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Abstract COVID-19 is caused by the increase of SARS-CoV-2 viral load in the respiratory system. Epithe-
lial cells in the human lower respiratory tract are the major target area of the SARS-CoV-2 viruses. To
fight against the SARS-CoV-2 viral infection, innate and thereafter adaptive immune responses be acti-
vated which are stimulated by the infected epithelial cells. Strong immune response against the COVID-19
infection can lead to longer recovery time and less severe secondary complications. We proposed a target
cell-limited mathematical model by considering a saturation term for SARS-CoV-2-infected epithelial cells
loss reliant on infected cells level. The analytical findings reveal the conditions for which the system under-
goes transcritical bifurcation and alternation of stability for the system around the steady states happens.
Due to some external factors, while the viral reproduction rate exceeds its certain critical value, backward
bifurcation and reinfection may take place and to inhibit these complicated epidemic states, host immune
response, or immunopathology would play the essential role. Numerical simulation has been performed in
support of the analytical findings.

1 Introduction

The interhuman transmission of Severe Acute Respi-
ratory Syndrome Coronavirus 1 (SARS-CoV-1) caused
drastic concussion on public health over the past
decades. The recent coronavirus disease (COVID-19)
is imposing extreme destruction in human civilization
as about 210 countries around the world have been
facing the COVID-19 pandemic cases [1]. The patho-
logical agent of COVID-19 pandemic is Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
a single-stranded RNA virus, belonging to the Coro-
naviridae family [2–4]. According to the worldome-
ter data [5,6], around 24 million people have already
been infected with SARS-CoV-2 (and the number is
still rising) among whom almost 7% of the COVID-19
patients have been died, and about 1% of the active
cases are in critical condition [4]. The World Health
Organization (WHO) posted several guidelines about
non-pharmaceutical control techniques such as wear-
ing masks, washing hands frequently, social distanc-
ing, and others [7,8]. The countries and corresponding
states have been enforced Standard Operating Proce-
dure (SOP) in the public places and work spaces to
maintain the COVID-19 guidelines recommended by
WHO. Although at the recent time, the total death
cases due to COVID-19 pandemic has been reduced to
3.4%, the global fatality rate is converting very rapidly.
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In this scenario, with the aim to control and overcome
this COVID-19 pandemic, it is necessary to conduct
more comprehensive research studies at the cellular
level for better understandings.

To make accurate entry in host cells, SARS-CoV-2
utilizes angiotensin-converting enzyme 2 (ACE2) recep-
tor which assists to turn the host cells more vulnerable
[9]. Even though the expression of ACE2 is abundant in
many epithelial cells like myocardial epithelial cells, kid-
ney tubular epithelial cells, and gastrointestinal epithe-
lial cells, type II alveolar epithelial cells of lungs con-
tain the better copious expression of ACE2 and thus
are considered as the major target cells of COVID-19
infection [10,11]. The well-known traits of COVID-19
infection are common fever, cough, fatigue, breathless-
ness, loss of odor, and tastelessness. The individuals
suffering with co-morbidity factors like cardiovascular
issues, diabetes, liver diseases, and renal disorders are
more endangered group of COVID-19 infection. While
any pneumonia patient be affected by COVID-19 infec-
tion and, at the same time, that individual would face
acute respiratory illness, multiple organ failure would
take place at that case. From the previous waves of
the COVID-19 pandemic, it has been detected that an
outsized percentage of the COVID-19-tolerant experi-
enced mild symptoms and became cured in consort with
their own immunity; about 20% of them faced multiple
organ failure and ultimately death [12,13]. Lymphope-
nia, abnormal degradation in lymphocytes count (bel-
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low the range 1.5 × 103 mm−3), has also been reported
in severe COVID-19 patients [13–15].

After successful exposure to SARS-CoV-2, cell-
mediated adaptive immunity (if innate immunity is not
sufficient) be triggered through the activation and dif-
ferentiation of T cells. The differentiated T cells ben-
efit the cytokines, viz., INF-α, IL-6, and IL-10, to be
secreted [16] which are responsible to heavily stimulate
the host immunity. Among different types of T cells,
CD4+T cells and CD8+T cells have the most influence
to fight against SARS-CoV-2 where CD4+T cells assist
to generate virus specific antibodies with the activation
of T-dependent B cells and the role of CD8+T cells is to
neutralize the infected epithelial cells. It has been found
that in a SARS-CoV-2 host, a large number of CD8+T
cells present where near about 80% of these cells are
infiltrator and inflammatory in nature perceived in the
interstitial pulmonary tract performing a crucial role in
removing SARS-CoV-2 from the body. The depletion
of CD4+T cells is correlated with reduced conscrip-
tion of lymphocytes and neutralizing the assembly of
antibodies and cytokines, resulting in severe immune-
mediated interstitial pneumonitis and delayed SARS-
CoV-2 clearance [9,17]. Researchers studied that there
is a long-lasting and protracted response of T cells to
the S and other structural proteins (including the pro-
teins M and N), which provide sufficient knowledge
to draft the SARS vaccine by combining viral struc-
tural proteins. These types of vaccine may provide a
strong, efficient, and long-term response to the virus by
memory T cells [18]. Moreover, the clinical trials exam-
ined that monoclonal antibody therapy is an effective
intervention strategy with better antiviral response to
SARS-CoV-2 [19].

