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Abstract Immune responses have a crucial role to play against SARS-CoV-2 virus as the adaptive and
innate immune systems of the human body help restoring the body to a healthy stage by annihilating this
deadly viral infection. Cytokines also play a significant role in modulating a balance between innate and
adaptive immune responses but excess of it can have a detrimental affect on critically ill patients. Therefore,
this paper is a novel attempt to formulate a within-host mathematical model showing the impact of
cytokines storm on healthy cells. The dynamics of the system is analysed which involves basic reproduction
number, steady state solutions and global dynamics for disease-free point and endemic equilibrium using
geometric approach. Further, an optimal control problem is discussed considering immunomodulatory
therapy (targeting cytokines signaling) as control using linear feedback control method to increase the
level of healthy cells, which provides vitality for our system. Through numerical simulations, analytic
solutions are validated followed by the curve-fit for the cytokines using real data and an optimization
algorithm for optimal fit. Finally, sensitivity analysis for the basic reproduction number and the rate of
change of healthy cells using Latin Hypercube Sampling method (LHS) is performed. Our finding suggests
that immunomodulatory therapy (tocilizumab) can act as a key component to control cytokines storm for
critically ill patients to restore the body to a healthy state.

1 Introduction

Since being declared as a global pandemic, the severe-
acute-respiratory syndrome corona virus-2 has led to
the death of millions. Even after numerous studies and
researches, the pathophysiology of this deadly virus
is far from being completely understood. Specially for
people with other existing ailments, the SARS-CoV-2
virus sometimes makes recovery harder or even worse.
Immune response has a major role to play in it and
several biological and bio-physics literature are avail-
able for better understanding of the immune process in
context to this disease. For instance, the evolution of
nanotechnology and application of nanoparticle (NP)
has also a significant contribution in influencing the
immune cell behaviour. It is essential to have clar-
ity on the interplay and accumulation of NPs by the
ECMs (extracellular matrix). ECMs acts as a pool for
signaling molecules including inflammatory mediators
and has an important role in influencing inflamma-
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tory cytokines in inflamed tissues [1] and a mechanistic
understanding can be seen in [2]. The cellular infec-
tion and virus replication activates the inflammatory
response which leads to the release of pro inflamma-
tory cytokines [3] and gives an amplified inflamma-
tory response. These cytokines subsequently send sig-
nals and activate natural killers (NK) which are innate
immune cells and the adaptive immune T-lymphocytes
cells. T-cells further activate B- lymphocytes. These B-
cells produce antibodies, namely IfM and IgG. Even
though the protective functions of cytokines are ideal
responses but there may be an extremely excessive
response due to SARS-CoV-2 [4]. This uncontrolled
response due to the infection is known as cytokines
release syndrome or cytokines storm. Here, along with
their task to kill the infected cells [5], the cytokines
start attacking the healthy cells as well [6]. The recep-
tion of a particular signal from the cytokines can modify
the usual behavior of immune responses. In Covid-19,
exaggerated pro-inflammatory cytokines initiate differ-
ent inflammatory signaling pathways via their recep-
tors on immune cells which leads to complicated med-
ical symptoms [7]. This can create overwhelmed ICU
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(intensive care unit) resources due to the critically-ill
patients in need of constant care. Even vaccination may
face a problem due to existing comorbidities or pharma-
cological treatments. The vaccine efficiency may also be
effected due to cytokines storm syndrome. There might
occur an overlap between the factors that causes fur-
ther damage to the prognosis of the infection namely
cytokines storm and those which may effect vaccine
effectiveness [8]. Different treatment approaches and
therapies targeting cytokines are currently being used
to treat cytokines storm. An overview in [9] is provided
for specific treatments for cytokines blockades. Certain
cytokines inhibitors such as tocilizumab, baricitinib and
anakinra which are sometimes used for the treatment
provide with promising results. The use of cytokines
inhibitor such as tocilizumab is relatively safe and effec-
tive [10]. The control effort limits the fall of healthy cells
and tissues due to cytokines storm which may enable
the system/body to fight the virus further. The mathe-
matical knowledge used to describe, predict and control
biological systems relies on the approaches of non-linear
dynamics [11]. Similar to physics, for understanding the
complex and nonlinear systems, within host cell mech-
anisms may too require some current interactive and
interdisciplinary research through which mathematical
models motivated by data can provide understandings
of the cytokines immune response-virus mechanism. A
few significant contributions of the researchers are as
follows: In [12] a VARI (Vector Autoregressive Inte-
grated) model of covid-19 cases in Indonesia and Sin-
gapore is build and development of covid-19 cases is
analysed. In [13], STEM (Spatiotemporal Epidemiolog-
ical Modeler) is used to analyse Covid-19 SEIR model.

A kinetic model for Covid-19 describing the dynamics
of the variation SIR cases in [14] based on a lag logis-
tic equation. SIR and SEIR epidemiological models are
generalised to situations with anomalous kinetics [15]
with the aim to describe a single epidemiological peak.
For within host mechanics a full density functional
quantum mechanical (DFT) simulations is described of
Mpro( SARS-CoV-2 main protease) in complex in [16]
to obtain absolute ligand binding energies with various
ligands. And in [17] within host dynamics of a SARS-
CoV-2 system is discussed but it has not considered the
impact of cytokines storm among critically ill patient. A
few more literature on the work done for within host-
SARS-CoV-2 related systems can be seen in [18–20].
Still within-host modeling and analysis for SARS-CoV-
2 virus have not been explored enough compared to
the need to understand the inner working of our bod-
ies. Therefore, we will aim to analyse and understand
a within-host model of the SARS-CoV-2 virus.

1.1 Goal and structure of the study

With the aforesaid information, it is clear that cytokines
storm can impact the system leading to systemic hyper-
inflammation. Thus, in this paper, our aim is to study
a system showing the impact of cytokines storm. A
healthy cell-immune responses model is proposed to

simulate the effects of the cytokines storm. We will
propose an SARS-CoV-2 model consisting of healthy
cells, cytokines, NK-cells, T-cells, B-cells and antibod-
ies, with the impact of cytokines storm in Sect. 2.
The basic reproduction number, existence of equilib-
rium points, feasible region and the global stability of
disease-free and endemic equilibrium points are cal-
culated in Sect. 3 with their detailed proof in the
Appendix. In Sect. 4, we will formulate an optimal
control problem using immunomodulatory agent and
discuss it using LQR method. In Sect. 5, we will per-
form numerical simulation for validation of our ana-
lytic results, curve fit for real data of cytokines, curve-
fit using an algorithm based on initial guess approach
for the system and local sensitivity analysis for repro-
duction number and endemic equilibrium point. We
shall also study global sensitivity analysis using PRCC
(Global sensitivity analysis method) to determine the
sensitive parameters which are important for transmis-
sion of infection and healthy cells. Thus, we shall pro-
ceed with our study in the following sections to address
the following research questions as how the cytokine
storm impacts the disease.

– What is the impact of cytokines storm on disease
dynamics for a SARS-CoV-2 patient?

– Is the activation of the ideal immune responses of
the cytokines required for suppression of transmis-
sion of infection (basic reproduction number)?

– Cytokines inhibitors are considered relatively safe
and effective to support and build a stronger sys-
tem (healthy cells). What is the impact of using
immunomodulatory therapy on the system during
cytokines storm ?

The novelty of the paper lies in the concept of devel-
oping a within-host model in the presence of cytokines
storm and its effect on healthy cells. The paper encap-
sulates dynamical analysis of the system, model fitting
to real cytokines data and extending the model to an
optimal control problem considering immunomodula-
tory therapy as control.

