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Abstract We consider the use of AI techniques to expand the coverage, access, and equity of urban data.
We aim to enable holistic research on city dynamics, steering AI research attention away from profit-
oriented, societally harmful applications (e.g., facial recognition) and toward foundational questions in
mobility, participatory governance, and justice. By making available high-quality, multi-variate, cross-scale
data for research, we aim to link the macrostudy of cities as complex systems with the reductionist view of
cities as an assembly of independent prediction tasks. We identify four research areas in AI for cities as key
enablers: interpolation and extrapolation of spatiotemporal data, using NLP techniques to model speech-
and text-intensive governance activities, exploiting ontology modeling in learning tasks, and understanding
the interaction of fairness and interpretability in sensitive contexts.

1 Introduction

Cities are complex systems: collections of interact-
ing agents that exhibit non-trivial collective behavior
[2,19]. This observation has guided research in general
principles of city planning that can govern the behav-
ior of the complex adaptive system the city manifests.
Early work by Jacobs proposed ideal sizes and spe-
cific guidelines for city neighborhoods [25], and more
recently, researchers have begun to empirically validate
these ideas using mobile phone data [46]. West and
Kempes model scaling behavior for cities as balancing
sublinear growth in resource consumption (as a func-
tion of population) against the superlinear growth of
socioeconomic effects, both positive (per capita wages)
and negative (inequity, disease) as a power law with
an exponent of about 0.15 (as opposed to, for exam-
ple, the exponent of 0.25 identified in many biological
processes) [28,67]. More recently, the rate of COVID-
19 spread has been shown to approximate the same
power law [57]. As West and Kempes argue “Cities are
machines we evolved to facilitate, accelerate, amplify,
and densify social interactions.”
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The holistic study of cities as complex systems com-
plements the rapid (yet ultimately opportunistic) pro-
liferation of artificial intelligence technology in the
public sector. Although conventional machine learning
techniques are common in urban applications [44,65,
71], neural architectures are opening new opportunities
by adapting convolutional, recurrent, and transformer
architectures to spatiotemporal data [35,38,56,70,73,
75,76]; see Grekousis 2020 for a recent survey [17].

These two lines of inquiry—top–down modeling of
cities as complex systems and bottom–up modeling of
specific urban systems using deep learning—are diffi-
cult to reconcile. Complex systems are not amenable
to reductionist statistical experiments: comparing the
results of an agent-based model with observed data
(e.g., for autonomous vehicle research [11]) is often the
best we can do, despite the challenges of addressing
the inverse problems implied [8,59]. The central issue
is that observational micro-data for cities are inconsis-
tent in availability and quality, limiting the opportunity
for validation of sophisticated models.

This inconsistency persists despite significant invest-
ments in open data. Over the last 2 decades, cities
have increasingly released datasets publicly on the web,
proactively, in response to transparency regulation. For
example, in the US, all 50 states and the District
of Columbia have passed some version of the federal
Freedom of Information (FOI) Act. While this first
wave of open data was driven by FOI laws and made
national government data available primarily to jour-
nalists, lawyers, and activists, a second wave of open
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data, enabled by the advent of open source and web
2.0 technologies, was characterized by an attempt to
make data “open by default” to civic technologists, gov-
ernment agencies, and corporations [64]. While open
data have indeed made significant data assets available
online, their uptake and use have been weaker than
anticipated [64], an effect may attribute to inconsistent
availability of high-value data across cities [32]. Ulti-
mately, open data exhibit convenience sampling effects.

In this paper, we consider four research thrusts all
aimed at using AI techniques to improve the coverage,
access, and equity of urban data, and thereby reduce
barriers and attract attention to the study of critical
questions in city dynamics and socioeconomic interac-
tions. Machine learning research is broadly recognized
to be too narrow in applications and datasets, focusing
on opportunistic, discriminatory, and profit-oriented
applications [50,53,68]. By making high-quality urban
data available across cities, across variables, across
time-scales, and at multiple resolutions, we aim to make
AI research on societally important problems the path
of least resistance. However, to accomplish this long-
term goal, we need to address specific challenges in
working with urban data.

