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Abstract The subject approached here is a dynamical phase transition observed in Hamiltonian systems,
which is a transition from integrability to non-integrability. Using the dynamics defined by a discrete
mapping on the variables action I and angle θ, we perform a description of the behaviour of the chaotic
diffusion to particles in the chaotic sea using two methods. One is a phenomenological description obtaining
the critical exponents via numerical simulation, and the other is an analytical result obtained by the solution
of the diffusion equation. The scaling invariance is observed in the chaotic sea leading to an universal chaotic
diffusion. This is a clear signature that the system is passing through a phase transition. We investigate a
set of four questions that characterize a phase transition: (1) identify the broken symmetry; (2) define the
order parameter; (3) identify what are the elementary excitations and; (4) detect the topological defects
which impact on the transport of the particles.

1 Introduction

By the middle of XV and XVI centuries, after the ini-
tial investigations of dynamical systems, Isaac Newton,
utilizing the formalism of mathematical laws and equa-
tions of motion, introduced the concept of a system
evolving in time. In a dynamical system, by the knowl-
edge of a configurational state (initial condition), it is
possible to obtain any other state after that given the
laws of the motion are known. In general such systems
can be classified by linear and nonlinear systems [1].
The linear ones are mainly characterized by having first
order powers in their dynamical equations. On the other
hand, nonlinear systems are those that present power
different of one in their equations, or those described by
sine, cosine, exponential, among other non-linear func-
tions.

In certain systems, such as fluids, density and vis-
cosity, are control parameters that contribute to deter-
mine the intensity of nonlinear terms of their dynam-
ical equations [1]. As we discuss in this review, mod-
ifying those parameters can lead the system to pass
through a phase transition. Here we study a specific
two-dimension mapping which nonlinearity is governed
by the control parameter ε. This parameter is responsi-
ble to rule a phase transition from integrability, where
ε = 0, to non-integrability with ε different of zero, how-
ever, small and positive, so that characterising the tran-
sition. In addition, the phase space for ε �= 0 is mixed,
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presenting regular structures as periodic islands, which
are surrounded by chaotic sea limited by the first invari-
ant spanning curve. The diffusion of the particles in the
chaotic sea is scaling invariant with respect to the con-
trol parameter, initial condition and time. Broken sym-
metry and scale invariance are remarkable signatures
that the system is undergoing through a phase tran-
sition, in fact, a transition from integrability to non-
integrability.

This review is organized as follows, in Sect. 2 we
describe a generic Hamiltonian and enumerate differ-
ent applications for a family of mappings. At Sect. 3
we identify the elliptic fixed points and the position
of the first invariant spanning curve. In Sect. 4 it is
approached a phenomenological description of particles
diffusion in the chaotic sea, obtaining the critical expo-
nents. An analytical description of this diffusion is pro-
vided in Sect. 5 via solution of the diffusion equation.
In Sect. 6 we characterize the phase transition replay-
ing the four proposed questions. Finally in Sect. 7 we
present our final discussions and conclusions.

2 A family of Hamiltonian discrete mapping

The dynamics of a system with two degrees of freedom
can be described by a generic Hamiltonian as

H(I1, θ1, I2, θ2) = H0(I1, I2) + εH1(I1, θ1, I2, θ2). (1)
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Fig. 1 Phase space of the
mapping (4) with γ = 1
and: a ε = 0 and; b
ε = 10−3. In a the phase
space shows periodic and
regular dynamics and is
symmetric. In b the phase
space becomes mixed, with
the presence of the chaotic
sea, periodic islands
(centered by the elliptic
fixed points marked in red
bullets) and the first
invariant spanning curves
identified by the blue
curves. The letter m
characterizes the frequency
of the sine function