2 Model formulation

We have formulated a model referring [17] but in the
formulation of our model, we have explicitly focused on
critically ill patient. H(t) is the concentration of healthy
cells which are uninfected, C(t) is the concentration of
cytokines, I(t) denote the concentration of T cells which
are infected, N(t) are the concentration of natural killer
cells, T (t) are the concentration of T-lymphocytes cells,
B(t) are the concentration of B-lymphocytes cells, A(t)
are the concentration of antibodies and V (t) are the
concentration of the virus at time t. The formulation of
the equations are done as follows:
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– Healthy cell H(t) gets infected due to virus at the
rate Υ . Along with it, due to cytokines storm, we
assume that the natural killers and T-cells also neg-
atively effect H-cells at rate p1 and p2 respectively
[4,6] which was not considered by [17], μH is the
natural death rate. Hence, the evolution equation
is:

dH

dt
= Δ − ΥHV − μHH − p1NH − p2TH (1)

– The infected cell increases due to interaction of
health cells with the virus. As an immune response
N and T proceed to kill these infected cells at the
rate p4 and p3 and μI is the natural death rate of
I, giving rise to the equation:

dI

dt
= ΥHV − μII − p3TI − p4NI (2)

– New virus particles are produced by I at a rate s1.
Also, the antibodies and cytokines work to reduce
the viral load at a rate p5 and p6 which gives the
evolution equation:

dV

dt
= s1I − μV V − p5CV − p6AV (3)

– Cytokines are activated due to cellular infection and
viral replication at the rate s2 along with immuno-
suppression at the rate β and natural death rate μC

making the equation of the following form:

dC

dt
=

s2I

1 + βV
− μCC (4)

– These cytokines subsequently activate natural killers
at the rate r and these natural killers help in reduc-
ing the infected cells. These natural killers also nat-
urally decay at the rate μN . Hence, the equation is
as below:

dN

dt
= rC − μNN (5)

– Cytokines activate the adaptive immune cells T-
lymphocytes at the rate η1 with natural decay at
a rate μT making the equation look like:

dT

dt
= η1CT − μT T (6)

– T-cells further activate B-lymphocytes at the rate η2
with μB as the natural death rate of B-lymphocytes.
Therefore, the evolution equation becomes:

dB

dt
= η2TB − μBB (7)

– Finally, these B-cells produce antibodies at the
rate k. Critically/severely ill patients of COVID-
19 develop SARS-Cov-2 specific antibodies [21,22].
Thus, at the time of cytokines storm for a critically

Fig. 1 Schematic diagram depicting the interaction among
all the compartments

ill patient, antibodies exist without delay and these
antibodies are neutralized by the virus at the rate
p7.

dA

dt
= kB − μAA − p7AV (8)

The parameters are explained in the Table 1 and
a schematic diagram of the model has been shown in
Fig. 1 for better understanding.

3 Dynamical analysis

3.1 Basic reproduction number and existence of
equilibrium points

The basic reproduction number is given by

ρ0 =
ΥΔs1

μV μIμH
(9)

with the proof provided in Appendix A.
The system has following four equilibrium points:
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Table 1 Parameter description

Parameter Dimension Description

Δ Cells ml−1 day−1 Rate of production for healthy cells
μH day−1 Per capita death rate of healthy cells
Υ ml RNA copies−1 day−1 Rate at which the healthy are infected
p1 ml cells−1 day−1 Rate at which the healthy cells are reduced due to N
p2 ml cells−1 day−1 Rate at which the healthy cells are reduced due to T
s1 day−1 Rate at which virus is produced due to infected cells
s2 day−1 Rate at which cytokines are produced
μI day−1 Per capita death rate of infected cells
β RNA copies−1 Strength of immunosupresion
p3 ml cells−1 day−1 Rate at which the infected cells are reduced due to T
μV day−1 Per capita death rate of the virus
p4 ml cells−1 day−1 Rate at which the infected cells are reduced due to N
p5 ml cells−1 day−1 Rate at which the virus are reduced due to C
p6 ml cells−1 day−1 Rate at which the virus are reduced due to A
r day−1 Rate of activation of natural killer cells
k day−1 Production rate of antibodies
μN day−1 Per capita death rate of Natural killer cells
μC day−1 Per capita death rate of cytokines
μT day−1 Per capita death rate of T -cells
μB day−1 Per capita death rate of B-cells
μA day−1 Per capita death rate of antibodies
η1 cells−1 day−1 Rate of activation of T cells
η2 cells−1 day−1 Rate of activation of B cells
p7 ml cells−1 day−1 Rate at which the antibodies are reduced due to V

– Disease free equilibrium point :
E0 = (H0, 0, 0, 0, 0, 0, 0, 0) where H0 = Δ

μH

– Equilibrium point without immune response :
E1 = (H1, I1, V1, 0, 0, 0, 0, 0) where H1 = Δ

ρ0μH
, I1 =

μV μH(ρ0−1)
Υs1

and V1 = μH(ρ0−1)
Υ which exists for ρ0 >

1.
– Equilibrium point without adaptive immune

response:
E2 = (H2, I2, V2, C2, N2, 0, 0, 0) and assuming Q =
ΥH2V2, we have H2 = Δ−Q

p1N+μH
> 0 provided

Δ > Q, I2 = Q
p4N+μI

, V2 = s1Q

p5(p4N+μI)(
NμN

r +μV )
,

C2 = NμN

r and for N2 we get a cubic equation :

PN3
2 + RN2

2 + SN2 − W = 0

where P = p4p5μCμ2
N

r2 , R = p4p5μCμN μV

r + p5μCμIμ2
N

r2 ,
S = p5μCμN μV μI

r + βs1QμCμN

r − s2p5QμN

r and W =
s2p5QμV .
Now H2, I2, V2, C2 > 0 and for N2: P,W,R > 0.
S > 0 if ρ0 > 1 + s2p5ΔΥ−ξ

ξ where ξ = μV μHμIβμC

i.e. ρ0 > 1 provided s2p5ΥΔ > μV μHβμCμI . Then
by Descartes’ rule of sign there exist one positive
root of N2.

– Equilibrium point with adaptive immune response:
E3 = (H3, I3, V3, C3, N3, T3, B3, A3) and assum-
ing Q = ΥH3V3, we have C3 = μT

η1
, T3 =

μB

η2
, N3 = μT r

η1μN
,H3 = Δ−Q

p1
μT r

η1μN
+p2

μB
η2

+μH
, I3 =

Q
p3

μB
η2

+p4
μT r

η1μN
+μI

,

V3=η1s2I3−μCμT

μCμT
,

B3=
s1I3(p7V3+μA)−V 2

3 (p5p7C3+μV −μAμV V3)
kp6V3

, A3 =
kB3

p7V3+μA
. Now T3, N3, C3, A3, I3 > 0, H3 > 0 if

ρ0 > 1 + Δ−υH3V3
υH3V3

where υ = μIμV μH

s1Δ i.e. ρ0 > 1
provided Δ > υH3V3. And V3 > 0 if η1s2I3 > μCμT

and B3 > 0 if μV μAV3 > p5p4
μT

η1
+ μV .

Theorem 1 The feasible region is Ω = {(H, I, V, C,N,
T,B,A) ∈ R8

+|0 ≤ H ≤ Hmax, 0 ≤ I ≤ Imax, 0 ≤
V ≤ Vmax, 0 ≤ C ≤ Cmax, 0 ≤ N ≤ Nmax, 0 ≤ T ≤
Tmax, 0 ≤ B ≤ Bmax, 0 ≤ A ≤ Amax} and is positively
invariant.

The detailed proof for Theorem 1 is provided in
Appendix A.

3.2 Global stability for disease-free equilibrium and
endemic equilibrium point

Theorem 2 (i) If ρ0 ≤ 1 i.e if s1ΔΥ ≤ μV μHμI

then the DFE E0 will be globally asymptotically sta-
ble(GAS)in Ω.

(ii) E3 is globally asymptotically stable for ρ0 > 1.

We shall use geometric approach method [23] to
establish global stability for endemic equilibrium and
the proof is mentioned in the Appendix A.
The next section would emphasis especially on con-
trol of cytokines through immunomodulatory therapy
in specific tocilizumab treatment which would protect
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healthy cells. The positive impact of tocilizumab treat-
ment which supports our study is also shown in [7],
where COVID-19 patients in the ICU across hospitals
in the United States showed that the risk of mortality
was lower in patients who received tocilizumab treat-
ment (by inhibiting cytokines signaling) immediately
after ICU admission than in those who did not receive
early tocilizumab intervention. As healthy cells are the
part and parcel of our body it will give vitality for the
system.

