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Abstract Self-propelled particles have been a tool of choice for many studies for understanding spatial
interaction of people and propagation of infectious diseases. Other than the direct contagion process through
face-to-face contacts with an infected agent, in some diseases, like COVID-19, the disease can spread by
indirect ways, through contaminated object surfaces and puff-clouds created by the infected individual.
However, this dual spreading process and the impact of these indirect infections in the entire dynamics are
not properly explored. In this work, we consider epidemic spreading in an artificial society, with realistic
parameters and movements of people, along with the possibilities of indirect exposure through contaminated
surfaces and puff-clouds. This particular simulation based infectious disease dynamics is associated with the
movements of some self-propelled free agents executing random motion which is investigated in conjunction
with the rules of a realistic contagion process. With mathematical formulation and extensive computational
studies, we have accommodated the indirect infection possibilities into the dynamics by incorporating an
infectious ‘tail’ with the infected individuals. Analytical expressions of survival distance and infection
probability of individuals have been explicitly calculated and reported. Results of precise and comparative
simulation study have revealed the seriousness of indirect infections in connection with several dynamical
parameters. Using this framework, interpretation of multiple waves in local as well as global scenarios have
been established for COVID-19 infection statistics. Furthermore, the importance of indirect infections are
also pointed out through data fitting, showing that ignoring this component might cause a misinterpretation
of the dynamical parameters, like, imposed restrictions.

1 Introduction

The virus SARS-COV2 and the disease caused by it,
COVID-19, has widely affected almost all the coun-
tries across the globe. At present nearly 240 mil-
lion people have been already exposed to the virus
worldwide. Though several vaccines are invented to
increase the immunity against the virus, it is evi-
dent that social distancing and travel restrictions are
very effective as intervention strategies for the infec-
tion spread. Several theories have already been con-
sidered to explore the probable ways of transmission
of the virus through social contacts. To emphasize the
importance of contact-based spreading further, World
Health Organization (WHO) has already exposed the
reports [1] related to the transmission of coronavirus
through surface contamination or via a close contact
with an infected person. The airborne aspect [2–6]
of coronavirus has also been studied through exten-
sive experiments to understand the overall risk. It is
recently revealed that the droplets from an sick person
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could stay on air from few minutes to several hours,
and can contribute significantly in the infection spread-
ing of COVID-19 [2,3]. The other modes of transmis-
sion like fomites (objects or materials which are likely
to carry infection) and surface infection can also con-
tribute directly in the spreading [7–12]. These two dif-
ferent modes of infection transmissions are shown in
Fig. 1 using simple schematics.

In the context of this pandemic, tremendous efforts
were observed from researchers on data based approaches
that relied mostly on the available data in government
repositories as well as on social media platforms [13–
16]. Data-driven fractal-based approaches that dealt
with the time series of infection spread have provided
deeper insights as predictive models [17–19]. However,
the most popular approach of modeling an epidemic is
based on early works of Kermack and McKendrick [20]
using ordinary differential equations (ODE) by parti-
tioning the population into SIR (susceptible–infected–
recovered) compartments. The transition between these
subpopulations are analyzed to understand the overall
dynamics of the infection spread. Clever extensions of
the basic classical idea to stochastic as well as spatial

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-022-00431-x&domain=pdf
http://orcid.org/0000-0001-5081-6583
mailto:sayantari.ghosh@phy.nitdgp.ac.in


3440 Eur. Phys. J. Spec. Top. (2022) 231:3439–3452

Fig. 1 Schematic representation of the proposed idea where indirect contagion process also contributes in disease spreading
in certain infectious diseases, like COVID-19

aspects have been very effective for predictions for the
current as well as the past pandemics [21–25].

In a different approach, the spreading process of
the epidemic dynamics has been also analyzed through
some random, self-propelled particles, moving and
interacting in a synthetic society [23,26–28]. As peo-
ple often move and interact without following any
deterministic or probabilistic rules, thus, the inter-
actions and movements of a group be well approxi-
mated using Brownian motion-like Dynamics (BMD)
[23]. However, in an epidemiological dynamics, unlike
standard Brownian motion, an interaction between two
self-propelled particles not only changes their move-
ments but also causes the transmission of the disease
following the infection model, with SIR-like contagion
rules as backbone. The implementation of a standard
infection model, like SIR, divides the particles into three
kind of health status (susceptible, infected and recov-
ered). A close contact of any infected particle with a
susceptible one results to a transformation of the health
status of the susceptible particle to infected or exposed.
However, such transition from susceptible to infected
state can also be considered as a probabilistic tran-
sitions depending on different factors like immunity,
nature of the disease, distance etc. [29]. Recently, such
BMD-based technique has gained popularity in analyz-
ing COVID-19 dynamics as it spreads mainly through
contacts. Geometric Brownian motion has proven to be
very effective to model the real data of daily infection
cases. The spread of the infection through geometric
Brownian motion has been studied in the context of
COVID-19 contagion in Italy [30]. In [23], the propaga-
tion of the infection is discussed through close contact
of Brownian particles with three kind of different health
status (based on SIR model). An expression of micro-
scopic contagion rate over the population density is also
considered using mean-free path analysis of 2D random-
ized motion. An investigation on contagion dynamics
in a system of self-propelled agents is discussed in [31].
Using basic SIR model, the outbreak thresholds were
analyzed by the authors among active particles in dif-
ferent contagious conditions.