To design effective treatment strategies that can tar-
get both SARS-CoV-2 and the infected epithelial cells,
we need to understand the intermediate relationships
among uninfected epithelial cells, SARS-CoV-2 virus
particles, and host immune response. The infection
processes of SARS-CoV-1, SARS-CoV-2, and MARS-
CoV are almost identical. The functional interaction
analysis between the host immune response and other
HCoVs, combined with evolutionary sequence analy-
sis of SARS-CoV-2, may guide to come up with new
treatment and preventive interventions. Mathematical
modeling may be an efficient tool that will aid us to rec-
ognize the within-host interactions in COVID-19 infec-
tion. Nadim et al. [20] discussed the short-term dynam-
ics and preventive approaches for COVID-19 infection.
In this study, they have shown the declining inclina-
tion of new COVID-19 cases through establishing effec-
tive management of quarantined persons. Volpert et
al. [21] have attempted to measure the efficiency of
quarantine strategies by means of a new mathemat-
ical modeling of COVID-19 infection progression. In
this study, it is observed that the peak of infection
(maximum of daily cases) is accomplished about 10
days after the commencement of confined process and
the authors suggested to implement stricter measures
as radically obligatory methods. Mondal et al. [14]
presented a seven compartmental SEIQR type model

to explore the COVID-19 disease progression and the
effect of pharmaceutical and non-pharmaceutical inter-
ventions as control input and there effects in reducing
the number of the infected population.

Even though there are a few mathematical model-
ing highlighting the transmission dynamics of COVID-
19 infection at the population level [22–26], yet the
intrahost viral dynamics of COVID-19 infection has
not been investigated on a large scale. Mathematical
modeling with real data assists to extensively explore
dynamical aspects of any infection under cellular level
[27–29]. Tang et al. [30] proposed a four-dimensional
model depicting the basic virus and host immune
response dynamics incorporating the concentration of
DPP4 receptors for MARS-CoV infection. Chatterjee
and Basir [31] explored a mathematical model indicat-
ing the dynamical behaviors of epithelial cells during
SARS-CoV-2 infection in the presence of CTL response
and they studied the function of the ACE2 receptor
concluding the fact that the proper dose of immunos-
timulant drug will aid to reduce COVID-19 infection.
Hernandez et al. [32] proposed a model to examine the
cellular level dynamics and T-cell responses against the
viral replication of SARS-CoV-2 during the COVID-
19 infection. Wang et al. [33] evaluated the effect of
the several pathogenic characteristics of SARS-CoV-
2 in viral dynamics and host immune response, and
from this study, it is observed that anti-inflammatory
treatment strategies or combination of antiviral drugs
with interferon is effective in reducing the plateau
phase in viral load and shortening the recovery time.
Chatterjee and Basir [13] formulated a mathematical
model to examine the consequences of adaptive immune
response to the viral mutation in controlling disease
transmission and the effect of the combined antiviral
drug therapy on the model dynamics. Chatterjee et al.
[34,35] proposed a set of fractional differential equa-
tions model in cellular level accounting the lytic and
non-lytic effects of immune response in the kinetics
of the model exploring the effect of a commonly used
antiviral drug in COVID-19 treatment along applying
an optimal control-theoretic approach.

In this mathematical study, through our proposed
model, the intermediate ambiences of the intrahost
immune response on SARS-CoV-2 viral dynamics dur-
ing COVID-19 pandemic has been calibrated. The over-
all study is designed in the following manner: in Sect.
2, the structure of our proposed compartmental model
is presented. Section 3 is build up with the qualita-
tive characteristics of the model such as non-negativity
and boundedness of all the solutions of the system. In
Sect. 4, an epidemic subsystem of our proposed model
is considered. In the consecutive subsections, all the
possible equilibrium points executed by the subsys-
tem and the basic reproduction number of this subsys-
tem are computed. The stability of the system is ana-
lyzed, and existence of backward bifurcation is studied.
Section 5 is accomplished with numerical simulation
to examine whether the analytical results are aligned
with the numerical findings or not. Finally, we discuss
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Fig. 1 Graphical explanation regarding the effects of anti-
body response and CTL response in COVID-19 infection for
the intrahost mathematical model (1)

about our overall analytical and numerical findings in
Sect. 6.

2 The compartmental model

The mathematical modeling in epidemiology advan-
tages us to make out the basic dynamics of any com-
municable disease and, in general cases, target cell-
limited mathematical models are formed to study the
viral dynamics. In this research work, to observe the
dynamics of SARS-CoV-2 and the role of host immune
response in COVID-19 infection, we are aimed to pro-
pose a target cell-limited model consisting of five pop-
ulations, viz.

(i) ES : the uninfected and susceptible target cells of
COVID-19 infection; these are the surface epithe-
lial cells with ACE-2 receptor located at the res-
piratory tracts including lungs, nasal, and tra-
chea/bronchial tissues,

(ii) EI : the SARS-CoV-2-infected virus-producing
epithelial cells,

(iii) V : the SARS-CoV-2 virus particles,
(iv) A: the antibody response, and
(v) C: the CTL response.

Our proposed five-dimensional and ODE compart-
mental mathematical model is as follows:

dES

dt
= Π − βESV − μ1ES ,

dEI

dt
= βESV − μ2EI − r1EIC,

dV

dt
= pEI − μ3V − r2V A,

dA

dt
=

α1EI

V + θ1
− μ4A,

dC

dt
=

α2EI

EI + θ2
− μ5C, (1)

with non-negative initial condition

ES(0) = ES0, EI(0) = EI0, V (0) = V0,

A(0) = A0, C(0) = C0. (2)

The first equation of the epidemic system (1) expresses
the dynamics of uninfected epithelial cells (ES(t)) and
the second equation shows the dynamics of the infected
epithelial cells (EI(t)). The replication of SARS-CoV-
2 virus (V (t)) is considered in the third equation of
the system (1) where the COVID-19 infection promotes
endothelins on several organs as a direct consequence
of viral involvement. The fourth and fifth equations of
the model (1) represent the kinetics of the antibody
response and the CTL response, respectively, to com-
bat against the COVID-19 infection.