4 Optimisation model

4.1 Immunomodulatory therapy as control by linear
feedback

To design a feedback law that may stabilize the equi-
librium point or to increase the healthy cell count to a
certain desired level, we shall use optimal control the-
ory [24] and we have the dynamic system form with
control as follows:

dH

dt
= Δ − ΥHV − μHH − p1NH − p2TH

dI

dt
= ΥHV − μII − p3TI − p4NI

dV

dt
= s1I − μV V − p5CV − p6AV

dC

dt
=

s2I

1 + βV
− μCC − U

dN

dt
= rC − μNN

dT

dt
= η1CT − μT T

dB

dt
= η2TB − μBB

dA

dt
= kB − μAA − p7AV (10)

We can use an immunomodulatory agent [25] as a
control strategy such as tocilizumab with the aim to
suppress the cytokines storm i.e to control the response
of the storm. We assume that the immunomodulatory
agents can directly target cytokines. With the goal of
cytokines storm control strategy, we aim to increase
the level of healthy cell population and maintain at
level H∗ = Hd < H0( i.e increased desired level of
H to be less than the level at DFE ) by u∗. Hd is the
designed healthy cell population. The equations satis-
fied by the desired positive steady state with control
are given below as:

Δ − H∗(ΥV ∗ + μH + p1N
∗ + p2T

∗) = 0
ΥH∗V ∗ − I∗(μI + p3T

∗ + p4N
∗) = 0

s1I
∗ − V ∗(μV + p5C + p6A) = 0

s2I
∗

1 + βV ∗ − μCC∗ − u∗ = 0

rC∗ − μNN∗ = 0
T ∗(η1C∗ − μT ) = 0
B∗(η2T ∗ − μB) = 0

kB∗ − A∗(μA + p7V
∗) = 0 (11)

From the above equations, we obtain the control vari-
able u∗,

u∗ =
s2I

∗

1 + βV ∗ − μCC∗ (12)

When u∗ controls the desired steady state of the system
i.e (Hd, I∗, V ∗, C∗, N∗, T ∗, B∗, A∗), it may be unsta-
ble. Therefore, u (the feedback control) can be made
such that the desired state will be asymptotically sta-
ble. Defining new variables as follows:

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H − H∗
I − I∗
V − V ∗
C − C∗
N − N∗
T − T ∗
B − B∗
A − A∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u = U − u∗ (13)

where H∗ = Hd. We shall now substitute Eq. (13) into
Eqs. (10) and admitting (11) we have:

dy1
dt

= −Υy1V
∗ − ΥH∗y3 − Υy1y3 + −μHy1 − p1y5H

∗

− p1N
∗y1 − p1y5y1 − p2y1T

∗ − p2H
∗y6 − p2y1y6

dy2
dt

= Υy1V
∗ + ΥH∗y3 + Υy1y3 − μIy2 − p3y6I

∗

− p3T
∗y2 − p3y6y2 − p4y5I

∗ − p4N
∗y2 − p4y5y2

dy3
dt

= s1y2 − μV y3 − p5y4V
∗ − p5C

∗y3 − p5y4y3

− p6y8V
∗ − p6A

∗y3 − p6y8y3

dy4
dt

=
s2y2

1 + β(y3 + V ∗)
− μCy4 − u − (μCC∗ + u∗)y3

1 + β(y3 + V ∗)
dy5
dt

= ry4 − μNy5

dy6
dt

= η1y4T
∗ + η1C

∗y6 + η1y4y6 − μT y6

dy7
dt

= η2y7T
∗ + η2B

∗y6 + η2y7y6 − μBy7

dy8
dt

= ky7 − μAy8 − p7y8V
∗ − p7y8y3 − p7y3A

∗

(14)

Hence we are able to obtain the error system as below:

ẏ = Ay + h(y) + Bu (15)

matrices A and B are given as
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ΥV ∗ − μH 0 −ΥH∗ 0 −p1H
∗ −p2H

∗ 0 0
−p2T

∗ − p1N
∗

ΥV ∗ −p3T
∗ − p4N

∗ +ΥH∗ 0 −p4I
∗ −p3I

∗ 0 0
−μI

0 s1 −μV −p5C
∗ −p5V

∗ 0 0 −p6V
∗

−p6A
∗

0 0 0 −μC 0 0 0 0
0 0 0 r −μN 0 0 0
0 0 0 η1T

∗ 0 +η1C
∗ − μT 0 0

0 0 0 0 0 η2B
∗ η2T

∗ − μB 0
0 0 −p7A

∗ 0 0 0 k −μA

−p7V
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h(y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Υy1y3 − p1y5y1 − p2y1y6
Υy1y3 − p3y6y2 − p4y5y2

−p5y4y3 − p6y8y3
s2y2

1+β(y3+V ∗) − (μCC∗+u∗)y3
1+β(y3+V ∗)

0
η1y4y6
η2y7y6

−p7y8y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To find the feedback control u we shall use the The-
orem 1 of [26] for the following:

Theorem 3 [24,26]. For any matrix P and

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11 0 0 0 0 0 0 0
0 q22 0 0 0 0 0 0
0 0 q33 0 0 0 0 0
0 0 0 q44 0 0 0 0
0 0 0 0 q55 0 0 0
0 0 0 0 0 q66 0 0
0 0 0 0 0 0 q77 0
0 0 0 0 0 0 0 q88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h(y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Υy1y3 − p1y5y1 − p2y1y6
Υy1y3 − p3y6y2 − p4y5y2

−p5y4y3 − p6y8y3
s2y2

1+β(y3+V ∗) − (μCC∗+u∗)y3
1+β(y3+V ∗)

0
η1y4y6
η2y7y6

−p7y8y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

function l(y) is positive definite at the neighbourhood
Λ0 of the origin (0, 0, 0, 0, 0, 0, 0, 0).

The detailed proof for above Theorem 3 is provided
in Appendix A.

5 Numerical simulations

In this section, we shall now analyse the system based
on certain parametric values mentioned in Table 2

and run simulations using MATLAB. A few paramet-
ric values have been taken from [17,27–31] and the
fitted values are obtained from cytokines load real
data of RT-PCR positive patient COVID-19 patients
[32]. The observations in [32] were indicative of a
strong relation between the cytokines level and sever-
ity of symptoms/organ damage. We used the real
cytokines levels data from [32] which were observed
in patients(admitted to the Mount Sinai Health Sys-
tem, New York) in relation to SARS-CoV-2 PCR sta-
tus(positive). The remaining parameters are further
adjusted so as the model describes an uncomplicated
SARS-CoV-2 infection system

5.1 Equilibrium points

– Disease free equilibrium point: For μV = 1.5, μH =
1.1, μI = 0.09, Υ = 0.000009, s1 = 0.0000002
and rest parameters as in Table 2 we get E0 =
(730, 0, 0, 0, 0, 0, 0, 0) as seen in Fig. 2. The global
stability condition for ρ0 ≤ 1 i.e if s1ΔΥ ≤ μV μHμI

: 0.0000000144 ≤ 0.1485 is met as per the analytical
solution).

– Equilibrium point without immune response: For
Υ = 0.009 and rest parameters as in Table 2 we
get E1 = (500, 364900, 1900, 0, 0, 0, 0, 0). For the
existence as seen before in Sect. 3.1, ρ0 > 1 i.e
17142.8 > 1 is validated numerically.

– Equilibrium point without adaptive immune
response: For β = 0.000000009, p4 = 0.00574, s2 =
0.0009, r = 70, η1 = 0.0009, μC = 10 and rest
parameters as in Table 2 we get E2 = (105.87, 9404.2,
83.84, 0.84, 846.2, 0, 0, 0). ρ0 > 1 if s2p5ΥΔ >
μV μHβμCμI i.e 0.01296 > 0.0000000000756 which
is in line with the existence of equilibrium.
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Table 2 Parameter values

Parameter Value Source Parameter Value Source

Δ 8000 [31] μH 0.14 [17]
Υ 0.9 Assumed p1 0.0000000001 Assumed
p2 0.0000000001 Assumed s1 0.002 Assumed
s2 0.0005 Fitted μI 0.003 [17]
β 0.5 Fitted p3 0.001 [27]
μV 0.002 [17] p4 0.000574 [17]
p5 (0–1) [17] p6 (0–1) [17]
r 0.52 [17] k 0.2 [28]
μN 0.07 [30] μC 0.7 Fitted
μT 1 [17] μB 0.2 [29]
μA 0.07 [17] η1 0.9 Assumed
η2 0.01 [17] p7 0.0000003 [17]

– Equilibrium point with adaptive immune response:
For β = 0.000000009, s2 = 0.0009, r = 70, k =
0.000002, μT = 0.001, μB = 0.002, μA = 0.00007,
η1 = 0.0009, μC = 10 and rest parameters as in
Table 2 we get E3 = (534.1, 2727.8, 16.5, 0.2, 243.5,
462.7, 105.2, 9.9) ρ0 > 1 if Δ > υH3V3 i.e 8000 >
0.0074 is validated numerically for the existence of
equilibrium.

