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Abstract This paper considers a nonlinear dynamical model of an ecosystem, which has been established
through combining the classical Lotka–Volterra model with the classic SIR model. This nonlinear system
consists of a generalist predator that subsists on two prey species in which disease is becoming endemic in
one of them. The dynamical analysis methods prove that the system has a chaotic attractor and extreme
multistability behavior, where there are infinitely many attractors that coexist under certain conditions.
The occurrence of extreme multistability demonstrates the high sensitivity of the system for the initial
conditions, which means that tiny changes in the original prey species could enlarge and be widespread, and
that could confirm through studying the complexity of the time series of the system’s variables. Simulation
results of the sample entropy algorithm show that the changes in the system’s variables expand over time.
It is reasonable now to consider the endemic in the prey species of the system could evolve to be pandemic
such as COVID-19. Consequently, our results could provide a foresight about the unpredictability of the
COVID-19 outbreak in its original host species as well as after the transmission to other species such as
humans.

1 Introduction

In the second week of December 2019, unknown viral
infection was identified in a small local wild animal
market in Wuhan city, Hubei province in China [1].
The Chinese Center for Disease Control and Prevention
(CCDC) identified this infection as a novel coronavirus
infection, which is announced as COVID-19 [2,3] and
spreads with several deadly waves [4,5].

COVID-19 is the new virus in the coronavirus fam-
ily and mostly spreads through transmission among
human. In this family, it has been reported that most
of these types of viruses have an origin in animals. The
infection spreading from animal to human can also be
observed as a starting points of many outbreaks, from
influenza to HIV and from SARS to COVID-19 [6].
The coronavirus causing COVID-19 is highly related to
those that caused the SARS (severe acute respiratory
syndrome) pandemic in 2003 [7]. Despite speculation,
it is early to predict whether COVID-19 will disappear
or stay with us permanently like the flu [8].

However, a predator–prey model was published recently
by A. Eilersen et. al [9]. In this model, there is 100%
fatal disease in both prey and predator species. In
fact, the dynamics of predator–prey–pathogen interac-
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tions in general have received significant attention in
recent decades [10]. Most attention has been given to
the interaction between predators and single-host epi-
demics [11–13]. Therefore, studying a dynamical model,
which describes the interplay between predation and
multi-host fatal disease, could be a reasonable option
to understand the unpredictable behavior of COVID-
19.

Numerous predator–prey models in the literature
show chaotic and quasi-periodic attractors for given sets
of parameters and initial conditions. For discrete-time
systems, the 1D logistic map [14], which describes ani-
mal reproduction, is one of the most well-known exam-
ples of chaos. Fewer instances of chaos were found in
ecological models in continuous time. However, over and
above investigations of the dynamics of the nonlinear
system revealed some unexpected results. It observed
that a dynamical system can exhibit ambiguous behav-
ior, which is more complex than existing chaos in the
system [15–17]. The coexisting attractors or multista-
bility is the name of this behavior [18,19]. Multistability
has reported in both continuous and discrete systems
[20,21].

In this article, we have considered the 4D dynamical
model of an ecosystem, which constructs by combin-
ing the classical Lotka-Volterra model with the clas-
sic SIR model [9]. This model describes the interplay
between a generalist predator subsists on two prey
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species in which disease is becoming endemic in one
of them. Several numerical analysis methods, includ-
ing phase space, Lyapunov exponents, and bifurcation
diagram, are used in the research to investigate the sys-
tem’s dynamics. This research, through numerical sim-
ulations, demonstrates that the predator–prey system
can exhibit various types of multistability behaviors, in
which the coexistence of infinity many quasi-periodic
attractors, and the coexistence of infinity many chaotic
attractors can be observed for the same parameters val-
ues. Moreover, the complex multistability behavior of
coexisting chaotic and quasi-periodic is identified for
specific parameters values. The different types of mul-
tistability behaviors reflect the high sensitivity of the
system. Thus, tiny changes in the original prey species
could enlarge and be widespread, and that could con-
firm through studying the complexity of the time series
of the system’s variables. In this regard, a contour plot
based on the sample entropy algorithm has been applied
to estimate the complexity of each variable. The com-
plexity results revealed that the coexisting attractors of
the same set of parameters exhibit different complex-
ity values; hence, the changes in the system’s variables
expand over time. Therefore, it is reasonable now to
consider the endemic in the prey species of the system
could evolve to be pandemic such as COVID-19.

