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Abstract We investigate the phenomenon of chaos synchronization in systems subject to coexisting
autonomous and external global fields by employing a simple model of coupled maps. Two states of chaos
synchronization are found: (i) complete synchronization, where the maps synchronize among themselves
and to the external field, and (ii) generalized or internal synchronization, where the maps synchronize
among themselves but not to the external global field. We show that the stability conditions for both
states can be achieved for a system of minimum size of two maps. We consider local maps possessing
robust chaos and characterize the synchronization states on the space of parameters of the system. The
state of generalized synchronization of chaos arises even when the drive and the local maps have the same
functional form. This behavior is similar to the process of spontaneous ordering against an external field
found in nonequilibrium systems.

1 Introduction

A global interaction in a system takes place when all its
elements share a common influence or source of infor-
mation. Global interactions occur in many physical,
chemical, biological, social, and economic systems, such
as parallel electric circuits, coupled oscillators [1,2],
charge density waves [3], Josephson junction arrays
[4], multimode lasers [5], neural networks, evolution
models, ecological systems [6], social networks [7], eco-
nomic exchange [8], mass media influence [9,10], and
cross-cultural interactions [11]. A variety of phenom-
ena can occur in systems subject to global interac-
tions; for example, chaos synchronization, dynamical
clustering, nontrivial collective behavior, chaotic itin-
eracy [12,13], chimera states [14,15], quorum sensing
[16]. These behaviors have been investigated in arrays of
globally coupled oscillators in diverse experiments [17–
21]. Global interactions can provide relevant descrip-
tions in networks possessing highly interconnected ele-
ments or long-range interactions. Systems with global
and local interactions have also been studied [22].

A global interaction field may consist of an external
influence acting on all the elements of a system, as in a
driven dynamical system [23]; or it may arise from the
interactions between the elements, such as a mean field
[24], in which case we have an autonomous dynamical
system. In most situations, systems subject to either
type of global field have been studied separately.

In this article, we investigate the dynamics of systems
subject to the simultaneous influence of external and
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autonomous global interaction fields. As a simple model
for such systems, we study a network of coupled maps
with coexisting external and autonomous global fields.
Specifically, we focus on the important phenomenon
of chaos synchronization. With this aim, we consider
local map units possessing robust chaos dynamics. A
chaotic attractor is robust if there exists a neighbor-
hood in its parameter space where windows of periodic
orbits are absent [25]. Robust chaos is an advantageous
property in applications that require reliable function-
ing in a chaotic regime, since the chaotic behavior can-
not be destroyed by arbitrarily small perturbations of
the parameters.

In Sect. 2, we present the model for a system subject
to coexisting autonomous and external global fields. We
define two types of synchronization states for this sys-
tem in relation to the external field, complete synchro-
nization and generalized synchronization, and charac-
terize them through statistical quantities. In Sect. 3,
we carry out a stability analysis of the synchroniza-
tion states and derive conditions for their stable behav-
ior in terms of the system parameters. Section 4 con-
tains applications of the model with coexisting global
fields for maps exhibiting robust chaos. The states of
chaos synchronization for the system and their stability
boundaries are characterized on the space of parame-
ters expressing the strength of the coupling to the global
fields. In particular, we show that the state of general-
ized synchronization of chaos can appear even when the
functional forms of the external field and the local maps
are equal, a situation that does not occur for this family
of maps if only one global field is present. This behavior
represents a collective ordering of the system in a state
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alternative to that of the driving field. Conclusions are
given in Sect. 5.

2 Coupled map network with autonomous
and external global fields

As a model of a system of chaotic oscillators with coex-
isting autonomous and external global fields, we con-
sider a network of coupled maps in the form

yt+1 = g(yt), (1)

xi
t+1 = (1 − ε1 − ε2) f

(
xi

t

)
+ ε1ht + ε2g (yt) , (2)

ht =
1
N

N∑

j=1

f
(
xj

t

)
, (3)

where xi
t represents the states variable of element i

(i = 1, 2, . . . , N) at discrete time t; N is the size of
the system; f(xi

t) describes the local chaotic dynamics;
yt+1 = g(yt) is an external global field that acts as a
homogeneous drive with independent chaotic dynamics;
ht(x

j
t ) is an autonomous global field that corresponds

to the mean field of the system; ε1 is a parameter mea-
suring the strength of the coupling of the elements to
the mean field ht; and ε2 expresses the intensity of the
coupling to the external field. We assume a diffusive
form of the coupling for both fields.