Here, the integrable part is settled by H0(I1, I2),
while the non-integrable part is given by H1(I1, θ1, I2,
θ2), and ε is a parameter that controls the transition
from integrability (ε = 0) to non-integrability (ε �= 0).
The expression (1) gives us a four-dimensional flow of
solutions. However, we can establish the energy of the
system as a constant due to its time-independence [2,3],
thus we can eliminate one of the four variables. It is
chosen I2, remaining only a 3-D flow. Using a Poincaré
section [4] to intercept this flow with a constant plane
in θ2, we can reduce the 3-D flow to a 2-D mapping of
I1 × θ1. This generic mapping can be written as [4]

{
In+1 = In + εh(θn, In+1),
θn+1 = [θn + K(In+1) + εp(θn, In+1)] mod(2π),

(2)
where h(θn, In+1), K(In+1) and p(θn, In+1) are nonlin-
ear functions of their variables. Considering p(θn, In+1)
= 0 and h(θn, In+1) = sin (θn), we obtain different
dynamical systems well known in the literature, such
as

• K(In+1) = In+1, named the standard mapping [5–
7];

• K(In+1) = 2/In+1, which is the Fermi–Ulam model
[8,9];

• K(In+1) = ζIn+1, that describes the bouncer model
[10], with ζ as a constant;

• K(In+1) = In+1 + ζI2n+1, it is obtained the logistic
twist mapping [11].

The index n (integer) indicates the iteration of the
mapping. This generic mapping is area preserving only
by the following condition:

∂p(θn, In+1)
∂θn

+
∂h(θn, In+1)

∂In+1
= 0. (3)

For purpose of this review we consider h(θn, In+1) =
sin(θn); p(θn, In+1) = 0 and; K(In+1) = 1

|In+1|γ ,
with γ > 0. Therefore, the following mapping is
obtained:

{
In+1 = In + ε sin (θn)

θn+1 =
[
θn + 1

|In+1|γ
]

mod(2π)
. (4)

The mapping has two control parameters. One is the
parameter ε, responsible to control the nonlinearity of
the system. For ε = 0 the phase space has only regular
and periodic structures, therefore, symmetric orbits, as
shown in Fig. 1a. On the other hand, for ε �= 0 the reg-
ularity is broken and the phase space becomes mixed,
composed by chaotic sea, periodic islands and invariant
spanning curves, as we see in Fig. 1b. The other param-
eter is γ > 0, which was chosen to control the velocity
of the divergence of θ in the limit that the action I is
sufficiently small.

In fact, when I is small the term θn+ 1
|In+1|γ diverges,

leading to uncorrelation between θn+1 and θn. In this
sense, the behaviour of sin (θn) becomes totally random,
bringing chaotic orbits to the dynamics hence diffusion
for the action variable. As the action I starts to grow,
the angular variable begins to exhibit correlation, thus
bringing regularity to the phase space, characterized by
periodic islands and invariant curves.

3 Elliptic fixed points and the position of
the first invariant spanning curve

3.1 Elliptic fixed points

Observing Fig. 1b, we can notice the existence of a
group of periodic islands. These islands are surrounded
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Fig. 2 Plot of part of the phase space for ε = 10−3 and a
comparison of the analytical result obtained for the position
of the first invariant spanning curve Ĩ (red curve) in (18),
with the observational one, by the identification of broken
structures (blue curve)

by the chaotic sea, which is limited by the first invari-
ant spanning curves. Once an orbit starts to grow in
the chaotic sea, it cannot get in the periodic islands,
nor pass through the invariant spanning curves at the
price of violating the Liouville’s theorem.

The fixed points can be obtained by the following
conditions: [1,12,13]

In+1 = In = I∗,
θn+1 = θn = θ∗ + 2mπ, m = 1, 2, 3, . . . (5)

Substituting Eq. (5) into Eq. (4), we end up with

(θ∗, I∗) =

{
0,± (

1
2mπ

) 1
γ

π,± (
1

2mπ

) 1
γ

, (6)

where (θ∗, I∗) are the coordinates for the elliptic fixed
points. Figure 1b shows some of them for m = 5, 6 and
7 in well agreement to Eq. (6).

3.2 Invariant spanning curves

The chaotic sea is limited by the first invariant span-
ning curves. They prevent a chaotic orbit to diffuse
unbounded. The lowest one determine the transition
from a local chaos (above the curve) to a global one
(below the curve).