5.2 Model validation: curve-fit of cytokines level
C(t) to real data

Cytokines load data was obtained from [32]. For our
analysis we shall be using a data set of patients (1422
independent samples of patients admitted to the Mount
Sinai Health System in New York) with respiratory
symptoms for their IL-6 (cytokines) level whose RT-
PCR came positive. The data was collected with the
help of online software [33] and fitted using Matlab.
The fitting is shown in Fig. 3 (The value for both the
plots are ×103 in real scenario). It can be seen that the
cytokines level for our model solution is close to the
actual numbers from real data, Thus, proving validity
of our model.

5.2.1 Curve-fit for system using optimization algorithm

We have used python script to fit our model based
on a system of non-linear differential equations for
curve-fitting. Following our aim to curve fit our model
based on the parameters(endemic equilibrium) we have
referred or assumed, we have used standard algorithm
curve_fit. We shall do the fitting by numerical approxi-
mation [34]. As parameter estimation is a special opti-
mization problem, it would use an algorithm to min-
imise the squared error as objective and it’s perfor-
mance is based on the initial guess approach. For an
initial value problem, an algorithm can be used to
approximate the solution for a given set of initial condi-
tions and parameter values. This set of values are taken
as initial guess by the algorithm. The algorithm used
is the Levenberg–Marquardt algorithm which chooses
the parameters and initial values to minimise error or

noise [35]. However in Fig. 4a we do not get an ade-
quate desired fit. Therefore, we use an optimizer(based
of Nelder-Mean algorithm [36]) and random search
algorithm which generates random initial guesses and
chooses the best approximation. We see that this algo-
rithm is quite efficient for finding an optimal fit. In
Fig. 4b we can see that this approach helped generate
a good fit for our model. The regression line(for least
square estimation [37]) shows the predicted response
based of the random search and algorithm. Thus, the
estimated parameters by the algorithm are like our
input parameters.

5.3 Sensitivity analysis for ρ0

In this section, we shall discuss the sensitivity analy-
sis of ρ0 with respect to parameters. We shall follow
the method as mentioned in [38] to find the sensitivity
index. We shall start with the sensitivity analysis for ρ0

with respect to its parameters k:

ϕρ0

k =
∂ρ0

∂k
× k

|ρ0|

Using above, the normalised forward sensitivity indices
with respect to the parameters we get:

ϕρ0

Δ =1, ϕρ0

Υ =1, ϕρ0

s1
=1, ϕρ0

μV
= −1, ϕρ0

μH
= −1, ϕρ0

μI
= −1

We see that ϕρ0

Δ , ϕρ0

Υ , ϕρ0

s1
are all positive and ϕρ0

μV
, ϕρ0

μH
,

ϕρ0

μI
are negative. This implies that for say example

ϕρ0

Δ = 1, we decrease/increase Δ by certain y% then
ρ0 will decrease/increase by same percentage. And for
ϕρ0

μI
= −1 we decrease/increase μI by certain y% then

ρ0 will increase/decrease by same percentage and here
μI is a highly sensitive parameter. And we can see for
our system that if μI decreases then infection increases,
and if Δ increases then the healthy cells get infected
more. If we increase the parameters by 10% then ρ0

increases/decreases by 10%. In Fig. 5 For disease free
point we can see that increase in Δ and Υ by 10% will
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(a) Disease free equilibrium: The trajectories

converge to E0(730, 0, 0, 0, 0, 0, 0, 0).
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(b) Endemic equilibrium with-out immune
response: The trajectories converge to

E1(500, 364900, 1900, 0, 0, 0, 0, 0)
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(c) Endemic equilibrium with-out adaptive

immune response: The trajectories converge

to E2(105.87, 9404.2, 83.84, 0.84, 846.2, 0, 0, 0)
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(d) Endemic equilibrium with

immune response: The trajectories converge to

E3(534.1, 2727.8, 16.5, 0.2, 243.5, 462.7, 105.2, 9.9)

Fig. 2 Dynamics of equilibrium points

increase ρ0 by 10%. And increase in μI and μH by 10%
will decrease ρ0 by 10%. (μV and s1 will behave in sim-
ilar manners and thus have not been added to the fig-
ure.) Similarly for endemic equilibrium point in Fig. 6
we see the same trend for the change in behavior of ρ0.
Thus, we can take note of the important parameters one
needs to keep in check in order to control the transmis-
sion of infection. These will be of help to maintain ρ0

either for disease free system (restrict from increasing
beyond 1) or endemic equilibrium system (suppress to
bring down below 1).

5.4 Uncertainty analysis of ρ0

PRCC (partial rank correlation coefficient) [39] is one
technique which help’s us quantify the uncertainty for
any model. For our basic reproduction number, we shall
use PRCC to identify and quantify how the parameters
(input)’s uncertainty may impact the transmission of
infection. We have considered the output as ρ0 for sam-
ple size N = 1000. We consider the six parameters from
(9) and have chosen normal distribution for the parame-
ters. We find the PRCC values using Matlab using s1 ∼
Normal(0.0000002, 0.2), Υ ∼ Normal(0.000009, 0.2),
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Fig. 3 Fitting model solution for cytokines to RT-PCR
positive patient with respiratory symptoms real data

Δ ∼ Normal(8000, 0.2), μI ∼ Normal(0.09, 0.01),
μV ∼ Normal(1.5, 0.2), μH ∼ Normal(1.1, 0.2).

For some selected combinations of sensitive param-
eters we have also found surface diagrams such as ρ0

with Δ and μH in Fig. 7.
We get the PRCC values for our input parame-

ters which can be seen in Fig. 8. We obtain following
indexes for the parameters: s1 = 0.99, Υ = 0.13,Δ =
0.075, μI = −0.19, μV = −0.24 and μH = −0.045.
The graphs shows that ρ0 is positively correlated to
s1, Υ and Δ with maximum impact of s1 which means
that as the rate at which virus is produced due to
infected cells are increased, the transmission of infec-
tion will increase as well. The effect of the parameter
μV will bring about an opposite change in the trans-
mission of infection as it is negatively correlated. As
the death rate of virus increases, the infection trans-
mission will decrease. Further, μI and μH satisfies the
same negative correlation. Since the value s1 param-

eter is close to 1, it indicates a strong correlation to
change in ρ0. Thus, this hints at the need in suppress-
ing the virus to decrease further transmission of infec-
tion through s1. Therefore, this emphasises the activa-
tion of the immune response of the body to fight the
virus.

5.5 Uncertainty analysis of rate of change of H

In the similar manner, we shall use PRCC to iden-
tify and quantify how the parameters uncertainty may
impact the rate of change of healthy cells in a SARS-
COV-2 infected patient. For sample size N = 1000
we consider the five parameters and have chosen nor-
mal distribution for them. We find the PRCC values
using Matlab using Δ ∼ Normal(8000, 0.01), Υ ∼
Normal(0.9, 0.01), μH ∼ Normal(0.14, 0.01), p1 ∼
Normal(0.0000000001, 0.01), p2 ∼ Normal(0.0000000
001, 0.01).

We get the PRCC values for our input parame-
ters which can be seen in Fig. 9. We obtain following
indexes for the parameters: Υ = −0.17,Δ = 0.016, p1 =
−0.93, p2 = −0.98, and μH = −0.043. The PRCC
indices satisfies the same set of correlation as per the
assumptions of formulation of rate of change of H i.e
Δ = 0.016 is positively correlated and the rest param-
eters are all negatively correlated. The value p1 and p2
parameters are close to −1, it indicates a strong cor-
relation to the rate of change in H. We see that p1
and p2 are the parameters related to rate at which the
healthy cells are reduced due to N and T respectively.
This shows that this particular immune response which
is due to the cytokines storm has an strong impact
on the healthy cells. Thus, the exaggerated response
of cytokines has an strongly negative impact on the
healthy cells.