Expanding existing sources By simultaneously model-
ing multiple heterogeneous datasets [69], we aim to
identify the underlying relationships and interactions
between urban systems as a middle path between reduc-
tionist, application-specific prediction tasks and holis-
tic, simulation-oriented inference. However, where our
earlier work assumed uniform data coverage, we now
need to apply advanced learning techniques to inter-
polate and extrapolate dense spatiotemporal datasets
to account for inconsistent coverage (Sect. 2). These
techniques help expand the utility and reach of data-
hungry predictive models to counteract the sparse and
inconsistent availability of public and private data. As
an example, we show how the interpolation of urban
transportation data is remarkably amenable to deep
learning architectures developed for image inpainting
on the web.

Developing new sources Open data in urban contexts
are typically either spatiotemporal (vector or raster)
or administrative (structured). However, by investing
in infrastructure, we can develop and make available
data sources around governance, economics, decision-
making, and public participation. As an example,
we show how transcripts from public meetings are
amenable to computational processing to increase over-
sight and participation, if we can first establish an
infrastructure and appropriate standards to collect and
manage this data (Sect. 5).

Exploiting rich ontologies The use of large, noisy, and
heterogeneous data motivates investment in data cura-
tion: associating contextual information with the data
to mediate its collection and use. However, manual
curation activities (e.g., human labeling of data) scale
poorly. In complex domains, human expertise is better
invested developing richer labeling schemes than actu-

ally labeling data. For example, ontologies have been
developed for electric mobility [55], humanitarian [3],
and smart city applications [1,9,13,18,61]. However,
categorizing public data (e.g., social media posts) using
these ontologies requires new techniques in hierarchical
multi-label classification. As an example, we show how
graph encoding techniques can be used to significantly
improve performance in these contexts (Sect. 4).

Incorporating fairness and interpretability In every
application of urban machine learning, prediction and
modeling carries enormous risk of exacerbating inequity
and opacity [21,42,43,49]. Building on recent advances
in fair and explainable AI, we consider the interactions
between accuracy, fairness, and explainability in urban
applications. We then propose new methods for control-
ling these tradeoffs in response to emerging regulation
(Sect. 3).

2 Interpolation of spatiotemporal data
using deep learning

Image inpainting is a task of synthesizing missing
pixels in images. In computer vision, there are two
board branches to inpaint images. The first branch con-
tains diffusion-based or patch-based methods that uti-
lize low-level image features to reconstruct the miss-
ing regions. The second branch contains learning-based
methods that involve the training of deep learning mod-
els. Traditional diffusion-based methods transfer infor-
mation from the valid regions to the missing regions,
which are convenient to apply but limited to small
missing regions only. Learning-based approaches aim to
recover the images based on the patterns learned from
large amount of training data. Such methods include
context encoder by Pathak et al. [47], global and local
image inpainting by Lizuka et al. [22], partial convolu-
tion method by Liu et al. [36], etc.

Image inpainting techniques have wide application
potentials, including the geospatial domain that works
frequently with satellite images. Zhang et al. [77] pro-
posed a unified spatial–temporal–spectral deep convo-
lutional neural network (CNN) image inpainting archi-
tecture to recover information obscured by poor atmo-
spheric conditions in satellite images. Kang et al. [27]
modified the architecture from [72] to restore the miss-
ing patterns of sea surface temperature from satel-
lite images. Tasnim and Mondal [60] also applied the
inpainting architecture from [72] to remove redundan-
cies in satellite images and restore the imagery.

We build on prior work from our group in learning
fair integrations of heterogeneous urban data [69]. We
originally assumed uniform spatial and temporal cov-
erage data, but in practice, urban datasets are spa-
tially imbalanced: one neighborhood may be missing
a variable of interest defined everywhere else, under-
mining trust in the results. Conventional statistical
approaches to impute missing data, such as global/local
mean imputing, interpolations, and spatial regression
models, are limited in their ability to capture non-linear
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interactions, where deep learning methods, including
image inpainting techniques in geospatial imputation,
excel.