Interestingly, though the transmission of the infection
through BMD is fairly analyzed in different papers, the
effects of indirect contamination through fomites and
surface infection have not been analyzed in any exist-
ing study. However, with spatial aspect involved in the

dynamical process, BMD can work nicely as the base-
line model to implement surface contamination effects.
indirect infections, like droplets and fomites, play a
significant role to increase the infection rate as peo-
ple often become ignorant about these risks as there
might be no sick person present on spot. Though these
factors play significant roles in infection transmission
[32,33], often they are ignored in mathematical mod-
els that have explored to study transmission dynamics.
In this work, we have focused on the indirect mode
of infection transmission along with the contact-based
transmission process, and have extensively analyzed the
effects of such indirect transmissions on overall infection
dynamics. As WHO report [1] has already contagion
the significance of the infection spread through indirect
contacts, it is immensely important to analyze the role
of indirect infections, other than direct contact between
two agents to have a more realistic models of COVID-19
infection spread.

In this paper, we aim to highlight the importance of
considering the indirect infection along with the person-
to-person based direct infection. This helps us to ana-
lyze the infection spreading in a more realistic scenario.
The major contributions of the work are as follows.

– We propose a BMD-based epidemic dynamics con-
sidering both direct and indirect contacts. To the
best of our knowledge, this is the first work that has
considered indirect infection spreading with BMD
framework for a more realistic analysis.

– We establish a mathematical foundation for the pro-
posed study and implement the dynamics on a com-
prehensive computational platform for comprehen-
sive and thorough analysis.

– We perform extensive computational simulations
and show that the consideration of the indirect
infection yields significantly different outcomes, even
with the same transmission parameters.

– To demonstrate the effect of indirect infection
clearly, we also fit the real data of COVID-19 infec-
tion with the proposed framework. We found that
the consideration of indirect infection can signifi-
cantly change our understanding of the transmission
dynamics. Thus, ignoring this factor might cause an
unrealistic estimation of model parameters.
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The rest of the paper is organized as follows. The
methodology has been described in Sect. 2 whereas the
results consisting of the comparative analyses, paramet-
ric studies, data understanding and interpretation are
reported in Sect. 3. Finally, we conclude our work in
Sect. 4 by discussing the key observations and future
scopes of the proposed model.

2 Methodology

In this section, we discuss the mathematical design
and the simulation framework of the proposed model.
The parameter settings that are used for analyzing the
framework are also discussed in detail.

2.1 Model formulation

To consider the possibility of movements and role of
indirect infection in this dynamics, we take this model
contagion process in a 2D synthetic population where
individuals are free to move and interact with other
individuals in the society. We consider a square arena
of side length L ∈ R with reflective boundary condition
containing N ∈ Z

+ number of active individuals execut-
ing active BMD. At a particular time instant, the jth
particles have a direction of movement indicated by vec-
tor r̂j = (cos(θj), sin(θj)). However, this direction can
change in case of collision with other particles, or with
the wall. Spontaneous change in the direction of move-
ment can also be allowed considering a random angle
after a time ζ, i.e., θj = θt

j for (n − 1)ζ < t < nζ can
be assigned a new value θj = θ̃t

j , at t = nζ (n ∈ Z
+),

causing a random reorientation of each self-propelled
particle.

Now to incorporate the infection spread in this inter-
active synthetic society, we use the rules similar to that
of SIR model [20]. In this ODE based model, individuals
belong to compartments called, susceptible, infected,
recovered; S, I and R denote the fraction people who
are in susceptible, infected and recovered susceptible
health status in the population at time t. It is assumed
that the population maintains a fixed size without any
birth or death rates. The overall characteristics of the
epidemic is featured in two simple transition rules:

S
β−−−−→ I, I

γ−−−−→ R.

Here, β is transmission or infection rate of the disease
and, γ is recovery rate for the epidemic. Our infection
spread follows a similar process; however, to consider a
range of infection spread, each self-propelled particle is
assumed to have a sphere of influence whose projection
on the 2D space has a radius rn ∈ R, n ∈ N and a
direct infection spread happens if for particles pi and
pj , ‖ci − cj‖2 ≤ (ri + rj) where ci and cj are the cen-
ters of particles pi and pj respectively and i �= j. Here,
‖.‖2 indicates l2 norm of a vector. In other words, if
spi

(t) indicates the projection of sphere of influence of

Fig. 2 Schematic representation of total infectious area
of an infected individual considering only direct infection
spread

an infected particle pi, then a susceptible particle pj will
be infected iff spj

(t) ∩ spi
(t) �= φ, where spj

(t) is the
projection of the sphere of influence of the susceptible
particle pj , and φ is the empty set.