The constant recruitment rate of the uninfected
epithelial cells is denoted as Π (cell ml−1 day−1). Dur-
ing the host cell entry of SARS-CoV-2, the coron-
aviruses first bind to a cell surface receptor for viral
attachment [36,37] and let β (ml cell−1 day−1), be
the rate at which SARS-CoV-2 infects the suscepti-
ble epithelial cells. After the commencement of infec-
tion virions are secreted from the infected epithelial cell
[36,37] and let p (copies ml−1 cell−1 day−1) be the rate
at which new virus are produced. Virus particles are
removed at a rate μ3 (day−1). The uninfected epithe-
lial cells expire at a rate μ1 (day−1) due to natural
apoptosis and the infected cells are removed from the
system at a rate μ2 (day−1) as a result of cytopathic
viral effects and immune response.

Cytokines (IFNs) are too essential to inhibit the viral
replication and in modulating the downstream effects of
the host immune response. Specific cytokines activate
natural killer cells (NK) to fight against the infected
cells. It has been observed that SARS-CoV-2 often tar-
gets the JaK/STAT pathway (a pathway which is acti-
vated by the IFN signaling cascades) to reduce the pro-
duction of IFNs. We consider this immune suppressing
mechanism of SARS-CoV-2 as α1EI

V +θ1
, a functional form

of the declinature in the production of cytokines. The
adaptive immunity of the host (specifically the T cells
and B cells) be activated through the cytokines to pro-
duce antigen-specific antibody response. B cells mainly
secrete IgM and IgG antibodies which are released
from blood and lymph fluid benefit to neutralize the
viral particles. We extend the target cell-limited ver-
sion of our proposed COVID-19 infection system by
incorporating the antibody response A(t) with deple-
tion rate r2 (ml cell−1 day−1). We consider the expan-
sion of CTL response mediated by the infected epithe-
lial cells in a functional form as α2EI

EI+θ2
and at the rate

r1 (ml cell−1 day−1), the infected epithelial cells would
be neutralized by CTL response. Here, the constants
α1 and α2 stand for the simulation rate of antibody
response and CTL response, respectively. The constants
θ1 and θ2 describe the half-maximal simulation thresh-
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olds. The antibody response loses its productivity at the
rate μ4 (day−1) and the CTL response loses its produc-
tivity at the rate μ5 (day−1). The system will undergo
the direct viral cytopathicity above normal target death
rate, while αi > 1, for i = 1, 2, and for αi = 1, cyto-
pathic effect of SARS-CoV-2 would be absent in the sys-
tem. All the system parameters are non-negative. The
host–pathogen interaction between epithelial cells and
SARS-CoV-2 and the effect of host immune response
(both antibody and CTL responses) in this interaction
process are explained through Fig. 1.

3 Qualitative characteristics of the model

In this section, we study two qualitative characteristics—
positivity and boundedness of the state variables of our
proposed model system (1). These properties are essen-
tial for the epidemic system (1) to be biologically con-
vincing.

3.1 Positivity

Theorem 1 For all the solution trajectories (ES(t),
EI(t), V (t), A(t), C(t)) of the system (1) along with
the initial condition (2), the state variables remain posi-
tive, i.e., the conditions ES > 0, EI > 0, V > 0, A > 0,
and C > 0 hold for all time window t > 0.

Proof The fourth and fifth equations of the epidemic
system (1) may be reformed as

dA

dt
≥ −μ4A, and

dC

dt
≥ −μ5C. (3)

On integration of the above inequality (3), we
achieve

A ≥ A0 exp
(

−
∫ t

0

μ4ds

)
> 0,

and C ≥ C0 exp
(

−
∫ t

0

μ5ds

)
> 0.

The third equation of the system Eq. (1) may be
written as

dV

dt
≥ −(μ3 + r1A)V, (4)

and integrating the Eq. (4), we see that

V ≥ V0 exp
(

−
∫ t

0

(μ3 + r1A)ds

)
> 0.

Next, the second equation of the epidemic system (1)
could be rewritten as

dEI

dt
≥ −(μ2 + r1C)EI . (5)

Thus, integrating Eq. (5), we have

EI ≥ EI0 exp
(

−
∫ t

0

(μ2 + r1C)ds

)
> 0.

In the similar fashion, from the first equation of the
epidemic system (1), we may obtain

dES

dt
≥ −(βV + μ1)ES . (6)

On integration of Eq. (6), we get

ES(t) ≥ ES0 exp
(

−
∫ t

0

(βV + μ1)ds

)
> 0.

Therefore, all the five state variables of the epidemic
system (1) are positive, i.e., all the solution trajecto-
ries (ES(t), EI(t), V (t), A(t), C(t)) of the system
(1) together with the non-negative initial condition (2)
remain positive for all time window t > 0. ��

3.2 Boundedness

Theorem 2 All the positive solution trajectories (ES(t),
EI(t), V (t), A(t), C(t)) in R

5
+ of the system (1)

together with the non-negative initial condition (2)
are uniformly bounded in the positively invariant and
attracting region Γ ∈ R

5
+ (defined in the proof).