As shown in Fig. 2, it is noticed that considering ε =
10−3 and for I >> ε, the fluctuations of the invariant
spanning curves are too small compared on to the size
of the chaotic sea. Therefore, we assume [14,15] that in
its vicinity, the dynamics of the action I can be given
by

In = Ĩ + ΔIn, (7)

consequently
In+1 = Ĩ + ΔIn+1, (8)

where Ĩ corresponds to a characteristic value of I along
the invariant spanning curve, and ΔIn is a small per-
turbation upon Ĩ. It is important to emphasize that
this theoretical approximation is only suitable for small
values of ε, i.e. near the transition from integrability
(ε = 0) to non-integrability (ε �= 0), otherwise that
approximation is no longer eligible.

Using the result (8), the first equation of the mapping
(4) can be written as

ΔIn+1 = ΔIn + ε sin (θn). (9)

Considering this approximation for the second equa-
tion of the mapping (4) we have

θn+1 = θn +
1
Ĩγ

[
1 +

ΔIn+1

Ĩ

]−γ

. (10)

Implementing a Taylor expansion in Eq. (10), around
ΔIn+1

Ĩ
= 0 (Maclaurin series), we obtain

θn+1 = θn +
1
Ĩγ

− γΔIn+1

Ĩγ+1
. (11)

Now, to establish a connection with the standard
mapping, Eq. (9) is multiplied by −γ

Ĩγ+1 , thus

− γΔIn+1

Ĩγ+1
= −γΔIn

Ĩγ+1
− γε sin θn

Ĩγ+1
, (12)

and then added the term 1/Ĩγ , so that we end up with

1
Ĩγ

− γΔIn+1

Ĩγ+1
=

1
Ĩγ

− γΔIn

Ĩγ+1
− γε sin θn

Ĩγ+1
. (13)

By convenience, we also define the following vari-
ables:

Jn+1 =
1
Ĩγ

− γΔIn+1

Ĩγ+1
, (14)

φn = θn + π. (15)
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Thus, using the conditions defined in (14) and (15)
on the Eqs. (13) and (11), we can rewrite the initial
mapping (4) as

{
Jn+1 = Jn + γε,

Ĩγ+1 sin (φn),
φn+1 = φn + Jn+1,

(16)

therefore, the dynamics of the mapping (4) near the
invariant spanning curve is described by the standard
mapping. In addition, an effective control parameter is
identify, which is

Kef =
γε

Ĩγ+1
. (17)

As discussed in Refs. [4,5,16], near the transition
from local to global chaos (i.e. near the first invariant
spanning curve) Kef � 0.9716..., hence the estimated
position for the first invariant spanning curve Ĩ is given
by

Ĩ =
[ γε

0.9716

] 1
γ+1

,

=
[ γ

0.9716

] 1
γ+1

ε
1

1+γ . (18)

Figure 2 shows that the analytical result Ĩ of Eq. (18)
is in well agreement compared to the first invariant
spanning curve (fisc) observed in the phase space of the
mapping (4) for the parameters ε = 10−3 and γ = 1.

4 A phenomenological description of
particles diffusion and the critical
exponents

As seen in the phase space, the chaotic sea is limited by
the invariant spanning curves. It allows the particle to
diffuse along the action axis. To characterize the scal-
ing properties of the average action, i.e., the particles
diffusion in the chaotic sea, we use the same procedure
of Refs. [1,14,15], once the formalism has already been
applied to many other systems and mappings with great
success [17–26].

It is used the variable I2 as the observable, since
I = 0 is not a good observable due to the symmetry
between the upper part (positive) and the bottom part
(negative) of the phase space. The chosen observable
defines the root-mean-square of the action Irms =

√
I2

(see Refs. [27,28]). This last one can be given by two
averages

Irms =

√√√√√ 1
M

M∑
i=1

⎡
⎣ 1

n

n∑
j=1

I2i,j

⎤
⎦. (19)

Fig. 3 Plot of Irms vs. n for two different control parame-
ters ε and γ = 1

Here, M corresponds to the number of initial condi-
tions, and n characterizes the number of iterations of
the mapping. The summation in i identifies the aver-
age over the ensemble of initial conditions, whereas the
summation in j corresponds to an average over the orbit
produced by the mapping iteration.

