of the first COVID-19 wave in the state of New York, 2020, as obtained for the
infected five-dimensional subspace (Eu, Eq, Iu, Iu, Ih)

Rank

Stage 1 2 3 4 5

1 0.22/d −0.28/d −0.32/d −0.42/d −0.64/d
2 0/d −0.28/d −0.33/d −0.42 + i0.04/d −0.42 − i0.04/d
3 −0.06/d −0.27/d −0.33/d −0.39 + i0.04/d −0.39 − i0.04/d

Fig. 4 Model-based analysis of the death data of the first-
wave epidemic in the state of New York, 2020. A Cumu-
lative deaths during the period from March 1 to June 30
(circles) and model fit (solid line) obtained from Eq. (30).
Vertical dotted lines show stage boundaries. B Phase curves

(solid lines) in two-dimensional subspaces and the directions
specified by the dominant eigenvectors v1(S1) and v1(S3)
in stages 1 and 3 (dotted lines). In all subpanels, the lower
(upper) direction refers to v1(S1) (v1(S3))

Fig. 5 Amplitude description of the first-wave epidemic in
the state of New York, 2020. A Amplitudes A1 (thick solid
line), A2 (thin solid line), and A3 (dotted line) as functions
of time in all three stages S1, S2, and S3. B and C Real

(B) and imaginary (C) parts of A4 (solid line) and A5 (full
circles) in stages S1, S2, and S3. The real parts shown in B
are identical in stages 2 and 3. The imaginary parts shown
in C are mirror images of each other in all stages
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Fig. 6 Model-based analysis of the death data of the
second-wave epidemic in the state of New York, during the
period from November 1, 2020, to May 31, 2021. Cumulative
deaths (circles) and model fit (solid line) obtained from Eq.
(30) are shown. Vertical dotted lines show stage boundaries

A5 (panel C) decayed in magnitude. Interestingly, the
real parts of A4 and A5 (panel B) increased in magni-
tude during the very short bifurcation period of stage
2. Overall, the dynamics in stage 2 was determined by
variations in A2, A3, A4, and A5. In other words, the
stage 2 dynamics shown in the phase curves in panel B
of Fig. 4 was primarily due to changes of the remaining
four amplitudes A2 to A5 related to eigenvalues with
non-zero real parts.

Subsequent to the first COVID-19 wave, the state of
New York was hit by a second wave during the winter
period 2020/2021. Figure 6 shows the reported cumula-
tive deaths (circles) during the period from November
1, 2020 to May 31, 2021 [42]. The death toll increased
from about 33,000 to 52,000 people. The data were fit-
ted again to the three-stage scheme of COVID-19 waves
based Eq. (30). To this end, the number of susceptibles
on November 1 was taken as the number of susceptibles
as obtained from the previous simulation that remained
after the first COVID-19 wave. According to our first-
wave simulation, the number of susceptibles decreases
by about 260,000 individuals. As in Ref. [19] the stage
boundaries were varied to obtain an optimal fit between
data (circles) and model (solid line).

Let us compare the first and second-waves on the
basis of their eigenvalues. Table 2 shows the eigenval-
ues obtained from the three-stage analysis of the second
wave. Comparing Tables 1 and 2, it can be seen that
the eigenvalues for j = 2, 3, 4, 5 do not vary much across
the first and second waves. That is, the non-dominant
first-wave stage 1 eigenvalues were comparable to the
non-dominant second-wave stage 1 eigenvalues (except
maybe for j = 5). Likewise, the second stage and the
third stage eigenvalues were comparable across the two
waves. However, the maximal eigenvalue was consider-
ably smaller during the second wave both in stage 1 (by
a factor 2) and stage 3 (by a factor 6). Consequently,
both the increasing stage and the subsiding stage of
the second wave was characterized by an overall slower
dynamics as compared to the first wave.