To understand the dynamics of the indirect infec-
tion, let us assume that the fomites spread by an
infected individual can be active for t′ time inter-
val from generation, and if any susceptible person
comes into the contact of the fomites in that dura-
tion, it becomes infected even without having any
direct contact with an infected person. Moreover,
we assume that a self-propelled infected individual
is constantly creating fomites and causing surface
infection until it is recovered. Now, a susceptible
agent pj will be infected by an contagious parti-
cle pi considering both direct and indirect infections,
iff :

spj
(t) ∩ s̃pi

�= φ,where s̃pi
= spi

(t) +
∫ t

t−t′
spi

(ω)dω.

(1)
Here, the first term of s̃pi

covers the direct infection
and the second term covers the indirect infection due
to fomites and surface-contagions. It is evident that as t′
increases, the indirect infection contributes significantly
in the infection spreading.

Now, if nt
i is the number of infected individuals in

the arena at time t, any interaction with the suscepti-
ble individuals might result into a new infected case,
causing n

(t+1)
i = nt

i + pcn
t
s, where pc is the probability

of infection and nt
s is the number of susceptible peo-

ple. The quantity pc might also be considered as the
collision probability of an infected and a susceptible
individual, which can be extrapolated to the mean dis-
tance traveled before such an encounter. This distance,
Ld, is referred as survival distance for the rest of the
text.

Without loss of generality, let us assume that all the
particles have same sphere of influence with diameter d.
Considering particles traveling with an average speed of
v, we now calculate the Ld based on assumptions similar
to [23]. Contact area of a single infected individual is
2dvt + πd2. The schematic illustration in Fig. 2 shows
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Fig. 3 A series of snapshots from the simulation consid-
ering self propelled particles with only direct infections. a
In the simulation arena size is 1.5 × 1.5. N active, self pro-
pelled, without infectious tail particle present. b A close con-

tact causing spread of the infection to the healthy agent. c
The new infected particle acts as an infection spreader inde-
pendently. The infected particles will be recovered from the
disease after a certain time (τ)

the movement of a particle of diameter d for a time
duration t, with a velocity v, and the area of contact it
covers. Thus, the survival distance by considering only
the collisions of the particle is,

Ld =
vt

(2dvt + πd2)nv
, (2)

where d is the diameter of sphere of influence of each
infected individual and nv = nt

s

L2 , is the number density
of susceptible people.

Now, if a tail of infection of last t′ time steps is still
effective, then the survival distance changes as,

L′
d =

vt

(2dv(t + t′) + πd2)nv
. (3)

Thus, the infectious area of the arena as well as infec-
tion probability, pc = Ain/A (where A = L2, and
Ain = nt

i(2dv(t + t′) + πd2) might increase substan-
tially depending on the persistent infectious tail length
vt′.

2.2 Overview of the simulation

We consider a system (Fig. 3) of N agents moving
continuously in a 2D arena of size L × L. To study
the dynamics in a quasi-continuous BMD framework,we
divide unit time in 1

dt steps to study the motion of each
agent. The agents are self-propelled with an average
velocity of v and the arena has a reflective boundary.
Agents or particles move freely inside the arena, and
encounter elastic collisions with themselves as well as
the wall. After each collision, the direction of particle
movement gets changed according to the standard rule
to ensure reorientation at regular intervals.

Here every active agent or particle has one of the
three kind of health status based on SIR model: Sus-
ceptible, Infected, Recovered. For the purpose of getting
an overview of local infection spread, we have initialized

with only one individual infected agent (I0 = 1) for
every simulation. Infected agents can spread the dis-
ease in two different ways as per the assumptions of the
model:

– Direct infection: A close contact (collision in
terms of BMD) between any infected and suscep-
tible person will change the active status of the
healthy person into ‘infected’ making them infec-
tious to others.

– Indirect infection: Other than the direct contacts,
the effect of indirect infections are also taken under
consideration in this model (Fig. 4). An infectious
tail propagating along with every active infected
agent/particle is considered, following the argu-
ments discussed in Sect. 2.1. This tail signifies the
formation of infectious puff cloud and surface con-
tamination effect. The length of this infectious tail
is set up to δ steps relating to the particle’s past
positions in the simulation. Initially these parame-
ters (infectious tail length, speed of the particles)
are set to a certain value on the simulation. The
extent of the tail could be related to the duration
of the activeness of fomite or surface contamination
effect. Any particle having ‘susceptible’ status, pass-
ing through this tail will alter its health status to
‘infected’.

– There is no difference, in terms of the infection
spreading, between these indirectly infected individ-
uals and those who got infection of direct kind. Both
these infected agents are capable of transmitting the
disease to other susceptible individuals.