Fig. 4 Curve fit using a Levenberg–Marquardt algorithm and b Nelder-Mean algorithm
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Fig. 5 Behaviour of ρ0 due to change in parameters for disease-free equilibrium point: the graphs report comparison
between original and increase/decrease in parametric value

5.6 System with control

Now we shall numerically go for stabilising the system
at desired steady state (10) with H∗ = Hd = 600
to avoid elimination of healthy cells and tissues due
to cytokines storm. We aim to increase the healthy
cell to get a system where the body is still able to

fight the foreign entities at time of hyper-inflammatory
immune response in critically ill patients. We calculated
C∗ = 1.1111, T ∗ = 0.2000, N∗ = 1.1111 × 103, V ∗ =
5.3333 × 106, I∗ = 4.5134 × 108, A∗ = 1.2036 × 1014,
and B∗ = 9.6290 × 1019 from (11). From (12) we get
u∗ = 3.8759×105. Matrix obtained for the system is as
follows:
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.7 × 106 0 −540 0 6.0 × 10−8 6.0 × 10−8 0 0
−4.7 × 106 −6.38 540 0 −2.5 × 106 −4.5 × 105 0 0

0 2.0 × 10−4 0.002 −4.8 × 1011 −4.7 × 104 0 0 −2.1 × 104
0 0 0 −10 0 0 0 0
0 0 0 70 −0.07 0 0 0
0 0 0 1.8 × 10−4 0 0 0 0
0 0 0 0 9.6 × 1017 0 0
0 0 −3.6 × 107 0 0 0 .2 × 10−7 1.6001

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

−1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
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Assuming

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.01 0 0 0 0 0 0 0
0 0.01 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0
0 0 0 0.01 0 0 0 0
0 0 0 0 0.01 0 0 0
0 0 0 0 0 0.01 0 0
0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0.01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R = [1]

Using LQR commands in Matlab, from the Riccati
equation we obtain

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.7 × 10−3 7.8 × 10−4 −7.4 × 10−13 6.3 × 10−8 −3.1 × 102 1.2 × 108 8.1 × 10−10 .2 × 10−13

.7 × 10−3 7.8 × 10−4 −5.3 × 10−13 4.9 × 10−8 −3.1 × 102 1.2 × 108 8.1 × 10−10 .2 × 10−13

−.7 × 10−14 −5.3 × 10−13 3.2 × 10−5 −8.3 −3.4 × 10−6 5.2 × 108 1.0 × 10−6 −.9 × 10−6

.6 × 10−9 4.9 × 10−8 −8.3 2.8 × 106 0.5 −4.9 × 1013 −0.09 0.226
−.3 × 103 −3.1 × 102 −3.4 × 106 0.530 1.1 × 1010 −4.5 × 1015 −1.0 × 10−6 .8 × 10−7

.1 × 109 1.2 × 108 5.2 × 108 −4.9 × 1013 −4.5 × 1015 6.2 × 1023 1.2 × 109 −.1 × 108

.8 × 10−10 8.9 × 10−10 1.1 × 10−6 −0.099 −1.0 × 10−6 1.2 × 109 5.1 × 10−6 −.2 × 10−7

.2 × 10−13 2.7 × 10−14 −9.6 × 10−7 0.226 8.5 × 10−8 −1.1 × 107 −2.3 × 10−8 .3 × 10−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We shall investigate the local definiteness of l(y) (18)
using graphic representation. Figure 10 shows the local
definiteness of the function l(y). We have shown the
local definiteness interaction between select variables as
the rest variables have similar graphic representation as
well.

Finally, we get the form for optimal strategy as fol-
lows:

U = 0.000000063192y1 + 0.000000049446y2 − 8.3493y3

+ 0.0000028322y4 + 0.5304y5 − 4.9316

× 1013y6 − 0.1000y7 + 0.2262y8. (16)

For the system with control we get (953.4, 1938.9, 9.6,
1.1, 1135.1, 507.7, 294.6, 9.948) as in Fig. 11a. We can
see that due to the control the population of healthy
cells increases(Fig. 11b) as compared to the H pop-
ulation in Fig. 2d. Thus, the use of cytokines storm
control strategy can help to steer clear of exhaustion
of healthy cells and tissues with the aim to resume
the host’s homeostasis. Thus, this can be an approach
for severe COVID-19 patients to counteract cytokines
storm.

6 Conclusion

Though the vaccine drive has started in many coun-
tries, the transmission of SARS-CoV-2 infection is still
continuing. Cytokines storm plays an important role as
a cause for ARDS and MOF, thus leading to disease

aggravation. Cytokines storms have been detected in
Covid-19 critically ill patients, as seen in some clini-
cal studies. Due to an unbalanced immune response, a
strong cytokine storm may be extremely damaging to
the patients, who may require intensive-care support.
Thus, to save the lives of patients, one needs efficient
strategies to suppress the cytokines storm.

The formulation of our complex model is with the aim
to understand the immunopathological mechanisms of
cytokines storm due to SARS-CoV-2 virus. Model was
fitted to cytokines real data of SARS-CoV-2 PCR sta-
tus (positive) patients with respiratory symptoms. To
address our research questions, we studied the dynamic
analysis of our system.

The observations from our analysis and numerical
simulations brought the following suggestive measures
which could be taken:

1. Since, the cytokines storm based immune response
incorporation in the system has brought upon unde-
sired effect as it reduces the healthy cells and tissues
the body leading to ARDS or MOF which makes the
patient’s recovery becomes tougher and tougher, our
analysis give support to the study of development
and use of treatments and vaccines for large popula-
tions in view of cytokines storm. By focusing on the
impact of the uncontrolled immune response, deci-
sions can be taken to tackle the critically ill patients
specially in overwhelmed ICU’s more effectively.

2. The uncertainty analysis of ρ0 suggests the need for
the activation of immune response to suppress the
virus which would further result in decrease in trans-
mission of infection rate s1.

3. The global sensitivity analysis projects that p1 and
p2 parameters with their PRCC indices as −0.93
and −0.98 respectively are strongly negatively cor-
related to the rate of change in H. These parameters
which are related to rate at which the healthy cells
are reduced due to N and T respectively showed
that due to the cytokines storm this particular
immune response has a strong impact on the healthy
cells and may reduce the healthy cells.

4. The population of healthy cells increases to 953.4 as
compared to the 534.1 in E3 with the incorporation
of cytokines storm control strategy. Immunomodu-
latory agent(such as tocilizumab) was considered as
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Fig. 10 3D sections of l(y) at the origin

control strategy to control the response of the storm.
To design a feedback law that may increase the
healthy cell count to a certain desired level, we used
optimal control theory. Therefore, working towards
strategies that aim at the importance of functional
features of cytokines storm-specific response for
both vaccinated and non-vaccinated population may
be the need of the hour. Further, to tackle the
problematic exaggerated immune response due to
cytokines storm, we may need to focus on the treat-
ments leading to enhancement of the healthy cells
by cytokines inhibition which may further require
the understanding of the single interaction parame-
ter with the healthy cells H. Cytokines storm con-
trol strategy was discussed with the aim to avoid
healthy cells from depleting. This can help to ward
off from exhaustion of healthy cells and tissues for
severe COVID-19 patients due to cytokines storm.
Healthy cells and tissues will be able to provide a

system of great vitality for the immune system to
work on to suppress the infection.

Declarations

Conflict of interest All authors declare no conflicts of
interest in this paper.

Appendix A

Basic reproduction number:
Using the next-generation matrix method, we define the
matrix V for terms related with viral production and the
matrix F for the infection terms in the model are:

F =

(
0 ΥH0

0 0

)
, V =

(
μI 0
−s1 μV

)
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The spectral radius FV −1 is thus obtained as,

FV −1 =

(
Υs1H0
μV μI

ΥH0
μV

0 0

)

and hence, ρ0 = ΥH0s1
μV μI

where H0 = Δ
μH

. Thus, ρ0 =
ΥΔs1

μV μIμH
.