Figure 3 shows the behaviour of Irms vs. n for γ = 1
and two different control parameters ε. We used M =
1000 initial values of the angle θ0 ∈ [0, 2π], which were
chosen uniformly distributed for a fixed initial value
I0 = 10−3ε. For short times of the iteration (n <<
nx) the curves present an accelerated growth regime.
On the other hand, for long enough time (n >> nx),
the curves achieve a limit of saturation, marked by a
constant plateau. The transition from the first rule of
growth to a regime of constant saturation is given by a
characteristic value nx, which is the crossover number.

These three behaviours presented by the curves of
Irms as a function of time n can be characterized
by three critical exponents (α, β and z). To obtain
these three exponents we assume the following scaling
hypotheses [14,15]:

1. For values of n << nx, the behaviour of Irms is given
by

Irms ∝ (nε2)β , (20)

where β identifies the acceleration exponent.
2. For n >> nx, the curves archive a saturation

regime, which can be described by

Irms,sat ∝ εα, (21)
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where α is the saturation exponent.
3. Finally, we have the changeover from a accelerated

regime of growth to a constant plateau, identified
by the crossover number nx:

nx ∝ εz, (22)

where z is the crossover exponent.

Therefore, using those three scaling hypotheses, we
can describe the behaviour of Irms by a generalized
homogeneous function, which is given by

Irms(nε2, ε) = lIrms(lanε2, lbε), (23)

where l is a scaling factor, a and b are characteristic
exponents. First, it is convenient to choose that lanε2 =
1, so we have

l = (nε2)− 1
a . (24)

Bringing Eq. (24) to Eq. (23), we end up with

Irms(nε2, ε) = (nε2)− 1
a Irms(1, (nε2)− b

a ε), (25)

wherein Irms(1, (nε2)− b
a ε) is assumed to be a constant

for n << nx, thus comparing Eq. (25) with the first
scaling hypothesis (20) we have that (nε2)− 1

a = (nε2)β

which leads us to β = −1/a.
Performing this same procedure, however, for lbε = 1,

we obtain
l = ε− 1

b . (26)

Now, using Eq. (26), Eq. (23) can be rewritten as

Irms(nε2, ε) = ε− 1
b Irms

(
ε− a

b nε2, 1
)
, (27)

where Irms(ε− a
b nε2, 1) is considered a constant for val-

ues of n >> nx (saturation regime). Therefore, making
a comparison between Eq. (27) and the second scal-
ing hypothesis (21), we have εα = ε− 1

b that results in
α = −1/b.

The critical exponent z can be obtained by combining
the two scaling factors (24), (26), and using α = −1/b
and β = −1/a leading us to

(nε2)β = εα =⇒ nx = ε
α
β −2 . (28)

Finally, comparing the framed Eq. (28) with the third
scaling hypothesis (22), we obtain

z =
α

β
− 2

︸ ︷︷ ︸
Scaling law

. (29)

Equation (29) gives us an analytical expression with
the three critical exponents, therefore, defining a scaling

Fig. 4 Same plot of Fig. 3 after the transformation n →
nε2. The value obtained for the critical exponent is β =
0.501(5)

law. In fact, by the knowledge of two critical exponents,
we can also find the third one.

By numerical simulation, we were able to obtain the
critical exponent β from a power law fitting. To do so,
we used the transformation that correlates the regime
of growth as in the first scaling hypothesis (20), hence
we have n → nε2. Figure 4 shows the same plot of
Fig. 3 after this transformation. The numerical value
obtained was β = 0.501(5).