Figure 7 compares the dynamics of the amplitude
A1 during stage 1 for the two waves. The amplitude
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Fig. 7 Dynamics of the dominant amplitudes during the
outbreak stages (stages 1) of the first and second-waves hit-
ting the state of New York. Solid black lines corresponds
solutions computed from Eq. (30), whereas dotted gray lines
stand for exponential approximations using the maximal
eigenvalues listed in Tables 1 and 2

A1 as plotted in panel A of Fig. 5 is shown. In addi-
tion, A1 as computed for the second wave is shown.
As excepted, the second wave dominant amplitude
increased at a slower rate as compared to the first wave
dominant amplitude. Figure 6 also shows approxima-
tions of A1 as exponentially increasing functions (gray
dotted lines) with exponential coefficients λ(max) as
given in Tables 1 and 2 for stage 1. The exponen-
tial approximations fit the numerically obtained (exact)
solutions very well.

As a second example let us consider the first-wave
COVID-19 epidemic in Pakistan during the period from
March to September 2020. An epidemiologic model was
developed in Ref. [40] to address the rising COVID-19
case numbers during the first three months of the epi-
demic in Pakistan. In a subsequent study, the model
was further worked out to yield a three-stage model
to explain both the stages of increasing and subsiding
numbers of the first-wave epidemic in Pakistan from
March to September 2020 and to address the stage
in-between those two stages [17]. As such, the model
for the COVID-19 epidemic in Pakistan involves eight
compartments, which are the compartments of suscep-
tible individuals (S), exposed individuals (E), symp-
tomatic infectious individuals (Is), asymptomatic infec-
tious individuals (Ia), hospitalized infectious individ-
uals (Ih), and infectious individuals who are treated
in intensive care units (Iicu). In addition, the model
considers infected quarantined individuals (Q) as well
as recovered individuals (R). The model can again be
regarded as a generalized SEIR model and reads [17,40]

d
dt

S = −k0S ,

d
dt

E = k0S − k1E ,

d
dt

Is = ρωE − k2Is ,

d
dt

Ia = (1 − ρ)ωE − k3Ia ,
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Table 2 Eigenvalues of the three stages of the second COVID-19 wave in the state of New York during the winter period
2020/2021

Rank

Stage 1 2 3 4 5

1 0.10/d −0.28/d −0.32/d −0.43/d −0.51/d
2 0/d −0.28/d −0.33/d −0.42 + i0.04/d −0.42 − i0.04/d
3 −0.01/d −0.28/d −0.33/d −0.41 + i0.04/d −0.41 − i0.04/d

d
dt

Ih = ηIs + δQ − k5Ih ,

d
dt

Q = κE − k4Q ,

d
dt

Iicu = φIh − k6Iicu (33)

with the rate constant k0 given by

k0 = β
Is + ψIa + νIh

N
. (34)

The model parameters correspond to the proportion of
asymptomatic infections (ρ), incubation period (1/ω),
hospitalization rate of symptomatic infectious individ-
uals (η), hospitalization rate of quarantined individu-
als (δ), quarantine rate of exposed individuals (κ), rate
at which hospitalized individuals require ICU care (φ),
and removal rates k1, . . . , k6 of individuals out of certain
compartments. The rate constant k0 involves as model
parameters the effective contact rate (β) and the rel-
ative transmissibility parameters of the asymptomatic
(ψ) and hospitalized (ν) individuals. Note that in Eq.
(33) the evolution equation for the recovered individ-
uals has been neglected since it will be of no concern
in what follows. Furthermore, note that while in Ref.
[40] demographic terms have been considered, in Ref.
[17] and in Eq. (33) those terms have been neglected
because on the relative short period of about half a
year they do not affect the dynamics [43]. Just as in the
previous example, it was assumed that the intervention
measures such as physical distancing between individ-
uals could lower the effective contact rate β [17,40].
Accordingly, the three-stage model worked out in Ref.
[17] defined the stages as in the previous example.
Let us describe the stages with respect to the infected
five-variable subsystem E, Is, Ia, Ih, Q. Again, the vari-
able Iicu can be neglected because it does not play
a role for the stability of the disease-free fixed point
(E, Is, Ia, Ih, Q) = (0, 0, 0, 0, 0). In stage 1 (the begin-
ning of the epidemic in Pakistan), the disease-free fixed
point of the population in Pakistan was unstable, which
triggered an exponential increase in COVID-19 cases.
As a reaction to the COVID-19 outbreak, intervention
measures were implemented that putatively decreased
the effective contact rate β. Consequently, the disease-
free fixed point was stabilized. Stage 2 describes the
bifurcation point at which the fixed point exhibited a
zero eigenvalue. The disease-free fixed point was about
to become stable. Subsequent to stage 2, that is, in