Proof of Theorem 1 We first see that the system is in a fea-
sible region i.e the population neither goes negative nor goes
unbounded through the method as done in [40]. The pos-
itively invariant region is the non-negative orthant {R8

+ =
x ∈ R8|x ≥ 0}. In this region, if a trajectory starts from a
point, it will remain in the same region. We shall show that
each vector field point to R8

+ on each hyper plane bounding
the region. We obtain: dH

dt
|H=0 = Δ ≥ 0, dI

dt
|I=0 = ΥHV ≥

0, dV
dt

|V =0 = s1I ≥ 0, dC
dt

|C=0 = s2I
1+βV

≥ 0, dN
dt

|N=0 =

rC ≥ 0, dT
dt

|T=0 = 0, dB
dt

|B=0 = 0, dA
dt

|A=0 = kB ≥ 0 Now
Hmax ≤ Δ. As for I, it will be bounded above by Imax

which is equal to Hmax as maximum number infected T
cells can only be the maximum number of healthy cells i.e:
Imax = Hmax. And Vmax ≤ s1Imax, Cmax ≤ s2Imax

1+βVmax
,

Nmax ≤ rCmax, Tmax ≤ eη1Cmax , Bmax ≤ eη2Tmax and
Amax ≤ kBmax. Hence, we get the feasible region Ω. ��

Proof of Theorem 2(i) To study the global asymptotic sta-
bility of the disease free equilibrium for the model, we shall
see the compartmental form of the system. For the compart-
mental form, we shall split the variables into infectious and
non-infectious terms. The two compartments will be disease
compartment x ∈ R2 and non-disease compartments y ∈ R6

i.e:

x = [I, V ] and y = [H, C, N, T, B, A]

The vector Fn(x, y) ∈ R2 consist of entries which represent
the rate of new infection and the vector Gn(x, y) ∈ R6 have

entries representing transition terms in the disease compart-
ments which is x. For our model they are:

Fn =

(
0 ΥH0

0 0

)
and Gn =

(
μI 0
−s1 μV

)

With x = [I, V ] our system satisfies dx
dt

≤ (Fn − Vn)x. Moti-
vated by [41], we shall define the Lyapunov function as:
L = wV −1

n x. We take w = [0, ΥH0] where k1 is a positive
value for I, and in view of Tn = �(FnV −1

n ) = �(V −1
n Fn)

we can verify wV −1
n Fn = T1w. Now, differentiating the

Lyapunov function: L
′

= wV −1
n

dx
dt

≤ wV −1
n (Fn − Vn)x =

(Tn − 1)wx Therefore for L
′ ≤ 0, (Tn − 1) ≤ 0. Then for

L
′

= 0, wx = 0 and this gives us I = 0 and V = 0 i.e
U = {z ∈ R8

+ : I = V = 0}. And as C are activated due to
presence of infection so even they will cease to exist. Thus

L
′ ≤ 0 and L

′
will be a Lyapunov function. And for our

system we get a singleton (H, 0, 0, 0, 0, 0, 0, 0).

Even for Tn = 1 we have L
′
. So we get V = 0 and I = 0

which in turn gives C = 0 and thus other immune responses
are not activated either i.e we get a set Ū = {z ∈ R8

+ : C =
V = I = T = N = B = A = 0}. Thus for Tn = 1 and
Tn < 1 we are left with the system (H, 0, 0, 0, 0, 0, 0, 0).

For ρ0 > 1 , ωT x < 0 which is absurd as the term is
non-negative . Thus GAS doesn’t exist for ρ0 > 1.
This above system can have an unique equilibrium point
which is nothing else but DFE. Thus at ρ0 ≤ 1 i.e s1ΔΥ ≤
μV μHμI iff Tn ≤ 1, the only large invariant set where L

′
= 0

is DFE. ��

Proof of Theorem 2(ii) Taking the host population system

i.e (Ḣ, İ, V̇ ) of (1)–(8) and assuming θ1 = ΥH and θ2 = ΥV ,
for our linearized system we find the jacobian matrix:
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J =

⎛
⎝−θ1 − μH − p1N − p2T 0 −θ2

θ1 −μI − p3T − p4N θ2
0 s1 −μV − p5C − p6A

⎞
⎠

and we find the second additive compound matrix:

J [2] =

⎛
⎜⎜⎜⎜⎜⎝

−θ1 − μH − p1N − p2T − μI θ2 θ2
−p3T − p4N

s1 −θ1 − μH − p1N − p2T − μV 0
−p5C − p6A

0 θ1 −μV − p5C − p6A − μI

−p3T − p4N

⎞
⎟⎟⎟⎟⎟⎠

Now taking P = diag[I, I
V

, I
V

]

PJ [2]P −1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−θ1 − μH − p1N − p2T − μI
θ2V

I
θ2V

I−p3T − p4N
s1I
V

−θ1 − μH − p1N − p2T − μV 0
−p5C − p6A

0 θ1 −μV − p5C − p6A − μI

−p3T − p4N

⎞
⎟⎟⎟⎟⎟⎟⎠

Now φ = PfP −1 + PJ [2]P −1:φ =

(
φ11 φ12

φ21 φ22

)
where φ11 =

−θ1 − μH − p1N − p2T − μI − p3T − p4N , φ12 = V θ2
I

[1, 1],

φ21 =

(
Is1
V
0

)
, φ22 =

(
q11 q12
q21 q22

)
with q11 = −θ1 − μH −

p1N − p2T − μV − p5C − p6A + I′
I

− V ′
V

. q12 = 0, q21 = θ1,

q22 = I′
I

− V ′
V

− p3T − p4N − μV − p5C − p6A − μI .
|(x1, x2, x3)| = max{|x1|, |x2| + |x3|} is chosen as vector
norm |.| in R3. With respect to this norm, Lozinzkii mea-
sure M(φ) can be estimated as M(φ) ≤ sup{b1, b2} where
b1 = M1(φ11) + |φ12| and b2 = M1(φ22) + |φ21|. Thus, we
get: b1 = −θ1 − μH − p1N − p2T − μV − p5C − p6A + V θ2

I

b2 = −μH − p5C − p6 + I′
I

− V ′
V

+ Is1
V

− p1N − p2T − μV +
sup{0, μH + p1N + p2T − μI − p3T − p4N}

Now from Eq. (2): I ′ = θ1V −p3TI −p4NI −μII. Specif-
ically,

− p3T − p4N − μI =
I ′

I
− θ1V

I
(17)

Using Eq. (17) for b1, b2 we further get b1 = −θ1 − μH −
p1N − p2T + V θ2

I
+ I′

I
− θ1V

I
where b1 =≤ I′

I
− μH

and b2 = −μH − p5C − p6A + I′
I

− V ′
V

+ Is1
V

− p1N −
p2T − μV + sup{0, p1N + p2T + μV + I′

I
− θ1V

I
} where

b2 ≤ I′
I

− μH if I ′ = θ1V − I(μV + p1N + p2T ). Thus

from b1 and b2 we get, M(φ) ≤ I′
I

− μH . It follows from

0 ≤ I(t) ≤ N that ln(I(t))−ln(I(0))
t

≤ μH
2

for a sufficiently

large t. And we obtain: 1
t

∫ t

0
M(φ)ds ≤ 1

t

∫ t

0
( I′(s)

I(s)
−μH)ds =

ln(I(t))−ln(I(0))
t

− μH ≤ −μH
2

, if t is large enough. Thus

we get b̄2 ≤ −μH
2

< 0 which in turn completes our
proof. The host population system of our model is glob-
ally asymptotically stable around the endemic equilibrium
points (H3, I3, V3). Now considering the subsystem (4)– (8):

dC

dt
=

s2I

1 + βV
− μCC

dN

dt
= rC − μNN

dT

dt
= η1CT − μT T

dB

dt
= η2TB − μBB

dA

dt
= kB − μAA − p7AV

L1e
−μCt ≤ C(t) ≤ s2I3t

1+βV3
+ L2, L3e

−μN t ≤ N(t) ≤
rC3t + L4, L5e

−μT t ≤ T (t) ≤ L6e
η1C3t, L7e

−μBt ≤
B(t) ≤ L8e

η2T3t, L9e
−(μA+p7V3)t ≤ A(t) ≤ kB3t + L10 :

C(t), N(t), T (t), B(t), A(t) are bounded for t ∈ [0, ∞). For
the endemic equilibrium E3 to be globally asymptotically
stable this is sufficient to prove. ��
Proof of Theorem 3 For all y in the considered case we have

l(y) = y2
1q11 + y2

2q22 + y2
3q33 + y2

4q44 + y2
5q55 + y2

6q6 + y2
7q77

+ y2
8q88 + (−Υy1y3 − p1y5y1 − p2y1y6)

8∑
i=1

(p1i + pi1)yi + (Υy1y3 − p3y6y2 − p4y5y2)

8∑
i=1

(p2i + pi2)yi + (−p5y4y3 − p6y8y3)
8∑

i=1

(p3i + pi3)yi

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)

8∑
i=1

(p4i + pi4)yi + (η1y4y6)

8∑
i=1

(p6i + pi6)yi
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+ (η2y7y6)
8∑

i=1

(p7i + pi7)yi + (−p7y8y3)

×
8∑

i=1

(p8i + pi8)yi (18)

and the partial derivatives as:

∂l

∂y1
= 2q11y1 + (−Υy3 − p1y5 − p2y6)