Proof Adding the first two equations of the epidemic
system (1), we may write

dES

dt
+

dEI

dt
≤ Π − μ1ES − μ2EI ≤ Π − μ(ES + EI),

where we assume that μ = min{μ1, μ2}. From the
above expression, it is implied that

(ES + EI)(t) ≤ Π

μ
(1 − e−μt) + E0e

−μt,

where E0 = min{ES0, EI0}. Now, taking lim sup on
both sides of the above equation, we get

lim sup
t→∞

(ES + EI)(t) ≤ Π

μ

i.e lim sup
t→∞

ES(t) ≤ Π

μ
= ES (say)

and lim sup
t→∞

EI(t) ≤ Π

μ
= EI (say). (7)

From the third equation of the system Eq. (1), it is
followed that:

dV

dt
+ μ3V ≤ pEI =

Πp

μ
,
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and thus, we get

V (t) ≤ Πp

μμ3
(1 − e−μ3t) + V0e

−μ3t.

Thus, taking lim sup on both sides, we may obtain

lim sup
t→∞

V (t) ≤ Πp

μμ3
= V (say). (8)

In a similar way, from the fourth equation of the sys-
tem (1), we may write

dA

dt
+ μ4A ≤ α1EI

V + θ1
=

Πα1μ3

Πp + θ1μμ3
,

and accordingly, we have

A(t) ≤ Πα1μ3

Πp + θ1μμ3
(1 − e−μ4t) + A0e

−μ4t.

As a result, taking lim sup on the both sides of the
above equation, we obtain

lim sup
t→∞

A(t) ≤ Πα1μ3

Πp + θ1μμ3
= A (say). (9)

Finally, from the last equation, it may be seen that

dC

dt
+ μ5C ≤ α2EI

EI + θ2
=

Πα2

Π + θ2μ
,

and thus, the above expression is leading to

lim sup
t→∞

C(t) ≤ Πα2

Π + θ2μ
= C (say). (10)

Therefore, assembling the above computations, it is
notable that all the positive solutions (ES(t), EI(t),
V (t), A(t), C(t)) initiating in R

5
+ of the system (1)

together with the non-negative initial condition (2) are
uniformly bounded in the following positively invariant
and attracting region:

Γ =
{

(ES , EI , V, A,C) ∈ R
5
+ : ES ≤ ES , EI ≤ EI ,

V ≤ V , A ≤ A, C ≤ C
}

.

Hence, the system (1) is well posed and epidemically
realistic. ��

4 Consideration of subsystem

The data on the CTL response and antibody response
are not available properly due to a large number of

parameters that cannot be currently estimated. There-
fore, we simplify the model (1) using a quasi-steady
state approximation, assuming that the dynamics of
antibody and CTL stimulation is faster than the time
course of acute SARS-CoV-2 infection [32–34,38]. This
derives a model similar to the target cell-limited model,
given below

dES

dt
= Π − βESV − μ1ES ,

dEI

dt
= βESV −

(
μ2 + κ1

α2EI

EI + θ2

)
EI ,

dV

dt
= pEI −

(
μ3 + κ2

α1EI

V + θ1

)
V. (11)

with the above-mentioned initial condition (2) of the
model system (1). Here, we considered the terms κ1

and κ2 as κ1 = r1/μ5 (ml cell−1) and κ2 = r2/μ4

(ml cell−1) defining the destruction rate of infected
epithelial cells through productive CTL response and
antibody response, respectively.

4.1 Equilibria of the subsystem

The epidemic subsystem (11) comprises two equi-
librium points: (i) infection-free equilibrium point:
P0

(
Π
μ1

, 0, 0
)
, where there is no COVID-19 infection

in the system (11) (exists whatever the circumstances)
and (ii) endemic equilibrium point: P ∗(E∗

S , E∗
I , V ∗)

for enduring COVID-19 infection in the system.

4.2 Basic reproduction number

Basic reproduction number of an epidemic system is
the expected number of secondary infections directly
propagated from the case where it is assumed that
primary classes are all susceptible to infection. We
focus on to determine the basic reproduction number
of the epidemic system (11), using the next-generation
matrix method [39] at the infection-free equilibrium
point P0(Π/μ1, 0, 0). The epidemic system (11) is con-
taining two infected classes EI and V . Following the
approach of [14], the two matrices required in compu-
tation of basic reproduction number are G and H at
P0(Π/μ1, 0, 0), and they are defined as follows:

G =
(

0 βΠ
μ1

0 0

)
, and H =

(
μ2 0
−p μ3

)
.

Thus, we get the next-generation matrix of the sys-
tem (11) as

K = GH−1 =
(

βΠp
μ1μ2μ3

βΠ
μ1μ3

0 0

)
.

Let us consider ψi, i = 1, 2 be the eigenvalues of
the matrix K and the spectral radius of the matrix K
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is defined as ρ(K) = max{|ψi|, i = 1, 2}. The basic
reproduction number (R0) of the system (11) is the
spectral radius of the next-generation matrix K and is
obtained as

R0 =
Π β p

μ1 μ2 μ3
.

Basic reproduction number (R0) is the crucial fact in
analyzing the kinetics of the epidemic system (11).