On average, after a certain amount of time τ after
getting the infection, known as ‘recovery time’, the sta-
tus of infectious person will change into ‘recovered’, to
keep track of recovery (and full immunity from the dis-
ease) of that individual. After that, the alteration of
the health status of that particular agent would not be
possible.
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Fig. 4 A series of snapshots from the simulation consid-
ering self propelled particles with direct as well as indirect
infections. a The simulation arena of size 1.5×1.5. N active,
self propelled, with infectious tail particle present. b A close
contact to the infectious tail causing spread of the infection

to the healthy agent. c The new infected particle acts as
an infection spreader independently. A video depicting the
dynamics of direct infection and a dynamics containing both
direct and indirect infections can be found at https://youtu.
be/wHVBCEX5RB0

Fig. 5 Model validation with real data: a Fitting of localized active cases in a small geographic region, Andaman &
Nicobar island. b Fitting of active cases in a large geographic region, for entire country, India

3 Results

3.1 Model validation for multiple waves

We now study the contagion process of the proposed
model in a system of self-propelled agents that follow
the dynamics described above. We begin by studying
single-peak as well as multi-peak COVID-19 statistics
in the light of our model for validation purposes. This
will not only help us to estimate the model parame-
ters associated with consecutive waves of the disease,
but also establish the strength of the model in under-
standing real epidemic data. We wished to implement
the model for both localized and large-scale infection
spread. Thus, for this study, we have chosen two sets of
COVID-19 infection data: (a) the case of A&N Islands,
India, and (b) the scenario of India, as a whole.
Local Level Infection Spreading (A&N Islands):

Andaman and Nicobar Islands, India, is an island state
with population of 0.4 million inhabitants, which got
practically sealed during the pandemic, as all ship and

air travel gateways got closed due to lockdown in India.
This provides us a perfect scenario to study local infec-
tion spread in a closed population. The results for the
data1 of A&N Islands, fitted with our model is shown in
Fig. 5a. In this figure, we have shown how our approach
can successfully model the active cases of a compar-
atively smaller geographic location for a single wave,
despite of the sparsity of population and inherent nois-
iness of active cases data for the mentioned island state.
Infection spread in Larger scale (Data for

India): Next, we see the effectiveness for the model
in interpreting large scale data. We chose the data1 for
the entire country, India, for this validation. To han-
dle multiple waves, we consider the active cases for the
duration January 1, 2020 to November 20, 2021. We
decide that the first wave starts when the active cases
first becomes nonzero, and any of wave ends if the num-
ber of active people drops below 10% of the maximum
active cases in that wave. Any further rise of the active
cases is considered to be part of the next wave.

1 Collected from https://prsindia.org/covid-19/cases.
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Table 1 Multiwave epidemic data understanding: infection
parameters for the consecutive waves

Level of infection τ v δ

1st wave Prominent 1.1 0.6 27
2nd wave Prominent 0.27 4 45
3rd wave Less significant 1.1 1 15

In Fig. 5b, the green circle indicates the starting of
the first wave, and the blue circle indicates the end
of a particular wave and beginning of the next wave.
As can be seen in Fig. 5b, the model performed rea-
sonably well in fitting the data with multiple partially
overlapping waves. The parameters for all consecutive
waves are presented in Table 1. It can be seen that the
parameters vary significantly in different waves which
might be because of different level of people mobility,
virus variants and their contamination strengths.

We note that for both local and global levels, the
parameters for individual waves can indicate relevance
of different physical aspects. The major factors or
parameters that affect the dynamics are mentioned in
Table 2. These parameters can have prominent effect
on the epidemic characteristics. The reliability of the
model in data interpretation shows that different types
of disease outbreaks could be connected to the pro-
posed framework by setting up these parameters appro-
priately. Especially, in the diseases where fomite infec-
tions can have significant effects, there the proposed
model gives flexibility in understanding the infection
process, incorporating possibilities of different virus
strains. Thus, by varying these epidemic parameters,
we will get a clear understanding about the mechanism
of different infection outbreaks.

Thus, we now particularly investigate the influence
of different epidemic parameters, one by one, on the
dynamics of self-propelled particle population through
the simulations. This would help us to get a clear knowl-
edge about the efficacy of the epidemic parameters. At
first, the analysis of the results from the BMD based
simulation with different tail lengths is done. Then, we
have analyzed the model by changing the population
inside the arena. Recovery time of any infected indi-
vidual has a significant role for any kind of epidemic. It
determines for how much of time it will spread the infec-
tion through direct or indirect contact in a susceptible
population. Considering this case, we have also varied
the recovery time on different simulations. Finally, the
speed of the active agents inside the arena is varied.
Analysis of the simulation results with this scheme have
been studied in following sections.

3.2 Effect of indirect infection tail

We begin our analysis by varying one of the key dynam-
ical parameters, the length of infectious tail, δ, and
fixing the other epidemic parameters for each simula-
tion. We fix the size of the arena to be L = 1.5, and
this size is kept unaltered in most of the simulations
of this study, unless mentioned otherwise. In Fig. 6a
the effect of the infectious tail or indirect surface infec-
tion has been depicted. The dynamics is studied with
tail length of 0, 8 and 15. To quantify our understand-
ing further, we define a couple of quantities that relate
to some key characteristics of the dynamics. The first
such quantity, Epidemic size Itotal, is the total frac-
tion of people who get infected during the entire course
of the disease. This is the number of people who got
infected during the course of the epidemic and it esti-
mates the extent at which the disease affected the pop-
ulation. It is observed that Itotal is strongly dependent

Table 2 Epidemiological parameters for direct and indirect infection

Parameters Notation Physical relevance Range used in study

Population number N Density of Population
in a locality

10–200

Tail length δ Survival of Surface and
puff cloud contamina-
tion. Depends on differ-
ent virus strains

0–15

Recovery time τ Duration of infectious
period of an infected
individual over the
epidemic. Depends on
health infrastructure
and different virus
strains.