The rest of this paper is organized as follows. In
Sect. 2, we briefly describe the dynamical model of
the combination of Lotka–Volterra model with the clas-
sic SIR model, and we then investigate its stability
and parameters-related chaotic regions. Section 3 pro-
vides an overview of the dynamics changes in the sys-
tem when initials-boosted, and this can illustrate the
apparent unpredictability of epidemic outbreaks in prey
species and humans. In Sect. 4, we conduct numerical
experiment based on sample entropy algorithm to illus-
trate the complexity for the time series of predator and
prey species.

2 The infected prey model

This section studies a 4D dynamical model of an ecosys-
tem [9], which consists of a generalist predator sub-
sists on two prey species in which a disease is becom-
ing endemic in one of them. Generally, a disease can
be spillover from an infected prey to human when the
infection is widespread in the prey species [6]. If we
consider that one of the coronaviruses, such as COVID-

19, is widespread in the prey species of the 4D ecosys-
tem. Consequently, the mode of transmission from the
infected prey to human might be occurred in two sce-

narios, the consumption of infected prey as a source of
food, and direct contact or contact through an interme-
diate host.

However, the 4D ecosystem model is established by
combining classical Lotka–Volterra model with the clas-
sic SIR model, which can be defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= ax1 − Rx1x2 − ax1x4

dx2

dt
= Rx1x2 − ax2x4 − x2,

dx3

dt
= bx3 − acx3x4,

dx4

dt
= d (x1 + x2 + x3) x4 − dx4.

(1)

The above dynamical system is a predator–prey model
which consists of a generalist predator subsists on two
prey species in which a disease is becoming endemic in
one of them. In this model, a, b, c, d,R are the positive
constant parameters, and x1, x2, x3, x4 are the state
variables defined as follows: x1 is the healthy popula-
tions of the susceptible prey species; x2 is infected pop-
ulations of the prey species; x3 is the populations of
the immune prey species; and x4 is the population of
predators.

2.1 Equilibria and stability

By setting the left-hand side of differential equations
in the system (1) equal to zero, one can obtain five
different equilibria as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1 (0, 0, 0, 0) ,

E2 (1, 0, 0, 1) ,

E3

(

0, 0, 1,
b

ac

)

,

E4

(
1
R

,
a

R
, 0, 0

)

,

E5

(
b + c

Rc
,
ac − b

Rc
,

b

ac
,
R − a − 1

R

)

.

Linearizing the system (1) at an arbitrary equilib-
rium Ei(x∗

1, x
∗
2, x

∗
3, x

∗
4), the following Jacobian matrix

is obtained:

JEi
=

⎛

⎜
⎜
⎝

a − Rx∗
2 − ax∗

4 −Rx∗
1 0 −ax∗

1

Rx∗
2 Rx∗

1 − ax∗
4 − 1 0 −ax∗

2

0 0 b − acx∗
4 −acx3

dx∗
4 dx∗

4 dx∗
4 d(x∗

1 + x∗
2 + x∗

3) − d

⎞

⎟
⎟
⎠ ,

where i = 1, 2, 3, 4, 5. To determine the stability of each
equilibrium point, one has to compute the correspond-
ing eigenvalues.

Proposition 1 The following statements are true.
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1. E1 is unstable saddle point.
2. E2 is unstable point if R − a > 1 and/or b > ac.
3. E3 is unstable point when a > b

c .
4. E4,5 are unstable points.

Proof It is easy to obtain the eigenvalues of the system
at Ei by solving the following equation:

det(λI − JEi
) = 0.

(1) Therefore, the eigenvalues of the system at E1 are
given by

λ1 = a, λ1 = −1, λ3 = b, λ4 = −d.

Hence, the equilibrium point E1 is unstable saddle.

(2) The eigenvalues of the system at E2 are given by

λ1 = R − a − 1, λ1 = b − ac, λ3,4 = ±i
√

ad.

It is well known that an equilibrium point is unsta-
ble only when there is at least one eigenvalue with
positive real part. Thus, E2 is unstable point if
R − a > 1 and/or b > ac.

(3) The eigenvalues of the system at E3 are given by

λ1 = a − b

c
, λ1 = −1 − b

c
, λ3,4 = ±i

√
bd.