Given the similar nature of images and gridded urban
data, we conjecture that image inpainting techniques
can be adapted to impute missing urban data, improv-
ing coverage and quality, and therefore usability. As far
as we know, no prior work that has exploited image
inpainting techniques to reconstruct missing values in
raster urban data. In this section, we present our pre-
liminary experiments and results of utilizing an image
inpainting technique to compute missing values in grid-
ded urban data.

2.1 Example: interpolating urban mobility data

We use taxi trip data as a representative example of
urban data, though the coverage of urban data is much
broader. We used NYC taxi trip data from 2011 to 2016
from NYC Open Data Portal [10]. The years 2011–2014
cover the trips throughout the entire year, while 2015
and 2016 only cover half of the year. The raw data
are collected tabular format, where each record/row
contains the information of each taxi trip, including
the longitude and latitude of the starting location. We
considered the demand prediction problem, interpret-
ing each record as an indicator of demand following
Mooney et al. [43]. We processed the tabular data into
raster format given the following steps:

• We defined a rectangular subset of the greater
metropolitan area of New York City representing
lower Manhattan. We only consider the taxi trips
that began within this rectangular region.

• We imposed a 32 × 32 grid over our selected region.
This choice of dimensions is somewhat arbitrary,
balancing fidelity (reducing the need to upsample
or downsample datasets too much), computational
efficiency, and interpretability (1 grid cell is approxi-
mately 1 km2.) For each year, each unique date, and
each unique hour, we count how many taxi trips are
within each grid and interpret these values as an
estimate of taxi demand in that cell, at that time.

• In total, we have 32,616 samples to model with, each
having 32 × 32 dimension. 70% of samples (23,482)
are used as training data, 10% (2610) as validation
set and the rest 20% (6524) as test data.

2.2 Modeling and results

We implemented the architecture from Liu et al. [36].
Many prior works in image inpainting only considered
rectangular-shaped missing regions, but rarely are the
patterns of missing data so regular. In urban data, the
missing regions could be scattered or in irregular shapes
corresponding to irregular political boundaries or incon-
sistent data collection. Therefore, Liu et al.’s work fits
well into the urban scheme. Liu et al. used the summa-
tion of four different losses as the objective function,
to account for different factors related to the percep-

tion of the resulting image, which was appropriate for
web images but less appropriate for quantitative urban
data. We only used the �1 regularization loss between
the original data and inpainted data. The model hyper-
parameters are set to be consistent with Liu’s work. The
learning rate is set to 1e−4 flat. The batch size is set to
32. The maximum iteration is 10,000 and we evaluated
the model on validation set every 100 iterations.

Five inpainted examples are visually presented in
Fig. 1. We can see that the inpainting technique can
be naturally applied to gridded urban data and yield
promising results. Imputing the missing values in urban
setting could also be viewed an a type of synthesis. The
synthesis of partial urban data could improve the appli-
cability and usability of urban data, but will require
future work in multiple areas:

• Though deep learning methods are powerful, we
need rigorous evaluation against traditional impu-
tation techniques to see if these complex methods
are warranted. Additionally, visual similarities are
subjective, which is appropriate for web images but
not if we intend to use these datasets for quantita-
tive analysis. Additional quantitative measurements
should be incorporated.

• The region of the experiment (NYC) and the dimen-
sions of the urban grid (32x32) are both limited.
Expanding the region to cover more area would
capture more urban dynamics, while evaluating the
effect of different grid sizes, will be necessary to test
generalizability.

• We treat each date and each hour as a unique sam-
ple. However, in reality, the current hour timestamp
is closely related to the demand from the previous
hour. Modeling each sample separately ignores such
dependency. Therefore, we hypothesize that modi-
fying the architecture to work with temporal blocks
would help improve performances.

3 Trade-off among distributive and
procedural fairness

Real-world datasets often contain societal biases, which
are perpetuated in the machine learning models, lead-
ing to discriminatory decisions in high-stake domains.
In response, many methods were developed to mitigate
fairness by achieving some statistical measure of equity
between majority and minority groups (e.g., equalized
odds and equality of opportunity) [4,7,30,39,74]. This
line of work is guided primarily by the notion of dis-
tributive fairness, which emphasizes on a fair allocation
of resources.