stage 3, the intervention measures showed their full
power and decreased the effective contact rate β to a
sufficiently low value such that all eigenvalues of the
disease-free fixed point exhibited negative real parts.
The fixed point was stable and the epidemic subsided.

To fit model parameters, the variable Pc of cumula-
tive COVID-19 cases was introduced. From Eq. (33), it
follows that Pc satisfies [17]

d
dt

Pc = ρωE + δQ . (35)

With the help of Pc, the model parameters and in par-
ticular β were fitted to confirmed COVID-19 cases of
Pakistan [17,40]. The best-fit parameters for the three-
stage model can be found in Ref. [17].

Panel A of Fig. 8 shows the cumulative COVID-19
cases [42] during the 7-months period (about 210 days)
from March 1 to September 30. The data shows the
typically sigmoid, three stage pattern [16,18] of a first
stage of accelerating increasing numbers characteristic
for an unstable disease-free fixed point, a stage with a
linear increase characteristic for the bifurcation point,
and a third stage featuring a second de-accelerating
bend characteristic for a subsiding epidemic under a
stabilized disease-free fixed point. Panel A also shows
the model solution Pc(t) as obtained by solving Eqs.
(33) and (35) for the best-fit parameters. Moreover, the
linearization matrix L+ reads

L+ =

⎛
⎜⎜⎜⎝

−k1 β βψ βν 0
ρω −k2 0 0 0

(1 − ρ)ω 0 −k3 0 0
0 η 0 −k5 δ
κ 0 0 0 −k4

⎞
⎟⎟⎟⎠ . (36)

The eigenvalues of L+ of the three stages are listed in
Table 3 and demonstrate that in stage 1 (stage 3) the
disease-free fixed point was unstable (stable).

While in Ref. [17] the three stage model was dis-
cussed within the framework of the state space perspec-
tive, the amplitude space perspective was not worked
out. In particular, the eigenvectors and amplitudes rele-
vant for the rise and decay of the COVID-19 cases were
not determined. Therefore, let us identify the relevant
amplitude dynamics underlying the time course of the
epidemic shown in panel A of Fig. 8. Stage 1 exhib-
ited only one eigenvalue with positive real part (see
Table 3). Consequently, the epidemic outbreak in Pak-
istan was determined by a single unstable eigenvector
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Fig. 8 Model-based analysis of confirmed COVID-19 cases
of the first-wave epidemic in Pakistan, 2020. A Cumula-
tive COVID-19 cases during the period from March 1 to
September 30 (circles) and model fit (solid line) computed
from Eqs. (33) and (35). Vertical dotted lines show stage

boundaries. B Phase curves (solid lines) in two-dimensional
subspaces and the directions (dotted lines) defined by the
order parameter v1(S1) of stage 1 and its stage-3 remnant
v1(S3). In all four subpanels, the lower and upper directions
refer to v1(S1) and v1(S3), respectively

Table 3 Eigenvalues of the three stages of the first COVID-19 wave in Pakistan, 2020, as obtained for the infected
five-dimensional subspace (E, Is, Ia, Ih, Q)