0.1–1.5

Particle speed v Movement of the
infected individual.
Depicts level of aware-
ness, precautions and
restrictions

0.5–2.0
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Fig. 6 Indirect infections and infectious tail: a Simulation
data (averaged 100 times) by varying infectious tail length
of the infected agents inside the arena. N = 70, τ = 0.5, v
= 1.0, δ = 0, 8, and 15; b Exploration of fraction of max-

imum infection, Imax with varying tail length of infectious
particles in the artificial society. The other parameters are
N = 70, τ = 0.5, v = 1.0

on tail length: from 20% for δ = 0, it rises to 34.3% for
δ = 8 and 60% for δ = 15. It is clearly understandable
through the increasing size of the bell-shaped curves
that a longer tail generates notably more number of
new infections among the population than a without-
tail individual. It shows that, in the diseases where the
indirect infections play an important role in the dynam-
ics of disease spreading, the outcome of infected frac-
tion can get affected significantly resulting into a sub-
stantial fractional increase. These results clearly high-
light the importance of accommodating the necessity
of the ‘tailed’ agents in the model. Here we must men-
tion that, the little notch-like fall in infected population
at T = 0.5 is due to the fact that, the initial infected
particle gets recovered in that certain time for every
simulation over 100 times.

The height of infected distribution peak or fraction of
maximum infection, Imax serves as another important
quantity to explore. We have analyzed our model by
exploring the epidemic peak for each case as the num-
ber of infected individuals at a particular time-point
directly tests the available health facilities causing a
lack of basic supporting infrastructures, like, medical
oxygen supply. Thus, we study the effects of persistent
indirect infection tail on Imax. We consider different val-
ues of δ to incorporate how long a particular infection
persists on a surface, with all the other parameters fixed
at N = 70, τ = 0.5, v = 1.0. As shown in Fig. 6b, tail
length of the infected agents influences the Imax consid-
erably. It starts growing up significantly after a certain
value of δ = 6 for the moderate population density we
have considered.

3.3 Effect of population density

Population density works as a major controlling factor
when a disease spreads from person to person. Thus, for
the diseases with direct as well as indirect infection, we
study the effect of population density. This particular
investigation also explores the infection spreading pro-
cess separately in a low and dense population regions. In
Fig. 7a, b, we compare a set of simulations on our syn-
thetic society. Figure 7a, b exhibit the average results
of the dynamics for N = 70 and N = 180 respectively.
In both the figures red (blue) color signifies dynamics
with (without) indirect infection; in terms of parame-
ters, two values δ = 8, and 0 were chosen to incorporate
the presence or absence of infectious tail. Other param-
eters are fixed at τ = 0.5 and v = 1.0.

The results show significant impact of the population
density on the infection dynamics. For N = 70 (Fig.
7a) the infectious tail has a prominent effect in infec-
tion spread among the population and Imax increases
more than twofold as the indirect infection begins to
spread. A substantial rise in the epidemic size is also
noted as we observe ∼ 15% increment in total infected
population for δ = 8 when N = 70. It is also notice-
able that in case of very dense population (Fig. 7b), the
probability of getting direct infection is very high. The
motion of the particles become very much interactive
through several collisions on their way. So, spreading
of new infections through indirect contacts (infectious
tail) is not a significant factor here. Hence, the differ-
ence between ‘with tail’ and ‘without tail’ simulation
is also negligible in this case. However, we must note
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Fig. 7 Indirect infections and population density: a Com-
parison between the simulation data (averaged 100 times)
of both cases (‘with infectious tail’ and ‘without tail’) for
moderate number of population inside the arena. Chosen
parameters are N = 70, τ = 0.5, v = 1.0, δ = 8 (with tail)
and, 0 (without tail). b Comparison between the simulation
data (averaged 100 times) of both cases (‘with infectious
tail’ and ‘without tail’) for highly dense population inside
the arena. Parameters are N = 180, τ = 0.5, v = 1.0, δ =

8 (with tail) and, 0 (without tail) respectively. c Simulation
data (averaged 100 times) by varying population number in
the arena. N = 60, 70 and, 80, τ = 0.5, v = 1.0, δ = 8.
d Comparison between the simulation results of both cases
(‘with infectious tail’ and ‘without tail’) by exploring the
point of maximum infection, Imax with varying number of
population in the artificial society. The other parameters are
τ = 0.5, v = 1.0, δ = 8 and, 0

that though the cause of the indirect infection loses its
importance here, the rise of infection is very sharp and
rapid.