Since all the parameters of the system are greater
then zero, there is only one eigenvalue can have
positive real part, which is λ1. As a result, E2 is
unstable point only when a > b

c .

(4) The eigenvalues of the system at E4 are given by

λ1 = b, λ1 = d

(
1 + a − R

R

)

, λ3,4 = ±i
√

a.

Since b > 0, then E4 is unstable equilibrium point.
Finally, the characteristic equation of the system at
E5 has mixed signs. By Routh–Hurwitz criterion,
the real parts of the corresponding eigenvalues have
also positive and negative signs, which means that
E5 is unstable equilibrium point.

��

2.2 Chaotic regions

As can be seen in the previous subsection, the 4D
infected prey model (1) has five different equilibria in
which there are always at least three unstable equilibria.
Consequently, two important matters can be concluded:
(1) it is quite possible to have chaos in this system; (2)
in case of presence chaotic attractor, this attractor is
called self-excited.

Maximum Lyapunov Exponents (MLE) is one of the
fundamental algorithms used to identify chaos in non-
linear dynamical systems. Generally, the MLE of a
dynamics system is calculated versus one parameter
varying. In this paper, we calculate the MLE of the
system (1) with two parameters varying at the same
time, which can provide a wider vision about the chaotic
regions of the system. Therefore, four sets of parame-
ters are chosen for simulating four cases of MLE with
step size of 0.01, as shown in Fig. 1. Based on this fig-
ure and with the support of time series of each case, we
observe that the system shows chaotic behavior only
when MLE > 0.001. Otherwise, the system shows no
chaos.

However, it crucial to clarify that the chaotic regions
of the 4D epidemic outbreaks system (1) in Fig. 1 are
valid only when the initial conditions are chosen to be
(1, 1, 1, 1).

3 Extreme multistability behaviors

In the previous section, we have demonstrated that the
system (1) shows chaotic attractors as well as non-
chaotic attractors. These two different behaviors are
appeared with only one specific set of initial conditions.
In fact, initiating from a one set of initial values may
not give a full picture about the dynamics of a chaotic
system. Therefore, this section investigates the dynam-
ics of the system (1) through choosing randomly several
sets of initial conditions in which the chaotic and non-
chaotic regions of the system are examined with these
sets of initial conditions.

When the parameters of the system (1) are selected
as a = 0.3, b = 0.4, c = 2, d = 0.3, and R to be
a control parameter for the range 1.26 ≤ R ≤ 1.32,
the bifurcation diagram of the state variable x1 and
MLE are depicted in Fig. 2a, b, respectively. In this
figure, we have chosen nine different sets of initial con-
ditions to examine the non-chaotic and chaotic regions
of the system. As can be seen in Fig. 2, the system
exhibits extreme multistability behaviors in which the
coexistence of nine different quasi-periodic attractors
is primarily occurred within the range 1.26 ≤ R ≤ 1.3.
Meanwhile, the coexistence of several chaotic and quasi-
periodic attractors is appeared for R ∈ (1.3, 1.32]. To
further illustrate the case of coexisting quasi-periodic
attractors, we depict the phase portraits and the time
series of the system for R = 1.3, as shown in Fig. 3. The
coexistence of nine quasi-periodic attractors is quite
clear in the time series of the state variable x2 as well
as two different projections. However, it is important
to mention that choosing many other sets of initial
conditions can produce infinitely many other coexist-
ing quasi-periodic attractors.

Additionally, Fig. 4a, b depicts the coexisting bifurca-
tion models of the state variable x2 and MLE, respec-
tively, for the parameters a = 0.3, b = 0.3, c = 2,
d = 0.8, and 1.3 ≤ R ≤ 1.55. Five different sets of
initial conditions were selected in this figure to check
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Fig. 1 The chaotic regions of the system for the initial
conditions (1, 1, 1, 1) versus two parameters varying in which
the color bars refer to the maximum values of the Lyapunov
exponent, so the positive values show the chaotic regions

and negative values display the periodic regions: a b = 0.4,
c = 2, d = 0.3; b c = 2, d = 0.5, R = 1.7; c a = 0.3, c = 2,
R = 1.7; d a = 0.3, b = 0.3, R = 1.7
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Fig. 2 Dynamics of the system (1) with respect to R for a = 0.3, b = 0.4, c = 2, d = 0.3 with nine different initial conditions
(1, 0.1, k1, 0.9) where k1 = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.35, 0.45: a bifurcation diagram; b maximum Lyapunov exponents