The exponent α was obtained using the relation
established by the second scaling hypothesis (21), so
that for long enough n the constant regime of satu-
ration relates Irms,sat ∝ εα. Therefore, we plotted the
behaviour of Irms,sat for different values of the control
parameter ε. The value obtained for the critical expo-
nent due to the power law fitting is α = 0.515(6), as
shown in Fig. 5.

Finally, we have the critical exponent z, which
is defined by the third scaling hypothesis (22). The
crossover number nx, that marks the transition from
a growth regime to a constant plateau of saturation, is
obtained when we plot nx vs. ε to obtain the critical
exponent z. Figure 6 shows a power law fitting that
gives us z = −0.97(2).

It is important to notice that the result obtained for
z by the simulational method is in well agreement with
the scaling law proposed by Eq. (29). In addition, the
critical exponents obtained confirm the scaling invari-
ance found in the chaotic sea of the phase space. To do
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Fig. 5 Plot of Irms,sat vs. ε for n >> nx, using γ = 1. The
critical exponent obtained was α = 0.515(6)

Fig. 6 Behaviour of nx vs. ε, using γ = 1. The critical
exponent obtained was z = −0.97(2)

so, we overlap the curves of Irms vs. n for different ε
into a single and universal curve. The transformation
to be done is Irms → Irms/εα and n → n/εz.

Figure 7a shows the plot of Irms vs. n for five differ-
ent control parameters ε, while Fig 7b displays all the
curves plotted in (a) overlapped onto an universal curve
after the mentioned transformation.

5 An analytical description of particles
diffusion via solution of the diffusion
equation

In this section we describe analytically the behaviour of
particle diffusion in the chaotic sea given in the phase
space through the solution of the diffusion equation. To
do so, we use the same formalism performed in Ref. [29]
we need to find P (I, n), which is the probability to
observe an action I in an instant of time n. Therefore,
we use the well-known diffusion equation [30], which is
written as

∂P (I, n)
∂n

= D
∂2P (I, n)

∂I2
, (30)

where P is the required probability and D is the diffu-
sion coefficient.

As mentioned before, the chaotic sea is limited by
the first invariant spanning curve, thus the chaos dif-
fuses with a range Ichaos ∈ [−Ifisc,+Ifisc], as we can see
in Fig. 8. We also know that an initial condition given
along these curves stays trapped onto them for any time
n ≥ 0. Therefore, we have the following boundary con-
dition:

∂P (I, n)
∂I

∣∣∣∣∣
I=±Ifisc

= 0. (31)

The initial conditions are chosen in a way that all of
them are centered at I = I0 and n = 0, thus

P (I0, n) = δ(I − I0), (32)

where δ(I − I0) is the Dirac delta function.
First, we find the diffusion coefficient D, which can

be given by ΔI2/2. Therefore, using the mean square
of the first equation of the mapping (4), and knowing
that sin2 θn = 1/2, we have that

D =
I2n+1 − I2n

2
=

ε2

4
. (33)

To solve the diffusion equation the process used here
is the separation of variables method [30], so it is defined

P (I, n) = X(I)Y (n), (34)
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Fig. 7 a Same plot of
Fig. 3 for five different
control parameters ε and
γ = 1. b Overlap of all the
curves plotted in a onto a
single and universal one
after the transformation
Irms → Irms/εα and
n → n/εz

Fig. 8 Phase space of the mapping (4) for γ = 1 and ε =
10−2. The blue curves represent the first invariant spanning
curve

where X(I) and Y (n) are any functions that depend
only on I and n, respectively. Rearranging Eq. (30), we
obtain

1
Y (n)

∂Y (n)
∂n

=
D

X(I)
∂2X(I)

∂I2
= −λ, with λ ∈ R

+

(35)
The solutions for X(I) and Y (n) of Eq. (35) are given

by

X(I) = 2A cos

(√
λ

D
I

)
, (36)

Y (n) = Y0e
−λn. (37)

Hence, a solution of P (I, n) can be written as

P (I, n) = 2A cos

(√
λ

D
I

)
Y0e

−λn. (38)