8∑
i=1

(p1i + pi1)yi

+ 2p11(−Υy1y3 − p1y5y1 − p2y1y6)

+ Υy3

8∑
i=1

(p2i + pi2)yi + (p12 + p21)

(Υy1y3 − p3y6y2 − p4y5y2)

+ (−p5y4y3 − p6y8y3)(p31 + p13)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)

(p41 + p14) + (η1y4y6)(p61 + p16)

+ (η2y7y6)(p71 + p17) + (−p7y8y3)(p81 + p18) (19)
∂l

∂y2
= 2y2q22 + (−Υy1y3 − p1y5y1 − p2y1y6)

(p12 + p21) + (−p3y6 − p4y5)
8∑

i=1

(p2i + pi2)yi

(Υy1y3 − p3y6y2 − p4y5y2)2p22

+ (−p5y4y3 − p6y8y3)(p32 + p23)

+

(
s2

1 + β(y3 + V ∗)

) 8∑
i=1

(p4i + pi4)yi

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p42 + p24)

+ (η1y4y6)(p62 + p26) + (η2y7y6)(p72 + p27)

+ (−p7y8y3)(p82 + p28) (20)

∂l

∂y3
= 2y3q33 + (−Υy1)

8∑
i=1

(p1i + pi1)yi

+ (p31 + p13)(−Υy1y3 − p1y5y1 − p2y1y6)

+ (Υy3)
8∑

i=1

(p2i + pi2)yi

+ (Υy1y3 − p3y6y2 − p4y5y2)(p23 + p32)

+ (−p5y4 − p6y8)

8∑
i=1

(p3i + pi3)yi(−p5y4y3 − p6y8y3)(2p33)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p43 + p34)

+

(
− s2y2β

(1 + β(y3 + V ∗)2)
− (μCC∗ + u∗)(1 + βV ∗)

(1 + β(y3 + V ∗))2

)

8∑
i=1

(p4i + pi4)yi + (η1y4y6)(p63 + p36)

+ (η2y7y6)(p73 + p37) − p7y8

8∑
i=1

(p8i + pi8)yi

+ (−p7y8y3)(p83 + p38) (21)

∂l

∂y4
= 2y4q44 + (−Υy1y3 − p1y5y1 − p2y1y6)(p14 + p41)

+ (Υy1y3 − p3y6y2 − p4y5y2)(p24 + p42)

(−p5y4y3 − p6y8y3)(p34 + p43)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
2p44

+ (η1y6)

8∑
i=1

(p6i + pi6)yi + (η1y4y6)(p64 + p46)

+ (η2y7y6)(p74 + p47) + (−p7y8y3)(p84 + p48) (22)

∂l

∂y5
= 2y5q55 − p1y1

8∑
i=1

(p1i + pi1)yi

+ (−Υy1y3 − p1y5y1 − p2y1y6)(p15 + p51)

+ −p4y2

8∑
i=1

(p2i + pi2)yi

+ (Υy1y3 − p3y6y2 − p4y5y2)(p25 + p52)

+ (−p5y4y3 − p6y8y3)(p35 + p53)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p45 + p54)

+ (η1y4y6)(p65 + p56)

+ (η2y7y6)(p75 + p57) + (−p7y8y3)(p85 + p58) (23)

∂l

∂y6
= 2y6q6 − p2y1

8∑
i=1

(p1i + pi1)yi

+ (−Υy1y3 − p1y5y1 − p2y1y6)(p16 + p61)

− p3y2

8∑
i=1

(p2i + pi2)yi

+ (Υy1y3 − p3y6y2 − p4y5y2)(p26 + p62)

+ (−p5y4y3 − p6y8y3)(p36 + p63)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p46 + p64)

+ (η1y4)

8∑
i=1

(p6i + pi6)yi + (η1y4y6)2p66

+ (η2y7)
8∑

i=1

(p7i + pi7)yi + (η2y7y6)(p76 + p67)

− p7y8y3(p86 + p68) (24)
∂l

∂y7
= 2y7q77 + (−Υy1y3 − p1y5y1 − p2y1y6)(p17p71)

+ (Υy1y3 − p3y6y2 − p4y5y2)(p27 + p72)

+ (−p5y4y3 − p6y8y3)(p37 + p73)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p47 + p74)

+ (η1y4y6)(p67 + p76)(η2y6)
8∑

i=1

(p7i + pi7)yi

+ (η2y7y6)2p77 + (−p7y8y3)(p87 + p78) (25)
∂l

∂y8
= 2y8q88 + (−Υy1y3 − p1y5y1 − p2y1y6)(p18 + p81)

(Υy1y3 − p3y6y2 − p4y5y2)(p28 + p82)
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+ −p6y3

8∑
i=1

(p3i + pi3)yi

+ (−p5y4y3 − p6y8y3)(p38 + p83)

+

(
s2y2

1 + β(y3 + V ∗)
− (μCC∗ + u∗)y3

1 + β(y3 + V ∗)

)
(p48 + p84)

+ (η1y4y6)(p68 + p86) + (η2y7y6)(p78 + p87)

− p7y3

8∑
i=1

(p8i + pi8)yi + (−p7y8y3)2p88 (26)

We can see that:

∂l

∂y1
(0) =

∂l

∂y2
(0) =

∂l

∂y3
(0) =

∂l

∂y4
(0) =

∂l

∂y5
(0)

=
∂l

∂y6
(0) =

∂l

∂y7
(0) =

∂l

∂y8
(0) = 0

and at the origin for the Hessian of l(y) we have:

H(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2q11 0 0 0 0 0 0 0
0 2q22 0 0 0 0 0 0
0 0 2q33 0 0 0 0 0
0 0 0 2q44 0 0 0 0
0 0 0 0 2q55 0 0 0
0 0 0 0 0 2q66 0 0
0 0 0 0 0 0 2q77 0
0 0 0 0 0 0 0 2q88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

We can infer that it’s positive definite and tells us that
the origin of function l(y) is a strict local minimum
point. This function at the neighbourhood Λ0 of the ori-
gin is positive definite. Thus, we may say that the error
dynamical system (15) under linear feedback control u is
locally asymptotically stable and system (10) approaches
to (Hd, I∗, V ∗, C∗, N∗, T ∗, B∗, A∗) under the control U =
u + u∗. ��

References

1. L. Sorokin, The impact of the extracellular matrix
on inflammation. Nat. Rev. Immunol. 10(10), 712–723
(2010)

2. A.B. Engin, D. Nikitovic, M. Neagu, P. Henrich-Noack,
A.O. Docea, M.I. Shtilman, K. Golokhvast, A.M. Tsat-
sakis, Mechanistic understanding of nanoparticles’ inter-
actions with extracellular matrix: the cell and immune
system. Part. Fibre Toxicol. 14(1), 22 (2017)

3. S.K. Sasmal, Y. Dong, Y. Takeuchi, Mathematical mod-
eling on t-cell mediated adaptive immunity in primary
dengue infections. J. Theor. Biol. 429, 229–240 (2017)

4. Q. Ye, B. Wang, J. Mao, The pathogenesis and treat-
ment of the cytokine storm in covid-19. J. Infect. 80(6),
607–613 (2020)

5. X. Sun, T. Wang, D. Cai, Z. Hu, J. Chen, H. Liao, L. Zhi,
H. Wei, Z. Zhang, Y. Qiu, J. Wang, A. Wang, Cytokine
storm intervention in the early stages of covid-19 pneu-
monia. Cytokine Growth Factor Rev. 53, 38–42 (2020)

6. https://www.bbc.com/future/article/20200505-cytokin
e-storms-when-the-body-attacks-itself. Retrieved
December 27, 2020

7. L. Yang, X. Xie, Z. Tu, J. Fu, D. Xu, Y. Zhou, The signal
pathways and treatment of cytokine storm in covid-19.
Signal Transduction Target. Ther. 6(1), 255 (2021)

8. A. Ciabattini, P. Garagnani, F. Santoro, R. Rappuoli,
C. Franceschi, D. Medaglini, Shelter from the cytokine
storm: pitfalls and prospects in the development of
sars-cov-2 vaccines for an elderly population. Semin.
Immunopathol. 42(11), 619–634 (2020)

9. J.S. Kim, J.Y. Lee, J.W. Yang, K.H. Lee, M.
Effenberger, W. Szpirt, A. Kronbichler, J.I. Shin,
Immunopathogenesis and treatment of cytokine storm
in covid-19. Theranostics 11(1), 316–329 (2021)