However, prior work has shown that procedural fair-
ness, the perceived fairness of the process that leads
to the outcome, is equally as important as distributive
fairness [5,63]. For example, in court systems, stud-
ies have shown that “most people care more about
procedural fairness ... than they do about winning or
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Fig. 1 Inpainting results of taxi trip data. From left to right, the columns are: ground truth images; the irregular masks;
the masked ground truth; the final inpainting results
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losing the particular case.” [63] Recent studies have
also shown that procedural fairness is critical to auto-
mated decision systems [33,40]. For instance, through
a cross-sectional survey study at a large German
university, Marsinkowski et al. found that both dis-
tributive and procedural fairness have significant impli-
cations on higher education admission that uses an
automated decision system [40].

The interaction between distributive fairness, inter-
pretability, and procedural fairness are rapidly becom-
ing a compliance issue. In April 2021, the EU released
a proposal for sweeping regulation of algorithmic bias
[14]. In the same week, the Federal Trade Commission
released a blog post [26] that described a legal frame-
work for evaluating AI bias, foreshadowing enforce-
ment. In the California, a bill regulating automated
decision systems is in committee [23].

Drawing from procedural fairness theory, we propose
Explanation Loss (see Eq. 1), a novel fairness met-
ric that measures procedural fairness and a method to
optimize for it [34]. In particular, this metric measures
the neutrality of the decision process to different demo-
graphic groups. Since complex black-box models (e.g.,
deep neural networks and tree-based ensemble models)
are often used due to their high predictive power, we use
interpretability methods to generate explanations that
reveal the model decision process for each datum. The
metric then computes the average absolute differences
of the explanations between all possible pairs of input
samples, one from the minority group and one from the
majority group. The intuition is that the difference in
the model’s explanation for two groups can be approx-
imated by the average differences of all pairs of indi-
vidual explanations. Therefore, Explanation Loss mea-
sures how far away the decision process is from being
perfectly neutral. In the following sections, we describe
the data we used, the method that optimizes for the
metric, and the preliminary results we obtained.

3.1 Data

We used the COMPAS dataset [31] for the preliminary
study. COMPAS dataset, which contains attributes
of criminal defendants, is often being used to study
(deeply flawed) recidivism models: whether a person
will reoffend within 2 years). It is known to exhibit
severe biases against minority groups. Specifically, stud-
ies have shown that models trained on COMPAS tend
to overpredict recidivism for black defendants and
underpredict recidivism for white defendants [31].

We preprocessed the dataset following Rieger et al.
[52]. The dataset contains a total of 7214 samples.
We filtered 1042 due to missing information about the
recidivism. We categorized age into under 25, between
25 and 45, inclusively, and above 45. We categorized
sex into Male and Female. We also categorized the
crime description based on matching words, resulting
in categories Possession (of drugs), Driving, Violence,
Theft, and No Charge. For example, descriptions that
are matched with “theft” or “burglary” are categorized
as Theft. We then one-hot encoded all categorical vari-

ables, and used the numeric variables as is. We focused
on equalizing explanations of the Black and Caucasian
records, since these two are the predominant groups of
the data.

We split the data into train, validation, and test sets,
with a ratio of 80/10/10.

3.2 Method

Interpretability techniques aim to generate explana-
tions for a model’s individual predictions. A popular
class of such techniques is known as feature attribu-
tion, which, given an input, the model, and predic-
tion, assigns a number to each feature of the input
to represent how much it contributes to the prediction
[37,45,51,58]. There are two reasons that feature attri-
bution methods are appropriate for our study: (1) they
allow us to compare model’s explanation for each pre-
diction at the feature level, which is especially impor-
tant for fairness, since certain features are more sen-
sitive than others; (2) feature attribution vectors can
be interpreted as attribution priors to incorporate the
notion of procedural fairness in the model.

We propose the following regularization to achieve
procedural fairness:

θ̂ = arg min
θ

∑

xi,yi∈D

L(fθ(xi), yi)

+λ
1

|Ds1||Ds2|
∑

xj∈Ds1,xk∈Ds2

|expl(xj) − expl(xk)|.