the dynamics of the system, in which the correspond-
ing orbits begin with (k2, 0.3, 0.3, 0.3), where k2 equal
to 0.1 (blue), 0.2 (green), 0.3 (red), 0.4 (black), and 0.5
(cyan). The evolution of these orbits begin with coex-
isting quasi-periodic attractors and then spread over a

larger region of the equilibrium points to produce coex-
istence of chaotic attractors, as illustrated in Fig. 5. As
can be seen in Fig. 5, five different chaotic attractors
are generated by the system via selecting a certain set
of parameters and different sets of initial conditions.
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Fig. 3 Quasi-periodic attractors of the system (1) for a =
0.3, b = 0.4, c = 2, d = 0.3, R = 1.3 and with nine different
initial conditions (1, 0.1, k1, 0.9), where k1 = 0.01, 0.05, 0.1,

0.15, 0.2, 0.25, 0.35, 0.45: a and b phase portraits of coex-
isting infinitely many quasi-periodic attractors; c the time
series for the state variable x2
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Fig. 4 Dynamics of the system (1) with respect to R for a = 0.3, b = 0.3, c = 2, d = 0.8 with five different initial conditions
(k2, 0.3, 0.3, 0.3) where k2 = 0.1, 0.2, 0.3, 0.4, 0.5: a bifurcation diagram; b maximum Lyapunov exponents
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Fig. 5 Phase portraits and the time series of infinitely many chaotic attractors for a = 0.3, b = 0.3, c = 2, d = 0.8, R = 1.5
and with five different initial conditions (k2, 0.3, 0.3, 0.3) where k2 = 0.1, 0.2, 0.3, 0.4, 0.5: a x1 − x4 plane; b x2 − x4 plane;
c the time series of the state variable x2

In fact, except for these coexisting chaotic attractors,
there are infinitely many others, which can be generated
by selecting appropriate sets of initial conditions.

The most complicated behavior in nonlinear dynam-
ical systems is the transit from chaotic to non-chaotic
behaviors (and vice versa) for a certain sets of sys-

tem parameters. This is due to inefficient techniques
for analyzing the dynamical systems with different
sets of initial conditions, especially when the systems
exhibit infinitely many coexisting attractors even in a
small region of these sets. To check whether the sys-
tem (1) shows this complicated transitions, we depict
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(k3, 0.2, 0.2, 0.2) where k3 = 2.5, 2, 0.5: a bifurcation diagram; b maximum Lyapunov exponents
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Fig. 7 Phase portraits and the time series of the coexist-
ing two chaotic attractors with one quasi-periodic attractor
for the parameters: a = 0.299, b = 0.3, c = 2, d = 1.05,

R = 1.799 with the initial conditions (k3, 0.2, 0.2, 0.2) where
k3 = 2.5, 2, 0.5: a x1 −x2 plane; b x1 −x4 plane; c the time
series of the state variable x2

the coexisting bifurcation models of the state variable
x2 and MLE for the parameters a = 0.299, b = 0.3,
c = 2, d = 1.05, and 1.3 ≤ R ≤ 1.8, as shown
in Fig. 6a, b, respectively. The orbits in Fig. 6 col-
ored in blue, green, and purple begin with the ini-
tial conditions (2.5, 0.2, 0.2, 0.2), (2, 0.2, 0.2, 0.2), and
(0.5, 0.2, 0.2, 0.2), respectively. It can be seen that there
are several transitions from chaotic to quasi-periodic
attractors for all three orbits. For instance, the orbit of
purple color drops from chaos to quasi-periodic when
R = 1.799, as illustrated in Fig. 7a–c. Therefore, it can
be observed that the behavior of system (1) is unpre-
dictable in which choosing only three sets of initial con-
ditions can generate coexistence between chaotic and
non-chaotic attractors.

Different chaotic systems have different degrees of
sensitivity. Based on our simulation results, it can be
concluded that the system (1) is very sensitive to its
parameters and initial conditions, in which a tiny alter-
ation in the initial values can drive the system to exhibit
completely different behavior. In other words, each set
of system parameters can produce infinity many coex-
isting attractors by choosing appropriate sets of initial
conditions. As a result, the high-sensitivity performance
of the system (1) provides a clear explanation about the
unpredictability of the epidemic among infected preys.