Simulation outcome by varying population inside the
arena N is shown in Fig. 7c. For these particular sim-
ulations, N was chosen as 60, 70 and, 80, respectively.
The results show that the fraction of infected individ-
uals considerably increase as the population density
grows gradually. The increasing population in a fixed
area will enhance the chance of getting infected. The
compactness of the arena generates highly interactive
and complex motion in the population. Thus, the infec-
tion probability increases with the increasing popula-

tion density inside the arena. Hence, the number of
infected population increases drastically. The maximum
infection fraction, Imax also has a considerable depen-
dence on the population density. In Fig. 7d, we explore
this observation systematically. Here, height of the red
(blue) bars signify maximum infective fraction, Imax for
the dynamics with (without) indirect infections. The
rapid increase in this value is noticed after a thresh-
old point of N = 60. The difference between two type
of cases(‘with tail’ and ‘without tail’) is clearly visi-
ble from the results. It shows the importance of taking
indirect infections into account for cases with moderate
population density.
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However, for very low and very high population density,
the contribution of the indirect infections through the
tail is nearly negligible. We have already discussed the
possible reasons behind the observations for high pop-
ulation density; in case of less population density, the
chance of both type of contacts (direct and indirect)
is very less. Thus, the difference between the results of
‘with’ and ‘without infectious tail’ simulation is negli-
gible in low population density. For a random agent,
there are so much space to move inside the arena that
the role of the infectious tail also became insignificant.

3.4 Effect of recovery time

Recovery time of the infected agents could be a criti-
cal parameter for infectious disease spreading dynamics.
An infected individual with long recovery time basically
contributes in increasing the Reproduction number, R;
reproduction number has a standard definition as the
number of infected people generated by a single infec-
tious person in his entire infectious lifetime. In this sec-
tion, we try to understand what is the effect of indirect
infections due to surface fomites in the context of dis-
eases with different recovery rates.

In the presence and absence of infectious tails, we
study the system dynamics for two different recovery
rates (Fig. 8a, b). In case of relatively lower recovery
time τ = 0.5, Fig. 8a, the difference in total infected
number is significantly different; Itotal rises to 34.3%
(δ = 8) from 20% (δ = 0) as infectious tails are intro-
duced. As recovery time is increased to τ = 1.0, in Fig.
8b, Itotal increases drastically. The difference between
‘with tail’ and ‘without tail’ simulation result is also
illustrated in this figure, for higher recovery time. In
case of ‘with infectious tail’ particles, the number of
new infection generated is higher, and thus the infec-
tion spread occurs in a much faster rate. However, the
time for its recovery clock is also started a little early for
these particles, resulting into a sharp and long shaped
curve. For ‘without tail’ though the spread of the infec-
tion occurs in a relatively slow rate, the recovery also
occurs gradually, giving rise to a relatively long-tailed
distribution. Thus, the width is slightly broader in this
particular case and the total number of infected popu-
lation is not much different (Itotal = 91.4% for δ = 8
and, 87.1% for δ = 0).

We consider the effect of recovery rates on the
dynamics for a fixed tail length next. Figure 8c shown
the result for Infected population distribution for τ =
0.5, 1.0 and, 1.5. The other parameters are N = 70, v
= 1.0, δ = 8. We note that as the recovery time gets
higher, the bell-shaped curves rise drastically. Results
show that Itotal changes from a mere 34.7%(τ = 0.5) to
a massive value of 91.4% (τ = 1.0) and 100% (τ = 1.5)
respectively. Thus, we observe that the higher recovery
time of the infected agents could be very crucial and
results into a devastating epidemic size.
Along with the increase in epidemic size and reproduc-
tion number, we also note that the maximum infection
fraction, Imax increases and also shifts towards right

with higher recovery times. We study this behavior
more closely in Fig. 8d. In similar bar charts as before,
we study ‘with’ (red) and ‘without tail’ (blue) scenar-
ios in the context of maximum infection. We observe a
threshold point (τ = 0.4 for this parameter settings),
beyond which the effect of indirect infections of Imax

increases very fast as recovery rates grow. Here, the dif-
ference between the two cases maintained nearly equal
interval along the whole range of recovery times, beyond
the threshold. However, for very low recovery time, both
of the two cases shows similarity in maximum infection
values, due to fast recovery and less infectious lifetime,
affecting both direct and indirect spreading. Thus, from
the overall study, we conclude that for moderate to high
recovery times, indirect infections can cause substantial
differences in terms of both Itotal and Imax.

3.5 Effect of rapid movements

Another important criteria for epidemic spread is the
movement of agents involved. In this section, we study
the coupled effect of indirect infections and speed of
movement of the agents. We study this effect by mod-
ulating the motion of the particles inside the arena.
Fast movement among the population signifies the
restriction-free long travel of infected persons after epi-
demic outbreak. On the other hand, a very less average
velocity of the particles signifies high precautions and
travel restrictions. Here, a particular infected person is
constrained to move only in a localized area.

The results from Fig. 9a, b compare the effect of the
indirect infection in the context of speed of the parti-
cle. Depicted in Fig. 9a, is the scenario with v = 1.0
that can be considered as a normal scenario. Speed-
ing up the agents would be if v is increased beyond
1, while reducing v below 1 signifies movements are
being slowed down due to imposed government regula-
tions. For the high speed particles the infection spread
occurs in a fast rate, as shown in Fig. 9b. The initial
infected individual in the simulation spreads the infec-
tion rapidly with more number of collisions within his
total infection period. Whereas, in moderate movement
of the particles, the infected ones do not get enough
time to execute longer trajectories among the suscep-
tible population. Thus, the chance of getting a close
contact with other particles became remain moderate.
We see a drastic jump in the total infection size from
20% to ∼73% as v increases from 1.0 to 1.5, even with-
out the presence of any indirect infection. In presence of
infectious tails, instead of 34.7% (for v = 1.0), 87% get
infected in the artificial society considered. The sim-
ulation results with slow speed particles signifies the
importance of high precautions and restrictions among
the population. It is clearly visible that the spread of
the infection is under control in this situation.