(1)

The regularization computes the average L1 norm
of difference between explanations of every pair of
instances (one from each group), x ∈ Ds1, x′ ∈ Ds2.
Each explanation, expl(x), is a vector of feature impor-
tance scores with dimension equal to the number of fea-
tures of the input. This vector is generated using any
feature attribution method. In this study, we used Con-
textual Decomposition (CD) as the feature attribution
method [45]. This regularization term takes the exact
form of our proposed metric for procedural fairness.

We trained a simple multi-layer neural network
model with one hidden fully connected layer of 100 neu-
rons and ReLU activation, and varied a weight for the
regularization term of 0 (no explanation loss), 0.2, 0.4,
0.6, 0.8, and 1.0. The model was trained with a batch
size of 256 and a learning rate of 0.001 for 5 seeds,
and the average results were reported. While the regu-
larization equation refers to explanations of the entire
dataset, in practice, this term is computed per batch
for faster convergence. Specifically, for each batch, we
partition the instances into two groups, then for every
possible pair (one from each group), we compute the L1
norm of the difference of the feature attributions, and
finally, we average the differences. An ablation study of
the effect of batch size on results remains future work.
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3.3 Metrics

In addition to our proposed metric of procedural fair-
ness (Explanation Loss), the metrics we used to eval-
uate the model include 1) accuracy and 2) fairness.
We considered two popular fairness metrics: equality
of opportunity [20] and equalized odds [54]. A model
is said to satisfy equality of opportunity if the false-
positive rates are equivalent across two demographic
groups. Similarly, equalized odds require false-negative
rates to be equivalent across two groups in addition to
false-positive rates.

The loss term represents the notion of fairness dis-
tance: how far away the model is from perfectly fair.
The fairness distance we consider is based on equality
of opportunity [], and measures the absolute difference
between the false-positive rates of one demographic
group (FPR1) and another (FPR2): |FPR1−FPR2|. On
the other hand, fairness distance is based on equalized
odds measures [] |FPR1 − FPR2| + |FNR1 − FNR2|,
which adds an additional absolute difference between
the false-negative rates.

3.4 Results

The results are summarized in Table 1. From the first
two columns of the table, we can see that the regular-
ization effectively encourages the model to predict with
similar explanations across two demographic groups,
which we interpret as improved procedural fairness by
penalizing the tendency for a model to essentially learn
two separate submodels, one for each group. Second,
adding the regularization term does not reduce the
accuracy of the model. Third, equalizing the explana-
tions has a minor effect on fairness of the outcomes,
causing a slight increase on fairness distances.

4 Hierarchical multi-label classification

We demonstrate hierarchical multi-label classification
(HMC) in the urban domain. HMC tasks involve a large
set of labels organized into parent-child relationships,
typically representing increasing specificity or isa rela-
tionships. Each input record is associated with multi-
ple labels in the hierarchy, representing the uncertainty

Table 1 The effect of equal explanations on accuracy and
fairness distances of the model

Reg
rate

Explanation
loss

Accuracy Equality of
opportunity

Equalized
odds

0 1.68 70.40 0.19 0.50
0.2 0.05 70.11 0.22 0.56
0.4 0.03 70.16 0.22 0.58
0.6 0.02 70.90 0.21 0.56
0.8 0.01 70.65 0.23 0.56
1 0.02 69.70 0.24 0.60

associated with a large label space in a complex domain.
HMC has received increasing attention with the adop-
tion of neural networks [15,16,66,78], often in contexts
requiring significant human expertise, making large-
scale labeling exercise infeasibly expensive. In other
words, human expertise is invested in modeling the
world through a complex ontology rather than label-
ing data using that ontology. As a result, the machine
learning tasks represent a different set of requirements:
the number of labels can be large relative to the num-
ber of labeled items, but there is structure among the
labels that algorithms can exploit for distance supervi-
sion.

Ontology development is common in urban planning,
where the complexity of the domain and multiplic-
ity of perspectives require building consensus around
a universe of discourse. For example, ontologies have
been developed by teams of experts to describe elec-
tric mobility [55], humanitarian efforts [3], and smart
city applications [1,9,13,18,61] 1. The HMC literature
rarely considers these urban applications, instead favor-
ing biological and scientific domains where public data
are more readily available.