Rank

Stage 1 2 3 4 5

1 0.05/d −0.49/d −0.81/d −1.31 + i0.18/d −1.31 − i0.18/d
2 0/d −0.51/d −0.78/d −1.10 + i0.14/d −1.10 − i0.14/d
3 −0.03/d −0.53/d −0.75/d −1.10 + i0.10/d −1.10 − i0.10/d

Fig. 9 Amplitude description of the first-wave epidemic in
the Pakistan, 2020. A Amplitudes A1 (thick solid line), A2

(dotted line), and A3 (thin solid line) as functions of time
in all three stages S1, S2, and S3. B and C Real (B) and

imaginary (C) parts of A4 (solid line) and A5 (full circles)
in stages S1, S2, and S3. The real parts shown in B are
identical in all stages. Likewise, the imaginary parts shown
in C are mirror images of each other in all stages
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(order parameter) v1. Likewise, in stage 3 there was
one real-valued eigenvalue with a maximal real part.
The corresponding stable eigenvector v1 can be inter-
preted as the remnant of the unstable eigenvector v1

of stage 1. Panel B of Fig. 8 shows the phase curves
of the COVID-19 epidemic as obtained from the solu-
tions E, Is, Ia, Ih, Q of Eq. (33) in the two-dimensional
subspaces E −Ia, Is−Ia, Ih−Ia, and Q−Ia. The eigen-
vector v1 for stages 1 and 3 is shown there as well. As
can be seen, the epidemic followed closely v1 in both
stages 1 and 3.

The functions E(t), Is(t), Ia(t), Ih(t), Q(t) were sub-
stituted into Eq. (29) to obtain the amplitudes A1, . . . ,
A5 as functions of time across the three stages. Fig-
ure 9 shows the amplitudes as functions of time. Panel
A shows the three real-valued amplitudes A1, A2, A3.
Panels B and C show the real- and imaginary-parts of
the amplitudes A4 and A5 related to the two remain-
ing eigenvalues that were complex-valued in all three
stages. Comparing the amplitudes A2, A3, A4 and A5

with A1, it is clear that A1 at any time point was at
least by a factor 10 larger in magnitude than the other
amplitudes. In particular, the dynamics in stages 1 and
3 was completely determined by A1. In contrast, while
A1 was larger than all other amplitudes in stage 2, it
did not vary much over time during that intermedi-
ate bifurcation stage. Therefore, during the stage at
which the epidemic in Pakistan was at its bifurcation
point, the epidemic was determined primarily by the
remaining amplitudes A2 to A5 (which again is consis-
tent with the fact that A1 was the amplitude in stage
2 that exhibited a zero eigenvalue).

4 Discussion

Fundamental concepts of physics have been extensively
used to better understand and prevent the spread of
COVID-19. In this context, amplitude equations are
a key tool to describe the dynamics of inanimate and
animate systems at instability points. The benchmark
cubic amplitude equation of the form dA/dt = λA−A3

is known to describe the emergence of convection rolls
in fluid and gas systems heated from below [8,44–46].
The emergence of Turing patterns in chemical sys-
tems [9,47–50] and patterns on animal skins [10] has
been extensively studied from the amplitude equation
perspective. The emergence of brain activity patterns
[51,52] and, on the behavioral level, switches between
gaits and other human reactions [11,53–57] have been
modeled with the help of amplitude equations.

In the current study, compartmental models as fre-
quently used in epidemiology have been described in
terms of this kind of amplitude equations. It has been
demonstrated theoretically and in applications that the
amplitude of the unstable eigenvector captures the ini-
tial time course of epidemics, in general, and COVID-19
outbreaks, in particular. In doing so, the present work
supports a general interdisciplinary perspective accord-
ing to which the spread of COVID-19 in populations

should be seen in the broader context of physical, chem-
ical, and biophysical/biochemical bifurcation phenom-
ena that have been argued time and again to hold across
various disciplines [7,11,58,59]. Approaches alterna-
tive to the amplitude equation approach to describe
COVID-19 waves such as fitting waves in terms of Gaus-
sian functions [60] and piecewise-linear functions [25]
have been suggested. However, while these approaches
possess their own benefits, they do not relate the
observed data to instabilities, that is, they do not relate
data to the physical entities that lead to COVID-19 out-
breaks and outbreaks of other infectious diseases [4–6].