A synchronization state for the system Eqs. (1)–(3)
occurs when the N elements share the same state; that
is, xi

t = xj
t , ∀i, j. Then, the mean field becomes ht =

f(xi
t), ∀i.

Two types of synchronization states can be defined
in relation to the external global field g(yt): (i) com-
plete synchronization, where the N elements in the sys-
tem are synchronized among themselves and also to
the external driving field; i. e., xi

t = xj
t = yt, ∀i, j, or

ht = f(xi
t) = g(yt); and (ii) internal or generalized syn-

chronization, where the N elements get synchronized
among themselves but not to the external global field;
i. e., xi

t = xj
t �= yt, ∀i, j, or ht = f(xi

t) �= g(yt).
To characterize the synchronization states of the sys-

tem Eqs. (1)–(3), we calculate the asymptotic time
average 〈σ〉 (after discarding transients) of the instan-
taneous standard deviation of the distribution of state
variables σt, defined as

σt =

[
1
N

N∑

i=1

(xi
t − x̄t)2

]1/2

, (4)

where

x̄t =
1
N

N∑

i=1

xi
t. (5)

Additionally, we calculate the asymptotic time aver-
age 〈δ〉 (after discarding transients) of the instanta-
neous difference

δt = |x̄t − yt| . (6)

Then a complete synchronization state xi
t = xj

t = yt,
∀i, j, where the maps are synchronized to the external
global field, is characterized by the the values 〈σ〉 = 0
and 〈δ〉 = 0. An internal or generalized synchroniza-
tion state xi

t = xj
t �= yt, ∀i, j, where the maps are syn-

chronized among themselves but not the external field,
corresponds to 〈σ〉 = 0 and 〈δ〉 �= 0.

In practice, we set the numerical condition 〈σ〉 <
10−7 and 〈δ〉 < 10−7 for the zero values of these statisti-
cal quantities to characterize the above synchronization
states.

3 Stability analysis of synchronized states

The system Eqs. (1)–(3) can be written in vector form
as

xt+1 = Mf (xt) , (7)

where xt and f(xt) are (N+1)-dimensional state vectors
expressed as

xt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

yt

x1
t

x2
t
...

xN
t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, f(xt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g(yt)
f(x1

t )
f(x2

t )
...

f(xN
t )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8)

and M is the (N + 1) × (N + 1) matrix

M = (1 − ε1 − ε2) I +
1
N

C, (9)

where I is the (N + 1) × (N + 1) identity matrix and
C is the (N + 1) × (N + 1) matrix that represents the
coupling to the global fields, given by

C =

⎛

⎜
⎜
⎝

(ε1 + ε2) N 0 . . . 0
ε2N ε1 . . . ε1

...
. . .

...
...

ε2N ε1 . . . ε1

⎞

⎟
⎟
⎠ . (10)

The linear stability condition for synchronization can
be expressed in terms of the Lyapunov exponents for
the system Eq. (7). This requires the knowledge of the
(N + 1) eigenvalues of matrix M, given by

μk = (1 − ε1 − ε2) +
1
N

ck, k = 1, 2, . . . , N + 1,

(11)
where ck are the eigenvalues of matrix C, corresponding
to c1 = (ε1 + ε2)N , c2 = ε1N , and ck = 0 for k > 2,
which is (N − 1)-times degenerated.

Then the eigenvalues of matrix M are

μ1 = 1, (12)
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μ2 = 1 − ε2, (13)
μk = 1 − ε1 − ε2, k > 2, (N − 1)-times degenerated.

(14)

The eigenvectors of the matrix M satisfying Muk =
μkuk are also eigenvectors of the matrix C, and they
are given by

u1 =

⎛

⎜
⎜
⎜
⎜
⎝

1
1
...
1
1

⎞

⎟
⎟
⎟
⎟
⎠

, u2 =

⎛

⎜
⎜
⎜
⎜
⎝

0
1
...
1
1

⎞

⎟
⎟
⎟
⎟
⎠

, uk =

⎛

⎜
⎜
⎜
⎜
⎝

0
a1

a2

...
aN

⎞

⎟
⎟
⎟
⎟
⎠

,

(15)
where the components ak of the eigenvectors uk, k > 2,
satisfy the condition

∑N
k=1 ak = 0 since the eigenvec-

tors uk are orthogonal to the eigenvectors u1 and u2.
The eigenvectors of the matrix M constitute a com-

plete basis where the state xt of the system Eq. (7) can
be expressed as a linear combination. In particular, the
complete synchronization state of xt is associated to
the eigenvector u1, while the generalized synchroniza-
tion state is represented by the eigenvector u2.