We are exploring new approaches for HMC that
involve learning reusable representations of the ontol-
ogy itself (using graph encoding techniques) to tame
the complexity, then using these learned representations
as the labels when training a classifier. We show that
using these ontologies as a source of supervision can sig-
nificantly improve the classification performance over
other HMC techniques, motivating greater investment
in developing comprehensive ontologies to represent the
complex urban domain as a whole rather than expend-
ing resources on creating expensive labeled datasets for
myriad specific applications.

4.1 Case study: community listener

We worked with a local non-profit organization to iden-
tify the community needs from several sources of the
data, such as social media (Twitter, Reddit, and Face-
book conversations) and long-form survey responses.
We classify these discourses into the Sustainable Devel-
opment Goals Ontology (SDG) [3]2 and the Social
Progress Index (SPI)3. The data and the predicted
labels are then aggregated and visualized on an online
dashboard serving policymakers and entrepreneurs.
The Sustainable Development Goals Interface Ontol-
ogy (SDG) was developed by United National Environ-
ment Programme to support the achievement of the 17
United National Sustainable Development Goals to pro-
mote human rights and equity. The ontology includes

1 https://techcommunity.microsoft.com/t5/
internet-of-things/smart-cities-ontology-for-digital-twins/
ba-p/2166585.
2 https://www.unep.org/explore-topics/
sustainable-development-goals/what-we-do/
monitoring-progress/sdg-interface-ontology.
3 https://www.socialprogress.org/
2020-Social-Progress-Index-Methodology.pdf.

123

https://techcommunity.microsoft.com/t5/internet-of-things/smart-cities-ontology-for-digital-twins/ba-p/2166585
https://techcommunity.microsoft.com/t5/internet-of-things/smart-cities-ontology-for-digital-twins/ba-p/2166585
https://techcommunity.microsoft.com/t5/internet-of-things/smart-cities-ontology-for-digital-twins/ba-p/2166585
https://www.unep.org/explore-topics/sustainable-development-goals/what-we-do/monitoring-progress/sdg-interface-ontology
https://www.unep.org/explore-topics/sustainable-development-goals/what-we-do/monitoring-progress/sdg-interface-ontology
https://www.unep.org/explore-topics/sustainable-development-goals/what-we-do/monitoring-progress/sdg-interface-ontology
https://www.socialprogress.org/2020-Social-Progress-Index-Methodology.pdf
https://www.socialprogress.org/2020-Social-Progress-Index-Methodology.pdf


Eur. Phys. J. Spec. Top. (2022) 231:1741–1752 1747

169 nodes with 3 levels. Social Progress Index (SPI)
was introduced by Social Progress Imperative to pro-
mote improvement and actions for social progress. They
define Social Progress as “the capacity of a society to
meet the basic human needs of its citizens, establish
the building blocks that allow citizens and communi-
ties to enhance and sustain the quality of their lives,
and create the conditions for all individuals to reach
their full potential.” SPI includes three levels with 124
nodes.

4.2 Experimental settings

There are two datasets used in this experiment,
Programs and Organizations. Programs is a list of
descriptions of humanitarian programs; the task is
to determine which areas of humanitarian need are
intended by the Program. The description typically
mentions the mission and areas of focus for the pro-
gram, which we anticipated would make Programs rel-
atively easy to classify. The Organizations dataset is
a list of companies and non-profits that may work
in areas of interest for humanitarian causes. In this
case, the descriptions are less likely to explicitly men-
tion areas of humanitarian need. For both datasets,
we associate each record with zero or more labels
from the SDG and SPI ontologies. Statistics of the
two datasets are shown in Table 2. We split each
dataset into training, validation, and test set with 8:1:1
ratio. The models are optimized with validation set
and the experimental results are reported from the test
set.