From a practical perspective, the unstable eigenvec-
tor or order parameter can be used to determine how
the sub-populations involved in the epidemic of inter-
est change in the amount relative to each other. For
example, we may ask, when the number of exposed indi-
viduals E increases by a certain amount ΔE, what is
the corresponding increase ΔI in infectious individuals?
If we distinguish between asymptomatic Ia and symp-
tomatic infectious individuals Is, we may ask, how are
the changes ΔIa and ΔIs related to ΔE? The unsta-
ble eigenvector in the initial stage (and its remnant in
the subsiding stage) can be used to obtain answers to
questions of this kind (see panel C of Fig. 2, panel D
of Fig. 3, and panels B in Figs. 4 and 8). Accordingly,
the eigenvector provides approximate estimates for such
relational changes. In summary, the amplitude space
description of epidemics comes with a dramatic simpli-
fication of the problem at hand and provides predictive
tools that might be exploited to forecast the course of
emerging or subsiding epidemics.

5 Concluding remarks

By the time of writing this article, another winter wave
seems to hit the state of New York. Figure 10 presents
reported cumulative deaths (circles) during the period
from August 1 to November 31, 2021 [42]. The function
shows a first bend (or slightly nonlinear, exponential-
like increase) during August. During the subsequent 3
months from September to November the number of
COVID-19 associated deaths increased in an almost lin-
ear fashion (see the regression line). Let us use Fig. 10 to
present some concluding remarks of the current study
in the context of future challenges. As such, the linear
increase is consistent with a stage 2 dynamics character-
ized by a vanishing maximal eigenvalue. Alternatively,
the increase may be interpreted in terms of an endemic
fixed point, that is, a fixed point that describes a popu-
lation that exhibits a finite number of infected individu-
als at baseline. In fact, the possibility of COVID-19 pan-
demic to become endemic is currently under debate [61].
A fixed point with a finite number of infected individ-
uals typically implies that out of this pool individuals
decease due to the disease at a certain rate. This mecha-
nism yields a linear increase of cumulative deaths. Hav-
ing said that, the effect of virus mutations plays a key
role for the future of the COVID-19 pandemic, in gen-
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Fig. 10 Death data of the third epidemic outbreak in the
state of New York, during the winter period from August
1 to November 31, 2021. Cumulative deaths (circles) are
shown. The three months period from September to Novem-
ber is fitted by a regression line (solid line) to highlight the
apparent straightness of the function of observed cumulative
deaths during that period

eral, and for the time course of the function shown in
Fig. 10, in particular. As far as the epidemic situation in
December 2021 is concerned, the impact of the omicron
variant of the SARS coronavirus 2 is difficult to predict.
Therefore, in the context of Fig. 10, it is difficult to
predict how the function will continue quantitatively in
the future. The benefit of the nonlinear physics perspec-
tive is that it allows to discuss various qualitatively dif-
ferent scenarios. Amplitude equations of endemic fixed
points may be discussed in a similar way as the stage
3 amplitude equations discussed in Sect. 2. Bifurca-
tions that are induced by the emergence of virus muta-
tions, destabilize COVID-19 free fixed points, and trig-
ger new COVID-19 waves may be discussed in anal-
ogy to intervention-induced bifurcation that stabilize
COVID-19 free fixed point and lead to the subsiding of
COVID-19 waves. In summary, the nonlinear physics
approach outlined above provides a powerful tool to
address challenges in the understanding and the mod-
elling of phenomena that we may encounter in the near
and far future of the COVID-19 pandemic.
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