The (N +1) Lyapunov exponents (Λ1, Λ2, . . . , ΛN+1)
of the system Eq. (7) are defined as

(
eΛ1 , eΛ2 , . . . eΛN+1

)

= lim
T→∞

(magnitude of the eigenvalues of
∣
∣
∣
∣
∣

T−1∏

t=0

J(xt)

∣
∣
∣
∣
∣

)1/T

, (16)

where J is the Jacobian matrix of the system Eq. (7),
whose components are

Jij =
[
(1 − ε1 − ε2) δij +

1
N

cij

]
∂[f (xt)]i

∂xj
, (17)

where cij are the ij-components of matrix C and
[f(xt)]i is the i-component of vector f(xt). Then we
obtain

eΛk = lim
T→∞

∣
∣
∣
∣
∣
μT

k

T−1∏

t=0

f ′(xk
t )

∣
∣
∣
∣
∣

1/T

, k = 1, . . . , N + 1,

(18)
where μk, k = 1, 2, . . . , N + 1, are the eigenvalues of
matrix M. Substitution of the eigenvalues μk, gives the
Lyapunov exponents for the system Eq. (7),

Λ1 = λg, (19)

Λ2 = ln (1 − ε2) + lim
T→∞

1
T

T−1∑

t=0

ln
∣
∣f ′(x1

t )
∣
∣ , (20)

Λk = ln (1−ε1 − ε2)+ lim
T→∞

1
T

T−1∑

t=0

ln
∣
∣f ′(xk

t )
∣
∣ , k > 2,

(21)

where λg is the Lyapunov exponent of the driven map
g(yt), which is positive since g(yt) is assumed chaotic.
Note that, in general, the limit terms in Eqs. (20) and
(21) depend on ε1 and ε2 since the iterates xi

t are
obtained from the coupled system Eqs. (1)–(3). At syn-
chronization, these terms are equal and we denote them
by λf .

The stability of the synchronized state is given by the
condition

eΛk =
∣
∣μkeλk

∣
∣ < 1, (22)

where λ1 = λg; λk = λf , for k > 1.
Perturbations of the state xt along the homogeneous

eigenvector u1 = (1, 1, . . . , 1) do not affect the coher-
ence of the system; thus, the stability condition corre-
sponding to the eigenvalue μ1 is irrelevant for the com-
plete synchronized state. Then condition Eq. (22) with
the next eigenvalue μ2 provides the range of parameter
values where the complete synchronized state xi

t = yt,
∀i, is stable, i.e.,

∣
∣(1 − ε2)eλf

∣
∣ < 1 ⇒ 1 − 1

eλf
< ε2 < 1 +

1
eλf

. (23)

Equivalently, complete synchronization takes place when
Λ2 < 0.

On the other hand, the internal or generalized syn-
chronization state xt of the system is proportional to
the eigenvector u2 = (1, 1, . . . , 0). The stability condi-
tion of this state is given by the next degenerate eigen-
value μk, k > 2, that is,

∣
∣(1 − ε1 − ε2) eλf

∣
∣ < 1 ⇒ 1 − ε2 − 1

eλf

< ε1 < 1 − ε2 +
1

eλf
. (24)

The condition for stable generalized synchronization
can be also be expressed as Λk < 0.

Because of the eigenvalues Eqs. (12)–(14), the stabil-
ity conditions Eqs. (23) and (24) can be achieved for any
system size N ≥ 2. Equations (23) and (24) describe
the regions on the space of the coupling parameters
(ε1, ε2), where complete and internal synchronization
can, respectively, occur in the system with coexisting
global fields, Eqs. (1)–(3).