4.3 Existence conditions of endemic equilibrium

In this subsection, we compute the components of the
endemic equilibrium point P ∗(E∗

S , E∗
I , V ∗) and at P ∗,

solving the system Eq. (11), we get

E∗
S =

Π

βV ∗ + μ1
, E∗

I =
μ3V

∗(θ1 + V ∗)
θ1p + V ∗(p − κ2α1)

,

provided the fact that p > κ2α1. The value of V ∗
could be obtained from the following quartic equation:

σ1V
∗4 + σ2V

∗3 + σ3V
∗2 + σ4V

∗ + σ5 = 0, (12)

where

σ1 = βμ2
3(μ2 + κ1α2),

σ2 = κ1α2μ
2
3(μ1 + 2θ1β) + 2μ2μ

2
3βθ1 + μ1μ2μ

2
3

+βμ3(p − κ2α1)(Π − μ2θ2),
σ3 = κ1α2μ

2
3(2θ1μ1 + θ1β)2 + βμ3θ1p(μ2 − Π)

+μ1μ2μ
2
3θ1

+(p − κ2α1 + θ1μ3)(θ1β + μ1)(θ2μ2μ3 − βΠ),
σ4 = κ1α2μ1θ

2
1μ

2
3 + μ3θ

2
1(μ1μ2μ3 − βΠp)

+μ2μ3θ1θ2p(θ1β + μ1)
+θ1θ2(μ1μ2μ3 − 2βΠp)(p − κ2α1),

σ5 = θ21θ2μ1μ2μ3p(1 − R0).

From the above quartic Eq. (12), it is noticeable that
the coefficient σ1 is positive irrespective of any condi-
tion and the coefficient σ2 would be positive whether
p > κ2α1 and Π > μ2θ2. Again, we observe that
the coefficient σ3 would be positive if μ2 > Π and
θ2μ2μ3 > βΠ. Now, it is noted that the coefficient σ4 be
positive with the condition that Π < μ1μ2μ3

2βp along with
p > κ2α1 and the coefficient σ5 would be positive (or
negative) for R0 < 1 (or R0 > 1). Therefore, summariz-
ing these conditions, we can conclude that the existence
and positivity of the endemic equilibrium point P ∗ of
the epidemic system (11) be possible if (i) p > κ2α1,
(ii) Π < min

{
μ2,

μ1μ2μ3
2βp

}
< min

{
Π
θ2

, βΠ
μ3θ2

}
, and (iii)

depend on if R0 less than unity or greater than unity.
Next, the possible number of positive real roots of

the quartic Eq. (12) depending upon R0 is arranged in
the tabular form (in Table 1).

Assembling the possible cases enlisted in Table 1, we
may construct the following lemma:

Lemma 1 In consort with the conditions that p >

κ2α1, and Π < min
{

μ2,
μ1μ2μ3
2βp

}
< min

{
Π
θ2

, βΠ
μ3θ2

}
,

the epidemic system (11)

(i) Executes unique positive endemic equilibrium point
if R0 > 1 and the case 1, case 2, case 3, or case 5
hold; occurrence of forward bifurcation is possible in
these cases;

(ii) May possess one or more than one endemic equilib-
ria if R0 > 1 and the case 4, case 6, case 7, or case 8
hold; possible chance of hysteresis is associated with
these cases;

(iii) May possess two endemic equilibria if R0 < 1 the
case 2, case 3, case 4, case 5, case 6, case 7, or case
8 hold; possible occurrence of backward bifurcation
is possible in these cases;

(iv) May possess four endemic equilibria if R0 < 1 and
the case 7 holds; possible emergence of backward
bifurcation happens in this case, and finally, (v).
may possess no endemic equilibrium if R0 < 1 and
the case 1 holds; this case is linked to forward bifur-
cation occurrence.

4.4 Stability of the epidemic system

In this subsection, we are aimed to study the stability of
the epidemic system (11) around both the infection-free
and endemic equilibrium points, respectively.

Theorem 3 The epidemic system (11) is locally asymp-
totically stable around the infection-free equilibrium
point P0

(
Π
μ1

, 0, 0
)
on condition that R0 < 1.

Proof To study the stability, first, we have to compute
the Jacobian matrix of the system (11) at the infection-
free equilibrium P0

(
Π
μ1

, 0, 0
)

which is given as fol-
lows:

J |P0 =

⎛
⎜⎜⎜⎜⎝

−μ1 0 −βΠ
μ1

0 −μ2
βΠ
μ1

0 p −μ3

⎞
⎟⎟⎟⎟⎠ .

From the above Jacobian matrix J |P0 , it is observed
that out of three eigenvalues of J |P0 , one eigenvalue
is −μ1 < 0 and the rest two eigenvalues are calcu-
lated from the following quadratic characteristic equa-
tion (with respect to the eigenvalue ζ):

ζ2 + (μ2 + μ3)ζ + μ2μ3(1 − R0) = 0. (13)

To be stable, the rest two eigenvalues must be neg-
ative or be contained of negative real parts and that
would be possible if the constant coefficient of the above
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Table 1 Possible number of positive real roots of Eq. (12)

Case σ1 σ2 σ3 σ4 σ5 R0 Changes No. of possible
of sign positive real roots

1 + + + + + R0 < 1 0 0
+ + + + − R0 > 1 1 1

2 + + + − + R0 < 1 2 0,2
+ + + − − R0 > 1 1 1

3 + + − − + R0 < 1 2 0,2
+ + − − − R0 > 1 1 1

4 + + − + + R0 < 1 2 0,2
+ + − + - R0 > 1 3 1,3

5 + − − − + R0 < 1 2 0,2
+ − − − − R0 > 1 1 1

6 + − − + + R0 < 1 2 0,2
+ − − + - R0 > 1 3 1,3

7 + − + − + R0 < 1 4 0,2,4
+ − + − − R0 > 1 3 1,3

8 + − + + + R0 < 1 2 0,2
+ − + + − R0 > 1 3 1,3

quadratic Eq. (13) be non-negative. It is notable that
the characteristic Eq. (13) will possess negative roots
or roots having negative real parts only if R0 < 1.

Therefore, the epidemic system is locally asymptoti-
cally stable around the infection-free equilibrium point
only if R0 < 1. ��
Theorem 4 The epidemic system (11) is globally asymp-
totically stable around the infection-free equilibrium
point P0

(
Π
μ1

, 0, 0
)
on condition that R0 < 1.