10. Y. Tang, J. Liu, D. Zhang, Z. Xu, J. Ji, C. Wen,
Cytokine storm in covid-19: the current evidence and
treatment strategies. Front. Immunol. 11, 1708 (2020)

11. T. Kapitaniak, S. Jafari, Nonlinear effects in life sci-
ences. Eur. Phys. J. Spec. Top. 227(7–9), 693–696
(2018)

12. R. Fitriani, W.D. Revildy, E. Marhamah, T. Toharudin,
B.N. Ruchjana, The autoregressive integrated vector
model approach for covid-19 data in Indonesia and Sin-
gapore. J. Phys. Conf. Ser. 1722, 012057 (2021)

13. F. Baldassi, F. D’Amico, A. Malizia, P. Gaudio, Eval-
uation of the spatiotemporal epidemiological modeler
(stem) during the recent covid-19 pandemic. Eur. Phys.
J. Plus 136(10), 1072 (2021)

14. A.I. Shnip, Epidemic dynamics kinetic model and its
testing on the covid-19 epidemic spread datas. J. Eng.
Phys. Thermophys. 94, 6–17 (2021)

15. U. Tirnakli, C. Tsallis, Epidemiological model with
anomalous kinetics: Early stages of the covid-19 pan-
demic. Front. Phys. 8, 217 (2020)

16. Y. Wang, S. Murlidaran, D.A. Pearlman, Quantum sim-
ulations of sars-cov-2 main protease mpro enable high-
quality scoring of diverse ligands. J. Comput. Aided Mol.
Des. 35(9), 963–971 (2021)

17. I. Ghosh, Within host dynamics of sars-cov-2 in humans:
modeling immune responses and antiviral treatments
(archived article). SN Comp. Sci. 2(6), 482 (2021)

18. S. Wang, Y. Pan, Q. Wang, H. Miao, A.N. Brown, L.
Rong, Modeling the viral dynamics of sars-cov-2 infec-
tion. Math. Biosci. 328, 108438 (2020)

19. E.A. Hernandez-Vargas, J.X. Velasco-Hernandez, In-
host mathematical modelling of covid-19 in humans.
Annu. Rev. Control. 50, 448–456 (2020)

20. J. Burgos, System dynamics modeling of within-host
viral kinetics of coronavirus (sars cov-2) (2020)

21. A. Longchamp, J. Longchamp, A. Croxatto, G. Greub,
B. Sanchez, J. Delaloye, Serum antibody response in
critically ill patients with covid-19. Intensive Care Med.
46, 1921–1923 (2020)

22. J. Zhao, Q. Yuan, H. Wang, W. Liu, X. Liao, Y. Su, X.
Wang, J. Yuan, T. Li, J. Li, S. Qian, C. Hong, F. Wang,
Y. Liu, Z. Wang, Q. He, Z. Li, B. He, T. Zhang, Y. Fu,
S. Ge, L. Liu, J. Zhand, N. Xia, Z. Zhang, Antibody
responses to sars-cov-2 in patients with novel coron-
avirus disease 2019. Clin. Infect. Dis. 71(16), 2027–2034
(2020)

23. M. Barik, S. Chauhan, S.K. Bhatia, O.P. Misra, Under-
standing role of ctl cells and antibodies on a delayed hiv
mathematical model: a dynamical analysis. Math. Eng.
Sci. Aerospace (MESA) 12(1), 109–123 (2021)

24. M. Rafikov, E. De Holanda Limeira, Mathematical mod-
elling of the biological pest control of the sugarcane
borer. Int. J. Comput. Math. 89(3), 390–401 (2012)

123

https://www.bbc.com/future/article/20200505-cytokine-storms-when-the-body-attacks-itself
https://www.bbc.com/future/article/20200505-cytokine-storms-when-the-body-attacks-itself


Eur. Phys. J. Spec. Top. (2022) 231:3297–3315 3315

25. M. Zhao, Cytokine storm and immunomodulatory ther-
apy in covid-19: role of chloroquine and anti-il-6 mon-
oclonal antibodies. Int. J. Antimicrob. Agents 55(6),
105982 (2020)

26. M. Rafikov, J.M. Balthazar, H.F. von Bremen, Math-
ematical modeling and control of population systems:
application in biological pest control. Appl. Math. Com-
put. 200, 557–573 (2008)

27. H.E. Clapham, V. Tricou, N. Van Vinh Chau, C.P. Sim-
mons, N.M. Ferguson, Within-host viral dynamics of
dengue serotype 1 infection. J. R. Soc. Interface 11(96),
20140094 (2014)

28. T.P. Gujarati, G. Ambika, Virus antibody dynamics in
primary and secondary dengue infections. J. Math. Biol.
69(6–7), 1773–1800 (2014)

29. M. Oprea, A.S. Perelson, Exploring the mechanisms of
primary antibody responses to t cell-dependent anti-
gens. J. Theor. Biol. 181(3), 215–236 (1996)

30. W.M. Yokoyama, S. Kim, A.R. French, The dynamic life
of natural killer cells. Annu. Rev. Immunol. 22, 405–429
(2004)

31. R. Duffin, R. Tullis, Mathematical models of the com-
plete course of hiv infection and aids. J. Theor. Med. 4,
215–221 (2002)

32. D.M. Del Valle, S. Kim-Schulze, H.H. Huang, N.D. Beck-
mann, S. Nirenberg, B. Wang, Y. Lavin, T.H. Swartz, D.
Madduri, A. Stock, T.U. Marron, H. Xie, M. Patel, K.
Tuballes, O. Van Oekelen, A. Rahman, P. Kovatch, J.A.
Aberg, E. Schadt, S. Jagannath, S. Gnjatic, An inflam-
matory cytokine signature predicts covid-19 severity and
survival. Nat. Med. 9(1), 1636–1643 (2020)

33. Wpd. online software for data extraction. https://apps.
automeris.io/wpd/. Retrieved : 2021-06-02

34. J.O. Ramsay, G. Hooker, D. Campbell, J. Cao, Param-
eter estimation for differential equations: a general-
ized smoothing approach. J. Roy. Stat. Soc. B (Stat.
Methodol.) 69(5), 741–796 (2007)

35. F. Hamilton, Parameter estimation in differential equa-
tions: A numerical study of shooting methods. SIAM
Undergraduate Research Online (2011)

36. R. Barati, Parameter estimation of nonlinear Musk-
ingum models using Nelder-Mead simplex algorithm. J.
Hydrol. Eng. 16, 946–954 (2011)

37. A.N. More, P.S. Kohli, K.H. Kulkarni, Simple linear
regression with least square estimation: an overview. Int.
J. Comput. Sci. Inf. Technol. 7(6), 2394–2396 (2016)

38. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining
important parameters in the spread of malaria through
the sensitivity analysis of a mathematical model. Bull.
Math. Biol. 70(5), 1272–1296 (2008)

39. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A
methodology for performing global uncertainty and sen-
sitivity analysis in systems biology. J. Theor. Biol.
254(1), 178–196 (2008)

40. A.S. Perelson, D.E. Kirschner, R.D. Boer, Dynamics of
hiv infection of cd4 t cells. Math. Biosci. 114(1), 81–125
(1993)

41. Z. Shuai, P.V.D. Driessche, Global stability of infectious
disease models using lyapunov functions. SIAM J. Appl.
Math. 73(4), 1513–1532 (2013)

123

https://apps.automeris.io/wpd/
https://apps.automeris.io/wpd/

	Burden of cytokines storm on prognosis of SARS-CoV-2 infection through immune response: dynamic analysis and optimal control with immunomodulatory therapy
	1 Introduction
	1.1 Goal and structure of the study

	2 Model formulation
	3 Dynamical analysis
	3.1 Basic reproduction number and existence of equilibrium points
	3.2 Global stability for disease-free equilibrium and endemic equilibrium point

	4 Optimisation model
	4.1 Immunomodulatory therapy as control by linear feedback

	5 Numerical simulations
	5.1 Equilibrium points
	5.2 Model validation: curve-fit of cytokines level C(t) to real data
	5.2.1 Curve-fit for system using optimization algorithm

	5.3 Sensitivity analysis for ρ0
	5.4 Uncertainty analysis of ρ0
	5.5 Uncertainty analysis of rate of change of H
	5.6 System with control

	6 Conclusion
	Appendix A
	References
	References