Applying the initial conditions of I = I0 and n = 0,
we obtain

C̃0 = 2A cos

(√
λ

D
I0

)
Y0. (39)

Now, using the boundary condition established on
(31), we obtain

∂P (I, n)
∂I

∣∣∣∣∣
I=±Ifisc

= −2A

√
λ

D
sin

(√
λ

D
Ifisc

)
Y0e

−λn,

(40)

which is null for values of
√

λ
D Ifisc = kπ, with k =

1, 2, 3 . . . Therefore, we have that

λ =
k2π2

I2fisc
D. (41)

Noticing that the specific case of k = 0 we have λ = 0.
Thus, new solutions are obtained for X(I) and Y (n) of
Eq. (35), and consequently a new solution for P (I, n)
can be given by

P (I, n) = Ỹ0(X0 + cI), (42)

where Ỹ0, X0 and c are constants.
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Using again the boundary condition (31), we obtain
c = 0; therefore, we can write a general solution of
P (I, n) as

P (I, n) = C0 +
∞∑

k=1

Ck cos
[
kπI

Ifisc

]
e

− k2π2D

I2fisc
n
, (43)

here C0 = Ỹ0X0 + C̃0 and Ck = 2AY0, which are coef-
ficients to be obtained.

These coefficients can be acquired using simple inte-
grals and the probability normalization

∫ +Ifisc
−Ifisc

P (I, n)dI

= 1 (see Ref. [31] for more details), which leads us to

C0 =
1

2Ifisc
, (44)

Ck =
1

Ifisc
. (45)

Therefore, rewriting Eq. (43), we end up with

P (I, n) =
1

2Ifisc
+

1
Ifisc

∞∑
k=1

cos
[
kπI

Ifisc

]
e

− k2π2D

I2fisc
n

.

(46)
We also use I2 as the observable, since I = 0 is not

a good choice because of the phase space symmetry.
The average over the ensemble of initial conditions via
solution of the diffusion equation is given by I2(n) =∫ +Ifisc

−Ifisc
I2P (I, n)dI, which gives us

I2(n) = I2fisc

[
1
3

+
4
π2

∞∑
k=1

(−1)k

k2
e

− k2π2D

I2fisc
n

]
. (47)

Notice that in the same way of the phenomeno-
logical description, we had two averages, one regard-
ing the ensemble of initial conditions, as described by
Eq. (47), and the other one was a average over all
the orbits produced by the iteration of the mapping.
Therefore, to consider this second average we define
I2

∗
(n) = 1

n

∑∞
j=1 I2j . As we can see in Eq. (47), only

the last term depends on n, what leads us to write

1

n

∞∑

j=1

e
− k2π2D

I2
fisc

j
=

1

n

[
e
− k2π2D

I2
fisc + e

− k2π2D
I2
fisc

2
+ · · ·+ e

− k2π2D
I2
fisc

n

]
,

=
1

n

⎡

⎢⎣e
− k2π2D

I2
fisc

⎛

⎜⎝
1− e

− k2π2D
I2
fisc

n

1− e
− k2π2D

I2
fisc

⎞

⎟⎠

⎤

⎥⎦ . (48)

Using Eq. (48) we can finally obtain the behaviour of

Irms =
√

I2
∗
(n) analytically, thus we end up with

Fig. 9 Plot of Irms vs. n with γ = 1 and five different val-
ues of ε. The circles represent a phenomenological descrip-
tion of Irms. On the other hand, the continuous lines repre-
sent the same observable, however, for a analytical descrip-
tion via solution of the diffusion equation

Irms = Ifisc

√√√√√1

3
+

4

π2

∞∑

k=1

(−1)k

k2

1

n

⎡

⎣e
− k2π2D

I2
fisc

⎛

⎝1 − e
− k2π2D

I2
fisc

n

1 − e
− k2π2D

I2
fisc

⎞

⎠

⎤

⎦.

(49)
Equation (49) describes analytically the behaviour of

particles diffusion present in the chaotic sea of the phase
space.