Proof To study the global stability of the system (11)
around the infection-free equilibrium P0, we apply the
comparison theorem of [39]. In this respect, now, we
rewrite the infected classes (EI and V ) of the sys-
tem (11) with the help of the next-generation matrix
method (discussed in the previous subsection) as fol-
lows:

(
EI

V

)
= (G − H)

(
EI

V

)
−

(
1 − ES

ES

)
G

(
EI

V

)
.

From the previous subsection, it could be observed
that in Γ , ES ≤ ES and consequently

(
EI

V

)
≤ (G − H)

(
EI

V

)
.

Thus, the above linearized inequality system is
expressing the fact that this system would be stable if
the spectral radius of the next-generation matrix GH−1

is less than unity, i.e., R0 < 1 [40]. Next, using the
standard comparison theorem [39], we obtain

(EI , V ) → (0, 0) as t → ∞.

Thus, returning back to the system Eq. (11), substi-
tuting the values EI = 0 and V = 0, it is obtained that

ES → Π/μ1 as t → ∞. Therefore, it is followed that:

(ES , EI , V ) →
(

Π

μ1
, 0, 0

)
as t → ∞.

Hence, the system (11) is globally asymptotically sta-
ble around the infection-free equilibrium point
P0(Π/μ1, 0, 0) in the region Γ on condition that
R0 < 1.

��

Theorem 5 The epidemic system (11) is locally asymp-
totically stable around the endemic equilibrium point
P ∗(E∗

S , E∗
I , V ∗) on the conditions that

(i) ρi > 0, i = 1, 2, 3,
(ii) ρ1ρ2 > ρ3, and
(iii) V ∗ < pθ1

p−κ2α1
, provided that p > κ2α1.

Proof To analyze the local stability of the epidemic sys-
tem (11) around the endemic equilibrium
(P ∗(E∗

S , E∗
I , V ∗)), first, we compute the Jacobian

matrix of the system (11) at P ∗ which is calculated
as follows:

J |P ∗ =

(−j11 0 −j13
j21 −j22 j13
0 −j32 −j33

)
,

where, j11 = μ1 + βV ∗, j13 = βE∗
S , j21 = βV ∗,

j22 = μ2 + κ1α2
E∗

I (E∗
I + 2θ2)

(E∗
I + θ2)2

,

j32 =
κ2α1V

∗

V ∗ + θ1
− p, and j33 = μ3 +

κ2α1θ1E
∗
I

(V ∗ + θ1)2
.
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Now, the characteristic equation of the Jacobian
matrix J |P ∗ (with respect to the eigenvalue ζ∗) is given
as

ζ∗3 + ρ1ζ
∗2 + ρ2ζ

∗ + ρ3 = 0, (14)

where ρ1 = j11+j22+j33, ρ2 = j11j22+j11j33−j13j32,
and ρ3 = j11j13j32. Using the well-known Routh–
Hurwitz criterion for stability, we find that (i) ρ1 > 0,
ρ2 > 0, ρ3 > 0, and (ii) ρ1 ρ2 > ρ3, and also
(iii) V ∗ < pθ1

p−κ2α1
, while it is provided that p > κ2α1,

i.e., the Routh–Hurwitz criteria for stability be satisfied
for the characteristic Eq. (14). Thus, the system (11) is
locally asymptotically stable around the endemic equi-
librium point P ∗. ��

4.5 Existence of transcritical bifurcation

In this subsection, we study the existence of trans-
critical bifurcation about the infection-free equilibrium
point P0 for the system (11) using Sotomayor’s theorem
[41,42].

Theorem 6 Assuming R0 = 1 as bifurcation thresh-
old, the epidemic system (11) experiences transcritical
bifurcation around the infection-free equilibrium point
P0.

Proof To investigate the existence of transcritical bifur-
cation, first, we detect the eigenvalues exhibited by the
Jacobian matrix J |P0 of the system (11) for R0 = 1
and evaluated at the infection-free equilibrium point
P0. In this aspect, we observe that at R0 = 1, the Jaco-
bian matrix J |P0 possesses one simple zero eigenvalue.
We arbitrarily choose β as bifurcation parameter. Now
associated with the zero eigenvalue of R0 = 1, we con-

sider right eigenvector w =
(
−βΠ

μ2
1

1 βpΠ
μ2
1μ3

)T

and

left eigenvector v =
(
0 p

μ3
1
)
.

Now, we rearrange the system (11) in the following
form:

f(X,β) =

⎛
⎜⎝

Π − βESV − μ1ES

βESV −
(
μ2 + κ1

α2EI

EI+θ2

)
EI

pEI − (μ3 + κ2
α1EI

V +θ1
)V

⎞
⎟⎠ ,

where we consider X = (ES , EI , V ). Differentiating
the above system with respect to β, we get

Dβf =

(−ESV
ESV

0

)
.

Now, at the infection-free equilibrium point P0

Dβf |P0 =

(0
0
0

)
.

It is observed that [v Dβf |P0 ] = 0. Therefore, the
first condition of Sotomayor’s theorem is satisfied.

Now, differentiating f(X,β) with respect to X, we
compute

DXDβf = DX(Dβf) =

(−V 0 −ES

V 0 ES

0 0 0

)
,

and at P0

DXDβf |P0 =

⎛
⎝ 0 0 − Π

μ1

0 0 Π
μ1

0 0 0

⎞
⎠ .