However, the next section would describe the complex-
ity of the attractors that generate by the system (1).

4 Complexity of coexisting attractors

This section investigates the complexity performance
of each variable xi (i = 1, 2, 3, 4) of system (1) using
one of the fundamental algorithms, which is Sample
Entropy (SamEn) [22]. Generally, the SamEn measure
is used to estimate how much extra information is
required to predict the (t + 1)th output of a trajectory
using its previous (t) outputs. Obviously, larger positive
SamEn values indicate that the trajectories need a more
additional information to be predicted. In our simula-
tions, the parameters of SamEn measure are set as the
embedding dimension m = 2 and tolerance parameter
r = 0.2×Standard Deviation.

As aforementioned in the previous section, the sys-
tem (1) shows extreme multistability behaviors, which
means that tiny changes in the original prey species
could enlarge and be widespread, and that could con-
firm through studying the complexity of the time series
of the system’s variables. Therefore, let us display the
complexity of the variables xi (i = 1, 2, 3, 4) of the
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Fig. 8 The complexity results of the system (1) where the
color bars refer to the values of the SamEn algorithm: a–d
for the parameters a = 0.3, b = 0.3, c = 2, d = 0.8 and with
the initial conditions (k2, 0.3, 0.3, 0.3), where 0.1 ≤ k2 ≤ 0.5;

e–h for the parameters a = 0.299, b = 0.3, c = 2,
d = 1.05 and with the initial conditions (k3, 0.2, 0.2, 0.2),
where 0.5 ≤ k3 ≤ 2.5

system (1) in case of coexistence of different chaotic
attractors. This can be achieved by contour plots based
on SamEn algorithm, in which x-axis is a varied ini-
tial condition and y-axis is a varied control param-
eter, as shown in Fig. 8a–d. The parameters of this
case are set as a = 0.3, b = 0.3, c = 2, d = 0.8,
and 1.3 ≤ R1.55; meanwhile, the initial conditions are
selected to be (k2, 0.3, 0.3, 0.3), where 0.1 ≤ k2 ≤ 0.5.
Second, Fig. 8e–h depicts the complexity of the vari-
ables xi (i = 1, 2, 3, 4) of the system (1) in case coex-
isting chaotic and quasi-periodic attractors. Here, the
parameters of the system are chosen to be a = 0.299,
b = 0.3, c = 2, d = 1.05, and 1.3 ≤ R ≤ 1.8, whereas
the initial conditions are selected to be (k3, 0.2, 0.2, 0.2),
where 0.5 ≤ k3 ≤ 2.5. Based on the above two cases,
several matters can be observed as follows:

1. For all values of the parameter R, the system with
varying a single initial condition exhibits different
complexity values, especially for the variables x1,
x2, and x4, in which the complexity values of the
first case increase with the increasing of the initial
condition k2; meanwhile, the complexity values of
the second case decrease with the increasing of the
initial condition k3;

2. The variable of healthy prey (x1) is the most compli-
cated variable in the system; meanwhile, it is obvi-

ous that the variable of infected prey (x2) is more
complex than the variable of immune prey (x3).

In conclusion, the complexity results of the system’s
variables confirm the high sensitivity to initial con-
ditions; hence, the changes in the system’s variables
expand over time. Therefore, it is reasonable now to
consider the endemic in the prey species of the system
could evolve to be pandemic such as COVID-19.

5 Conclusions

This paper investigated the 4D dynamical model of an
ecosystem, which constructs by combining the classi-
cal Lotka–Volterra model with the classic SIR model.
This model describes the interplay between a gener-
alist predator subsists on two prey species in which
disease is becoming endemic in one of them. Several
numerical analysis methods find that this model shows
chaotic behavior and extreme multistability behaviors.
The occurrence of extreme multistability comes from
the high sensitivity of the system. That means a tiny
change in the system’s variable could enlarge over time.
This might interpret the widespread disease among prey
species till becoming endemic. Since disease spillover
from animals to humans could occur when the infec-
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tion is widespread in the prey species, it is sensible to
consider that the endemic in the infected prey of the 4D
model can jump to humans. However, the complexity
of the disease in infected prey species can be evaluated
by the Sample entropy algorithm. Contour plot results
have demonstrated the unpredictability of disease in the
prey species. The results of this paper could provide
a demonstration of the randomness of the COVID-19
outbreak among prey species and humans.
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