Figure 9 shows a plot of Irms vs. n with γ = 1 and five
different control parameters ε comparing the two meth-
ods used in this review to describe this observable. The
circles represent the numerical simulation obtained in
Sect. 4, and the continuous line refers to the analyti-
cal result obtained through the solution of the diffusion
equation.

6 An insight on the phase transition

6.1 Broken symmetry

This first topic can be analyzed observing the results
presented in the beginning of this review at Sect. 2. This
one refers to the broken symmetry of the phase space.
Since the modification in the control parameter from
ε = 0 (integrable system) to ε = 10−3 (non-integrable),
the phase space that presented symmetrical and regular
curves in Fig 1a turns into a mixed phase space with
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well defined structures at Fig 1b, composed by peri-
odic islands surrounded for the chaotic sea, and this
last one limited by invariant spanning curves. There-
fore, it is identified the broken symmetry of the system
duo to a modification in the control parameter near the
transition from integrability to non-integrability.

6.2 Order parameter

As shown in Ref. [27], the order parameter can be char-
acterized by the important variable that describes the
dynamics of a system. In this sense, we noticed that a
candidate to be an order parameter is Irms,sat.

Before checking this choice, first, we can rewrite the
second scaling hypothesis (21) in Sect. 4 using the result
of Ĩ in Eq.(18) of Sect. 3.1. This is possible, because, as
discussed in Ref. [14], the location of the lowest invari-
ant spanning curve delimits a transition from a local
chaos, above this curve, to a global one in the chaotic
sea. Therefore, the behaviour of the particles diffusion
Irms must be linked with Ĩ for n >> nx. Hence, com-
paring Eq. (18) with Eq. (21) we find that

α =
1

1 + γ
γ > 0 (50)

so that the second scaling hypothesis can be rewritten
as Irms,sat ∝ ε

1
γ+1 .

We can notice by the second scaling hypothesis
Irms,sat ∝ ε

1
γ+1 and by Fig. 5, as soon the control

parameter ε → 0, the order parameter chosen Irms,sat

approaches to zero continuously. In addition, the second
condition can be evaluated in the following manner:

χ =
∂Irms,sat

∂ε

∣∣∣∣∣
ε→0

which gives us

χ = lim
ε→0

[
1

γ + 1

]
ε

1
γ+1−1,

= lim
ε→0

[
1

γ + 1

]
1

ε
γ

γ+1
. (51)

Here, χ gives how is the behaviour of the response of
the order parameter due to the variation of the control
parameter. As we defined γ > 0, so in the limit of ε → 0
we have that χ → ∞. This is a clear signature that the
phase transition we are facing is a second-order phase
transition (continuous phase transition).

6.3 Elementary excitations

To investigate the elementary excitations we must
remember some properties about the mapping (4). It
was observed the presence of two control parameters.
One of them is ε, which controls the intensity of non-
linearity of the system given by the nonlinear term

sin (θn). The other one is γ > 0, this parameter is
responsible to control the divergence of the angle θ in a
limit of small action I. In fact, it was noticed that when
I is sufficiently small, the term θn + 1

|In+1|γ diverges,
existing no correlation between θn+1 and θn. There-
fore, the behaviour of sin (θn) becomes totally random,
as the well-known random walk problem [27,28]. That
brings a diffusion of chaotic orbits into the phase space,
as shown in Fig. 1b. As soon the angular variable starts
to present correlation due to the increase of the action
I, regular orbits begin to appear in the phase space, as
periodic islands and invariant curves.

The amplitude Ia of this random behaviour can be
obtained by taking the root-mean-square of the first
equation of the mapping (4). In addition, we considered
that the initial conditions established to the system are
close to zero, so that I2n � 0, therefore, we have

I2n+1 = I2n + ε2sin2 (θn), (52)

that leads us to

Ia =
ε√
2
, (53)

since sin2 θn = 1/2. Therefore, here, we identify that the
elementary excitations of this system are defined by the
nonlinear function ε sin (θn) of the first equation of the
mapping (4), which amplitude is given by Ia = ε/

√
2.