Thus, we obtain

DXDβf |P0 w =

⎛
⎜⎝

−βpΠ2

μ3
1μ3

βpΠ2

μ3
1μ3

0

⎞
⎟⎠ ,

and consequently, [vDXDβf |P0w] = βpΠ2

μ3
1μ2

3
	= 0.

Therefore, the second condition of the Sotomayor’s the-
orem is satisfied.

Again

DXXf(β, β)|P0 =

⎛
⎜⎝

2β3pΠ2

μ4
1μ3

− 2β3pΠ2

μ4
1μ3

0

⎞
⎟⎠ .

and accordingly, [v DXXf(β, β)|P0 w] = − 2β3p2Π2

μ4
1μ2

3
	=

0. Therefore, the third condition of Sotomayor’s theo-
rem holds.

Hence, all the three conditions of Sotomayor’s theo-
rem hold, and thus, transcritical bifurcation occurs at
the infection-free equilibrium point P0 taking R0 = 1
as bifurcation threshold implying the fact that stability
of P0 alters from stability to instability if R0 crosses
unity. ��

4.6 Analysis of backward bifurcation

In the previous subsection, in case of studying existence
of endemic equilibrium of the epidemic system (11),
from the Lemma 1, it is observed that if the condition
(iii) or the condition (iv) holds, possible occurrence of
backward bifurcation emerges. In the phenomena, back-
ward bifurcation for any epidemic system suggests the
co-existence of more than one endemic equilibrium even
if R0 < 1 which implies the persistence of infection in
spite of the value of the basic reproduction number less
than unity. To analyze the occurrence of the backward
bifurcation in the system (11), we focus on the results
of Castillo-Chavez and Song [43].
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To apply the results of [43], first, we rewrite the sys-
tem (11) in vector form as

dX
dt

= F(X ), where X = (ξ1, ξ2, ξ3)T , (15)

considering the state variables as ES = ξ1, EI = ξ2,
and V = ξ3. Thus, the system (11) may be written as

F(X ) =

⎛
⎜⎜⎝

Π − βξ1ξ3 − μ1ξ1

βξ1ξ3 −
(
μ2 + κ1

α2ξ2
ξ2+θ2

)
ξ2

pξ2 −
(
μ3 + κ2

α1ξ2
ξ3+θ1

)
ξ3

⎞
⎟⎟⎠

=

(
h1

h2

h3

)
(say).

Now, arbitrarily choosing β∗ as bifurcation param-
eter, at R0 = 1, we observe that β∗ = μ1μ2μ3

Π p . Thus,
for β = β∗, the variational matrix of the system (11)
around the infection-free equilibrium point, JP0 |β=β∗

executes one simple zero eigenvalue and the rest two
eigenvalues are negative (−μ1 and −μ2 − μ3). There-
fore, we can apply the center manifold theorem [44],
and in this regard, let us consider the right eigenvector
and left eigenvector corresponding to the zero eigen-

value of JP0 |β=β∗ are w =
(
−βΠ

μ2
1

1 βpΠ
μ2
1μ3

)T

and

u =
(
0 p

μ3
1
)T

, respectively.
Now, according to [43], we compute the value of two

constants a and b linked with the determination of
bifurcation as

a =
3∑

k,i,j=1

vkwiwj

[
∂2hk

∂ξi∂ξj
(P0)

]
βs=β∗

s

= 2
(

κ2α1

θ1
− Π β p

μ2
1 μ3

)
,

and b =
3∑

k,i=1

vkwi

[
∂2hk

∂ξi∂β
(P0)

]
βs=β∗

s

=
Π β p2

μ2
1 μ2

3

> 0.

According to [43], the sign of the constants a and b
will determine the possibility if backward bifurcation
occurs or not for the system (11). It is observed that
b is always positive in any circumstances. For the exis-
tence of backward bifurcation with bifurcation thresh-
old R0 = 1, the sign of the constant a must be positive
and which would be possible if α1 > Πβθ1p

μ2
1μ3κ2

. Therefore,
the epidemic system (11) experiences backward bifurca-
tion whenever α1 > Πβθ1p

μ2
1μ3κ2

and R0 < 1. The appear-
ance of backward bifurcation creates difficulties in con-
trol of any epidemic [40]. Thus, only the reduction of the
basic reproduction number less than unity cannot elim-

inate an infection from an epidemic system. The pro-
ductivity of immune response, especially the efficiency
of the antibody response (κ2), has to be increased to
its maximal level to control the reproduction of SARS-
CoV-2 and the transmission of the COVID-19 infection.

5 Numerical simulation

In this section, we are aimed to numerically study
our proposed intrahost COVID-19 mathematical model
to gain vivid insights about the host–pathogen (SARS-
CoV-2) correspondence and how host immune response
influences this interrelationship in COVID-19 infec-
tion. Figure 2 represents the best-fitted model for the
viral load data of SARS-CoV-2-infected patients col-
lected from [32–34,45] and fitted each with our pro-
posed model. All parameters of the best fits are listed
in Table 2.