Figure 9c exhibits the effects of movement as well as
speed for a constant tail length. An increase in the aver-
age speed of the particles inside the arena has affected
the variance and height of the infected population dis-
tribution, making the bell-shaped curve taller and nar-
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Fig. 8 Indirect infections and recovery time of the
infected: a Comparison between the simulation data (aver-
aged 100 times) of both cases (‘with infectious tail’ and
‘without tail’) for moderate recovery time of infected indi-
viduals of the society. Parameters are N = 70, τ = 0.5,
v = 1.0, δ = 8 (with tail) and, 0 (without tail). b Com-
parison between the simulation data (averaged 100 times)
of both cases (‘with infectious tail’ and ‘without tail’) for
relatively higher recovery time of infected individuals of the

society. Parameters are N = 70, τ = 1.0, v = 1.0, δ = 8(with
tail) and, 0 (without tail). c Simulation data (averaged 100
times) by varying recover time for infected agents inside the
box. Parameters are N = 70, τ = 0.5, 1.0 and, 1.5, v = 1.0,
δ = 8. d Comparison between the simulation results of both
cases (‘with infectious tail’ and ‘without tail’) by exploring
the ‘point of maximum infection’ with varying recovery time
of the infected agents. N = 70, τ = varying, v = 1.0, δ = 8
(with tail) and, 0 (without tail)

rower. Moreover, the epidemic size also changed from 34
to 95% when average speed is made double. This is due
to the fact that the fast the movement of the particles
cause frequently occurring interactions with the sus-
ceptible particles, making then come into the infectious
range. But, as the infections is initiated in a faster rate,
the recovery clock for the infected agents also starts
earlier. So, although there would be a rapid increase in
infections, the recovery takes dominance earlier as well,
resulting to a high and sharp peak in infected fractions.
These kind of distributions put direct pressure on avail-
able health infrastructure causing a rapid demand of
life-supporting facilities for a large number of infected
people. The significance of the speed in the simulation

could be directly related to the level of imposed travel
restrictions and precautions.

By increasing the average speed of the system, the
value of Imax starts growing in number. We report the
results in Fig. 9d. For relatively slower speed, i.e., very
strong movement restrictions of particles, the difference
between two type of cases is ignorable, showing that
regulations will control the disease even in presence of
indirect infections. However, the differences increases
immediately for moderate to high speed movement of
the agents. Beyond a threshold speed (v = 0.8 in the
case of this particular set of observations) the differ-
ence becomes notably larger. The prominent differences
between heights of the with and without tail bars (red
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Fig. 9 Indirect infections and Speed of movement: a Com-
parison between the simulation data (averaged 100 times) of
both cases (‘with infectious tail’ and ‘without tail’) for mod-
erate speed of particles inside the arena. N = 70, τ = 0.5,
v = 1.0, δ = 8 and 0. b Comparison between the simula-
tion data (averaged 100 times) of both cases (‘with infec-
tious tail’ and ‘without tail’) for faster motion of particles
inside the arena. N = 70, τ = 0.5, v = 1.5, δ = 8 and, 0.

c Simulation data (averaged 100 times) by varying speed of
the particles inside the arena. N = 70, τ = 0.5, v = 1.0,
1.5 and, 2.0 δ = 8. d Comparison between the simulation
results of both cases (‘with infectious tail’ and ‘without tail’)
by exploring the ‘point of maximum infection’ with varying
average speed of the particle motion. N = 70, τ = 0.5, v =
varying, δ = 8 and 0

and blue respectively) in the figure, establish the impor-
tance of considering the indirect contamination in the
dynamical models, wherever movements are not abso-
lutely restricted.

3.6 Correct interpretation of data: the context of
indirect infections

In the previous sections, we have thoroughly described
the coupled response that can get created due to inter-
play of epidemic parameters with the indirect infec-
tions. We also assigned physical relevance to each of
our model parameters. In this section, we demonstrate
the necessity to consider indirect infections, wherever
applicable, in the context of data interpretation as well.
Computational study of any artificial society and the
dynamics within, has a final goal of relating, interpret-

ing and predicting real data, by accurate estimation
of model parameters. Important thresholds associating
the model parameters help to understand the disease
outbreak and, at the same time, can be exploited as
control strategies. Here, we study how the parameter
estimation for a dynamics can have flaws if indirect
infections are not considered. For illustration, we have
considered a model data for infection spread. The data
represents a general infectious disease, where the frac-
tion of infected people has risen rapidly during the epi-
demic period. It reaches a peak (maximum infection)
and then gradually falls towards zero (or insignificant)
number of infections with time. Though we have cho-
sen this synthetic data to highlight our observations, we
must point out that the related results and discussions
are very much general, in the context of the framework,
and are applicable to any infection spreading data, sub-
jected to interpretation.
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Fig. 10 Parameter estimation from data: a (and b) respec-
tively depict comparison of epidemic data fitted with sim-
ulation data (averaged 100 times) for active agents ‘with
(and without) infectious tail’. For N = 70, τ = 1.1. Other

parameters are found to be different for the same data: in a
v = 0.85, δ = 0, b v = 0.6, δ = 25 However, epidemic size,
Itotal is almost same in both cases, 78–80% agents for both
the simulation data