We experimented with different text embedders and
classification models to find the best combinations.
Because the organization did not have abundant com-
putation resources, we limited our choices within com-
putation efficient models. We chose TF-IDF and Glove
[48] as our text embedders. For the classification model,
we adopted two frameworks for classification: one con-
sidered the hierarchical structure with graph encoding
(named Ontology) within the labels and the other
did not (named naive). The naive model consid-
ered the labels as a flat list. The model consisted of
two fully connected layers and iwas optimized with
Binary cross entropy, which is often used for multi-label
classification. The diagram of the ontology frame-
work is shown in Fig. 2. The framework learned a
representation for the label ontology using a graph
autoencoder [29]. Then, the model considered the node
embeddings and mapped the input instances onto the

Table 2 Dataset statistics

Programs Organization
Train Val Test Train Val Test

6412 801 802 4558 570 570

Fig. 2 Illustration of our framework

node embedding space with cosine similarity. Finally,
the model was optimized with binary cross entropy
and produce probability confidence as output. The
threshold for classification is set to be 0.5. Finally,
we evaluated all models with Precision (P), Recall
(R), and F1 score which are commonly used in multi-
label classification community. Following the litera-
ture, a data record is considered correctly classified
when the predicted leaves match the ground truth
exactly: there is no partial credit for siblings, for exam-
ple.

Experimental results
We demonstrate our experimental results in Table 3.

Because these two datasets are custom and not pub-
licly available, we provide results from two base-
line methods—majority vote and random selection.
We can observe that considering the label ontol-
ogy significantly improve the results. The trained
model then allows us to tag the discourses on social
media based on the humanitarian ontologies from SPI
and SDG and to visualize within an online dash-
board serving policymakers and entrepreneurs. As a
result, we can organize public discourse and partic-
ipation to capture levels of interest in various top-
ics.

This approach is potentially critical for address-
ing data scarcity in practice. As we have argued, in
complex domains, obtaining labeled data is expensive
and requires significant human expertise. For example,
determining whether a potential project is related to
a goal to enhance inclusive and sustainable urbaniza-
tion (SDG 11.3), achieve sustainable management of
resources (SDG 12.2), encourage adoption of sustain-
able practices (SDG 12.6), or all three, requires signif-
icant expertise with the SDG ontology, municipal gov-
ernment practices, and the data being labeled. More-
over, labeled datasets can be rendered obsolete with
only minor changes to the ontology, requiring an expen-
sive re-labeling exercise. To enable comprehensive cross-
sector models that can be deployed in a variety of
contexts, we need to make efficient use of the human
attention invested in creating the ontology.
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Table 3 Experimental results on the Program and Organization datasets

Programs Organization

Acc P R F1 Acc P R F1

Majority 0.075 0.006 0.075 0.01 0.056 0.003 0.056 0.006
Random 0.003 0.016 0.003 0.003 0.006 0.018 0.006 0.008
TF-IDF + naive 0.102 0.085 0.132 0.087 0.090 0.032 0.090 0.030
Glove + naive 0.202 0.143 0.201 0.158 0.249 0.141 0.249 0.171
TF-IDF + Ontology 0.145 0.134 0.167 0.159 0.143 0.095 0.123 0.117
Glove + Ontology 0.245 0.175 0.254 0.219 0.286 0.176 0.287 0.256

Bold indicates best scores (our method)
Acc accuracy, P precision, R recall, F1 F1 score. Because these are custom datasets that are not publicly available, we also
provide results from two baseline methods, majority vote and random selection. We can observe that considering ontology
improves the results significantly

5 Modeling governance behaviors

The source of municipal democracy in the United States
is found in city halls across the country. Even as our col-
lective work in the analysis of urban space is used to
create, debate, and ultimately enact urban policy, there
is a lack of large-scale quantitative studies on municipal
government. Comparative research into municipal gov-
ernance in the USA is often prohibitively difficult due
to a broad federal system where states, counties, and
cities divide legislative powers differently. This power
distribution has contributed to the lack of necessary
research into the procedural elements of administrative
and legislative processes, because it affords each munic-
ipality to each have their own standards for archival and
publishing of municipal data [62].

To better study the complexities of municipal coun-
cils across the county, multiple tools are needed to
standardize and aggregate data into large research
databases and access portals. The data from munic-
ipal government meetings (videos, transcripts, voting
records, etc.) must be made more accessible to both
the general public and to researchers, and, such tools
must be deployed in multiple municipalities across the
nation, so that data can be used in aggregate to study
the spread of policy, topic coverage, public sentiment,
and more.