The left panel of Fig. 3 describes the numerical sim-
ulation of the epidemic system (11) whenever R0 > 1
and the right panel of Fig. 3 shows the existence of two
endemic equilibria if α1 > Πβθ1p

μ2
1μ3κ2

in spite of the con-
dition R0 < 1. The left panel of Fig. 4 indicates the
occurrence of forward bifurcation and the right panel
of Fig. 4 describes the occurrence of backward bifur-
cation of system (11) using the Theorem 6 and the
results from backward bifurcation analysis where the
parameter values are as listed in Table 2. Here, in the
left panel, the red curve indicates the stable infection-
free equilibrium and the blue curve indicates the sta-
ble endemic equilibrium point; in the right panel, the
blue line indicates the existence of two endemic equi-
librium and the red curve indicates the infection-free
equilibrium with R0 = 0.8428. It is observed that when
R0 < 0.8428, no endemic equilibrium point exists and
the infection-free equilibrium is stable in this case. How-
ever, a hysteresis loop observes when R0 > 0.8428, and
unexpectedly, new endemic equilibrium point appears
in spite of the existence of infection-free equilibrium.
Also, in the region where α1 > Πβθ1p

μ2
1μ3κ2

and R0 < 1, the
infection-free state remains stable. When R0 = 1, the
large endemic equilibrium exists, but the smaller one
vanishes. Simultaneously, the infection-free state loses
its stability.

The solutions of the epidemic system (11) for the
different values of non-lytic saturation factor α1 = α2 =
α are represented by Fig. 5. Here, we have observed that
in the case of an increasing value of α, the viral load
as well as the infection level increase. Thus, the non-
lytic effects of both the antibody and CTL responses
play a pivotal role to control the infection and viral
load. The solutions of the system (11) for the different
values of infection rate β (β = 0.00001, 0.0001, 0.001)
are depicted in Fig. 6. These numerical findings show
that decreasing the value of viral transmission rate due
to non-lytic immune responses protects the epithelial
cells in case of SARS-CoV-2 infection.
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Fig. 2 Best fits of model (1) for SARS-CoV-2 to the viral load data continuous line are the simulation based on (1) and
the red circles represent the data from [32–34,45]

Table 2 Definition and default value of the parameters of the epidemic system (11)

Parameters Biological meaning Estimated Sources
Mean value

Π Recruitment rate of epithelial cells 5 [33]
μ1 Expiry rate uninfected epithelial cells 0.2 Estimated
μ2 Death rate of infected epithelial cells 0.189 [33]
β Rate of infection 0.0001 [32,33]
p Growth rate of virus in cells 70 [32,33]
μ3 Virus clearance rate 0.1 [33]
α1 Rate of antibody response from immune cells 0.4 Estimated
α2 Rate of CTL response from immune cells 0.4 Estimated
θ1 Half maximal simulation for antibody response 0.02 Estimated
θ2 Half maximal simulation for CTL response 0.1 Estimated

To explore the sensitivity of R0 with respect to
the associated parameter variables, we used the Latin
Hypercube Sampling and partial rank correlation coef-
ficients (PRCCs) methods. Latin Hypercube sampling
is a statistical sampling method and PRCCs rank each
parameter by the effect it has on the outcome when
all other parameters are kept at median values [46].
Figure 7(left panel) illustrates the degree of sensitivity
of each parameters on R0. PRCCs > 0 suggest that
R0 increases with the increasing values of the corre-
sponding parameters, whereas PRCCs < 0 mean the
decrease of R0 with decreasing values of the parame-
ters. In this figure, it is clearly observed that the param-

eters β, p and Π have positive effects, whereas μ1, μ2,
and μ3 have negative effects on the outcome. Varia-
tions of R0 against each model parameter are illus-
trated in Fig. 7(right panel), where all other param-
eters are kept at their sample values. Without any
intervention, R0 remains above 1. If the growth rate,
disease transmission rate, and the virions production
rate would be increased by a factor of 100, then the
average R0 is lowered but still above 1. If the death
rates would be decreased 1% of its sample value, then
the average is below 1 along with the upper quar-
tile value below 1. This suggests that eradication is
likely to take place. Figure 8 shows the local sensitiv-
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Fig. 5 The solution trajectories of the epidemic system (11) for different values of α1 = α2 = α with the set of parameters
as in Table 2

ities of R0 for all model parameters. The comparison
among the non-normalization, half-normalization, and
full-normalization techniques provides the sensitivity of
some model critical parameters. From the comparison,
it can be concluded that the half-normalization tech-
nique is more appropriate to spot the model critical
parameters as compared with other techniques.

6 Discussion and conclusion

Addressing the importance of analyzing viral dynamics
of SARS-CoV-2 with the aim to mitigate the COVID-
19 infection, we formulated a five-dimensional deter-
ministic intrahost mathematical model. In this study,
some existing research works have been reviewed which
are based on target cell-limited mathematical mod-
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eling of invaded SARS-CoV-2 in human respiratory
tract, though in most of those studies, the role of cell-
mediated immune response has not been considered.
In our proposed model, the potency of host immune
response against the interaction between SARS-CoV-2
and epithelial cells of our respiratory system is high-
lighted which is noteworthy to understand the char-
acteristics of the COVID-19 pandemic. We investi-
gated our model both analytically and numerically. The
model parameters corresponding with host–pathogen
interaction has been estimated from real sources of
data using MATLAB software which is another nov-
elty of the study and it may assist the researchers
dealing with mathematical modeling to develop exten-
sion on the existing models. The sensitivity analysis of
the model parameters associated with the basic repro-
duction number has been performed using three tech-
niques: non-normalization, half-normalization, and full-
normalization, and this sensitivity analysis points out
the most critical model parameters indulged in COVID-
19 infection. The existence criteria for backward bifur-
cation in the proposed epidemic system have been ana-
lyzed and it has been observed that only the reduction
of the basic reproduction number below unity is not
sufficient to draw declination in COVID-19 infection
in the presence of the backward bifurcation phenom-
ena. In this regard, we should pay more attention to
the role of host immune response or immunopathology
(specifically to the antibody response) in influencing
the clinical infection outcome. This research work will
advantage to explore the possible immunotherapeutic
strategies to fight against the COVID-19 infection.
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