4 Applications

We consider the system Eqs. (1)–(3) with local dynam-
ics described by the tent map

f
(
xi

t

)
=

r

2

∣
∣1 − 2xi

t

∣
∣ , (25)
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(a) (b)

Fig. 1 a Statistical quantities 〈σ〉 (red line) and 〈δ〉 (blue
line) as functions of ε2 for the system Eqs. (1)–(3) with local
tent map Eq. (25) with r = 2, and external field g = f . Fixed
ε1 = 0.2, size N = 5000. For each value of ε2 both quanti-
ties are averaged over 20000 iterates after discarding 5000
transients. b Lyapunov exponents Λ1 = λg (black line), Λ2

(blue line) and Λ3 (red line) as functions of ε2 for the sys-

tem Eqs. (1)–(3) with minimum size N = 2 and g = f with
fixed ε1 = 0.2. For each value of ε2 the Lyapunov exponents
were calculated with 25000 iterations after discarding 5000
transients. In this case, λf = λg = ln 2. Labels on both
figures indicate D desynchronized or incoherent state, GS
generalized or internal synchronization, CS complete syn-
chronization

which exhibits robust chaos for r ∈ (1, 2] with xi
t ∈

[0, 1]. We fix the local parameter at the value r = 2
and assume the external driving field equal to the local
dynamics, i.e., g = f .

Figure 1a shows the statistical quantities 〈σ〉 and 〈δ〉
that characterize the collective synchronization states
for this system as functions of the coupling parame-
ter ε2, with fixed ε1 = 0.2. System size is N = 5000.
Labels indicate the regions of the parameter ε2 where
different synchronization states take place: D (desyn-
chronized state) where 〈σ〉 �= 0 and 〈δ〉 �= 0; SG (gen-
eralized or internal synchronization) corresponding to
〈σ〉 = 0 and 〈δ〉 �= 0; and SC (complete synchroniza-
tion) characterized by 〈σ〉 = 0 and 〈δ〉 = 0. Figure 1b
shows the Lyapunov exponents Λ1, Λ2, and Λ3 as func-
tions of ε2, with fixed ε1 = 0.2, for a system of min-
imum size N = 2, since the stability conditions for
the synchronized states are satisfied for N ≥ 2. The
Lyapunov exponent Λ1 = λg = ln 2 is positive. The
transition of the exponent Λ3 from positive to negative
values signals de onset of stable generalized synchro-
nization (GS), while Λ2 = 0 indicates the boundary of
the complete synchronization state (CS) that is stable
for Λ2 < 0. The corresponding boundaries of the regions
GS and CS coincide exactly in both figures.

Figure 2 shows the collective synchronization states
of the system Eqs. (1)–(3) with the local tent map and
external drive g = f with r = 2 on the space of parame-
ters (ε1, ε2). The regions on this space where the differ-
ent states occur are indicated by labels. The boundaries
of the synchronized states are calculated analytically
from conditions Eqs. (23) and (24). These boundaries
coincide with the criteria for the quantities 〈σ〉 and 〈δ〉
characterizing each state, as explained above.

To understand the nature of the collective behaviors,
Fig. 3 shows the attractors corresponding to the dif-

Fig. 2 Synchronization states for the system Eqs. (1)–(3)
with local tent map and external drive g = f on the space
of parameters (ε1, ε2). Fixed parameters: r = 2, N = 5000.
Labels indicate the regions where these states can be found:
D desynchronization, GS generalized synchronization, CS
complete synchronization, E escape. The boundaries deter-
mined analytically with Eqs. (23) and (24) and by the quan-
tities 〈σ〉 and 〈δ〉 coincide exactly. The region labeled E cor-
responds to coupling parameter values (ε1, ε2) for which the
state variables of the system escape to infinite. The bound-
ary for region E is given by the upper stability boundary of
the generalized synchronization state given by Eq. (24)

ferent synchronization states for the reduced size sys-
tem Eqs. (1)–(3), with the local tent map and external
drive g = f . The desynchronized state (D) in Fig. 3a
has all positive Lyapunov exponents and shows no def-
inite structure. In the internal synchronization state
(GS) with Λ1 > 0, Λ2 > 0, and Λ3 < 0, displayed in
Fig. 3b, the dynamics collapses onto an attractor lying
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(a) (b) (c)

Fig. 3 Attractors on the three-dimensional phase space of
the reduced size system Eqs. (1)–(3) with the local tent map
and external drive g = f . Fixed parameters: r = 2, ε1 = 0.2.

a Desynchronized state (D), ε2 = 0.2. b Generalized syn-
chronization (GS), ε2 = 0.4. c Complete synchronization
(CS), ε2 = 0.6
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D