Once this infrastructure is available, it becomes pos-
sible to conduct large-scale quantitative studies on the
dynamics of discourse in policy deliberation and enact-
ment, quantifying how much of policy is decided upon
using community sentiment as the policy basis, how
such policy is supported or not from the public, and how
similar policy proposals in different municipalities (or
levels of government) are discussed and either enacted
or rejected.

5.1 Council data project

To enable such large-scale studies, we have begun work
on “Council Data Project,” [6] a suite of tools for
deploying and managing infrastructure for rapidly gen-
erating, archiving, and analyzing transcript datasets

of municipal council meeting content. Council Data
Project (CDP) is easily deployable and generalizes to
many different meeting venues, but is specifically built
with municipal council meetings in mind.

For each meeting a CDP deployment processes, our
tools generate a transcript of timestamped sentences,
and archives the produced transcript and all attached
metadata (minutes items, presentations and attach-
ments, voting records, etc.). CDP deployments addi-
tionally create a keyword-based index multiple times a
week to enable plain-text search of events.

To further the utility of the CDP produced corpus,
we are creating audio classification models for label-
ing each sentence with the classified speaker, aligning
sentences in the transcript to the provided list of min-
utes item, re-using the generated keyword-based index
for a municipality level n-gram viewer [41], and much
more. Such work will enable the creation of datasets
such as a dataset of discussions where only a set of
specific councilmembers are present, or a dataset of dis-
cussions regarding specific pieces of legislation (minutes
items).

Council Data Project enables large-scale quantita-
tive studies by generating standardized municipal gov-
ernance corpora—including legislative voting records,
timestamped transcripts, and full legislative matter
attachments (related reports, presentations, amend-
ments, etc.). CDP enables the reproduction of politi-
cal science research such as studying the effects of gen-
der, ideology, and seniority in council deliberation [24],
and studying the effects that adopting information com-
munication technologies have on the civic participation
process [12].

In constructing CDP to be as easily deployable as
possible, we enable studies to understand how these
behaviors generalize (or act as outliers) in different
municipalities and settings.

Effective use of this new source of data motivates
research in adapting deep learning techniques to multi-
speaker, structured settings. Tasks include identify-
ing speakers, topic and sentiment labeling by speaker
to understand political positions, labeling speech by
agenda topic, summarizing public sentiment to guide
outreach, and communication investments. These prob-
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Fig. 3 Examples of analysis made possible through CDP
infrastructure. Using the produced transcripts, we can build
topic models to tag topics both in a single meeting’s tran-
script and track topic trends over time. With multiple CDP
instances, we can show how these trends hold (and spread—

investigating the topical latency between municipalities)
over entire regions. Additionally, building models for track-
ing the sentiment of discussions regarding specific pieces of
legislation as they move through council

lems appear to be within the capabilities of emerging
deep learning techniques, but require research attention
in formulating the problem and evaluating competing
techniques, which in turn require access to high-quality
labeled datasets. Moreover, linking public discourse
over social media with formal discourse in public hear-
ings, administrative data collected through municipal
service delivery, and geospatial data collected through
sensing technologies will be required to meet our goal
of a holistic study of the science of cities.

6 Conclusions

We aim to improve the coverage, access, and equity of
urban data to advance understanding of city dynamics,
unifying a top–down, holistic view of cities as a com-
plex system and bottom–up, application-oriented view
of cities as an assembly of independent subsystems. We
aim to combat the disproportionate attention received
by online advertising, face recognition, image labeling,
and NLP tasks that dominate the machine learning lit-
erature by making high-quality, comprehensive urban
datasets available for research. We identify four areas
of research, with promising preliminary results, that
involve the application of AI in urban contexts: spa-
tiotemporal interpolation of data, unifying fairness, and
interpretability in the context of emerging regulation of
algorithms, accommodating the complex domain mod-

els that are necessary to describe cities holistically, and
engaging with new sources of data at the intersection
of public discourse and policymaking.
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