We have divided our investigation in two cases and
shown the results in Fig. 10. We have considered both
the possibilities of the epidemic spread: first, through
direct interactions, and then, including indirect infec-
tions from infectious tail with the previous. Here, for
these data, let us consider the fact that indirect infec-
tions were important for this spreading process. How-
ever, while analysis, we may have not included the pos-
sibility in the simulations. Thus, in the first case, the
data are fitted with the simulation results of ‘without
infectious tail’ agents. Then, a comparison is performed
considering ‘with infectious tail’ simulation for fitting
the synthetic epidemic data. We have fitted these curves
to get an intuitive idea about the difference in epidemic
dynamics parameters and the control strategies.

To exhibit the comparative view, we have used the
normalized data. In Fig. 10a, ‘without infectious tail’
simulation outcomes are fitted to the data by setting up
the epidemic parameters carefully to N = 70, τ = 1.1,
v = 0.85, δ = 0. In Fig. 10b, to fit the same data
with ‘with infectious tail’ case, we have a different set
of parameter values, N = 70, τ = 1.1, v = 0.6, δ = 25.
While the goodness of fit of both these scenarios are
explicitly visible in the figures, we hereby highlight the
striking difference in the velocity parameter value. It
indicates that while we are not considering the indirect
infection, it seems like the travel restrictions protocols
implemented due to the outbreak of the epidemic are
not getting followed properly and there is only ∼ 15%
reduction in movement (v = 0.85) compared to the nor-
mal case (v = 1). However, while we consider the indi-
rect infection, it is evident that similar infection spread-
ing statistics may come even with ∼ 40% reduction of
the movements (v = 0.6) compared to the normal sce-
nario. This contrasting value of δ, might also relate to
a new virus strain which survives for a longer period
of time on surfaces, causing a more persistent ‘tail’. As

demonstrated in Fig. 10b, though the outcome might
indicate that the that travel restrictions are being vio-
lated, the indirect infection can increase the infection
count even in the presence of imposed restrictions and
lockdown in reality. Thus, in the absence of indirect
infection in the model, comparatively larger infection
rates and relaxation of restrictions can be estimated
that may fail to capture the reality of the situation.

4 Conclusions and future works

Worldwide spread of COVID-19 has established how
fast an infectious disease can become a pandemic and
can cause a major blow to humanity. The spreading
process of these diseases are majorly considered as a
direct transmission in most of the recent mathematical
and computational models. However, the possibility of
transmission through contaminated surfaces or objects
are often ignored. In this paper, we demonstrated the
impact of indirect infection spreading dynamics on
overall model parameter estimations and their under-
standings. The proposed methodology has been tailor-
made to accommodate the possibilities of direct as well
as indirect ways of infection propagation. We validated
the model using active case data of COVID-19 infection
and demonstrated that this framework can be success-
fully applied for single as well as multiwave epidemic
data. We methodically explored the contributions of the
key parameters, like population density, recovery rate,
rapid movements on the epidemic dynamics, and exhib-
ited the drastic differences that may appear in the pres-
ence of the indirect infection. As shown in our experi-
ments, the effect of indirect infection is vivid when the
population density is moderate, which is in fact the
case in most of the counties in the world. The interplay
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of indirect infections with important epidemic param-
eters like recovery rate and movements of individuals
have been explored as well, giving rise to insightful
observations. The striking differences between the cases
where the indirect infections are considered compared
to the cases where only the direct infection is considered
made it clear that while modeling an infectious disease,
we need to be more careful and thorough. Exhibiting
ambiguity in parameters while data interpretations, we
have established that overlooking the indirect infection
might lead to erroneous parameter estimation. This can
prevent us to understand the real dynamics of the pan-
demic and may restrict us to design optimal strategies.

In this paper, we demonstrated the importance of the
indirect infection assuming three health statuses: sus-
ceptible, infected and recovered with simplistic conta-
gion rules. However, in future, the idea can be extended
to other epidemic models considering contact trac-
ing, quarantining, vaccination and deceased subpopu-
lations. Straightforward extensions of this framework
can be used to practically seal the neighborhood of
a fraction of infected individuals, making them inac-
cessible to the susceptible particles, and thus incorpo-
rating quarantine. From susceptible state, a fraction of
active particles can take a direct transition to immune
state and remain unaffected by the infectious people
and surfaces, which will indicate vaccination. Analyz-
ing all these complex dynamical scenarios under the
light of indirect infection will give us an holistic picture
of the pandemic.
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