Fig. 4 Synchronization states for the system Eqs. (1)–(3)
with local logarithmic map Eq. (26) and N = 5000 on the
space of parameters (ε1, ε2). a External drive function equal
to the local dynamics, g = f = −0.7 + ln |x|. b External
drive different from the local map, with g = 0.5 + ln |x| and

f = −0.7 + ln |x|. Labels indicate the states D desynchro-
nization, GS generalized synchronization, CS complete syn-
chronization. The boundaries determined from conditions
Eqs. (23) (blue line) and (24) (red lines) coincide with those
obtained with the quantities 〈σ〉 and 〈δ〉

on the plane x1
t = x2

t . This plane constitutes the syn-
chronization manifold where x1

t = x2
t = x̄t. Thus, the

chaotic attractor on this plane represents a nontrivial
functional relation, different from the identity, between
x̄t and the drive yt. In general, for the state of gener-
alized synchronization with N > 2, a chaotic attractor
arises between the times series of the mean field x̄t and
that of the drive signal yt. The complete synchronized
state (CS), possessing Λ1 > 0, Λ2 < 0, Λ3 < 0, is char-
acterized by the attractor lying along the diagonal line
x1

t = x2
t = yt, as shown in Fig. 3c. In this situation,

x̄t = yt.
The emergence of a chaotic attractor is a character-

istic feature of generalized synchronization in a drive-
response system when the drive function g is different
from the response system function f . The generalized or
internal synchronization state does not arise if only the
external drive g = f acts on the system of tent maps
Eqs. (1)–(3), i.e., if ε1 = 0; nor can it appear with
mean field coupling alone. The emergence of the GS

state in this system when g = f requires the coexistence
of both, the autonomous global field and the external
drive. Thus, we have a situation where the presence of
an autonomous global interaction allows the synchro-
nization of the maps in a state alternative to that of
the forcing external field.

As another example, we consider a local chaotic
dynamics given the logarithmic map

f
(
xi

t

)
= b + ln

∣
∣xi

t

∣
∣ . (26)

This map is unbound and possesses robust chaos, with
no windows of periodicity, for the parameter interval
b ∈ [−1, 1] [26]. Figure 4a shows the synchronization
states of the system Eqs. (1)–(3) with the local chaotic
map Eq. (26) and external drive g = f on the plane
(ε1, ε2). Labels indicate the regions where the differ-
ent synchronization states take place. The boundaries
of the synchronized states are calculated numerically
from Eqs. (23) and (24). The lower boundary of the
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GS state is calculated from Eq. (24) where λf �= λg.
For the upper boundary of the CS state, the local maps
are already synchronized to the drive yt and therefore
λf = λg; thus Eq. (24) gives a straight line on the plane
(ε1, ε2). Figure 4b shows the synchronization states cor-
responding to an external drive g �= f ; only generalized
synchronization (GS) can occur in this case. There is
no escape in either situation, since the map dynamics
is unbounded.

5 Conclusions

We have studied a coupled map model for a system
subject to coexisting autonomous and external global
fields. We have investigated the states of chaos synchro-
nization in this system, consisting of (i) complete syn-
chronization, where the maps synchronize among them-
selves and to the external global field, and (ii) general-
ized or internal synchronization, where the maps syn-
chronize among themselves but not to the external field.
The generalized synchronization state can be described
by the appearance of a chaotic attractor between the
time series of the mean field of the system and the
external driving field.

We have performed the stability analysis for both
synchronization states and found that the stability con-
ditions can be achieved for a system of minimum size of
two maps subject to a common drive. The equivalence
of the dynamics for a minimum size system is a charac-
teristic feature of systems with global interactions [27].

By considering local tent maps and logarithmic maps
that possess robust chaos dynamics, we have focused
on the chaotic synchronization behavior of the system.
We have characterized the synchronization states on
the space of the coupling parameters by using the sta-
bility conditions of these states as well as statistical
quantities, with complete agreement in all cases. The
emergence of the state of generalized synchronization of
chaos, when the drive and the local maps have the same
functional form, requires the presence of both global
fields. This behavior is similar to the phenomenon of
spontaneous ordering against an external field found in
some nonequilibrium systems [9].

Our results suggest that, in addition to chaos syn-
chronization, other collective behaviors either observed
or absent in a system with only one type of global
interaction can be modified when both autonomous and
external global fields are present.
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