This term leads to a totally random dynamics in the
limit of small values of I, thus bringing chaotic orbits
to the phase space.

6.4 Topological defects

The topological defects are totally related to the proba-
bility of the particles distribution over the phase space.
The periodic islands, centered by an elliptic fixed point,
are the main structures responsible for these defects.
This fact is given by the loss of predictability about
the dynamics of the system. That occurs due to the
stickiness effect [32], which is characterized by a tem-
porary trapping over the chaotic orbits near those reg-
ular structures (islands of stability). This effect leads
to a more dense distribution of particles in such areas,
therefore, destroying the ergodicity [27] in the dynam-
ics.

We also can analyze the survival probability ρ, which
defines the probability of a particle to survive over a
chaotic dynamics without escaping this region. As seen
in [33], it was noticed a relevant modification in this
probability as a result of the stickiness effect, which was
the transition from an exponential decay of ρ along of
the time n, to a slower one in power law. The exponen-
tial decay of this probability defines the dynamics which
particles transport of the system is normal (Brownian
diffusion). On the other hand, this change to a slower
decay in power law characterizes the presence of the
stickiness effect, where the chaotic orbits remain tem-
porarily trapped near those periodic islands. Therefore,
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the periodic islands are identified as the topological
defects that impact on the particles diffusion.

7 Conclusions and discussion

In this review, using the dynamics of a discrete map-
ping on the variables action I and angle θ, it is charac-
terized a dynamical phase transition from integrability
to non-integrability, which is controlled by the param-
eter ε. At the beginning of this description we focused
on defining some properties of the characteristic mixed
phase space. We identify the elliptic fixed points and
locate the first invariant spanning curve, that deter-
mines a transition from a local chaos (above the curve)
to a global one (bellow the curve). Latter, using two
different methodologies, we perform a characterization
of the particles diffusion in the chaotic sea of the phase
space. First we resort to a phenomenological descrip-
tion, using a simulational process. Analyzing the curves
of Irms vs. n and assuming three scaling hypotheses
we were capable to define a scaling law that correlates
the three critical exponents α (saturation exponent),
β (acceleration exponent) and z (crossover exponent).
Those three critical exponents were obtained numeri-
cally confirming the scaling law. In addition, using the
transformation Irms → Irms/εα and n → n/εz the scal-
ing invariance is shown in the chaotic sea, and this is
a good indicative that the system is passing through a
phase transition. The second method is an analytical
one, using the solution of the diffusion equation. The
comparison of these two descriptions is approached at
the end of Sect. 5, where we can see a good agreement
between the two formalisms. At the end, we confirm
the phase transition replying the four questions pro-
posed in Ref. [27]. First, broken symmetry is given at
the phase space with ε near the transition from integra-
bility (ε = 0) to non-integrability (ε �= 0). Second, the
order parameter is identified as Irms,sat ∝ ε

1
γ+1 , since

Irms,sat → 0 when ε → 0. In addition, the susceptibility
χ → ∞ in the limit of ε → 0, this is a clear signature
that the system is facing a continuous phase transi-
tion. Third, the elementary excitations are defined by
the nonlinear function ε sin (θn), that leads to a ran-
dom behaviour of the dynamics in the limit of small
values of I, bringing chaotic orbits to the phase space.
And finally fourth, the topological defects that impact
on the particles diffusion are due to the regular struc-
tures present in the phase space. A chaotic orbit evolv-
ing near a periodic island suffers from the stickiness
effect, harming the distribution of the particles. These
factors allow us to conclude that the phase transition
from integrability to non-integrability is a second-order
phase transition.
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6. J. Laskar, C. Froeschlé, A. Celletti, Phys. D Nonlinear

Phenom. 56, 253 (1992)
7. E. Piña, L.J. Lara, Phys. D Nonlinear Phenom. 26, 369

(1987)
8. J.K.L. da Silva, D.G. Ladeira, E.D. Leonel, P.V.E.

McClintock, S.O. Kamphorst, Braz. J. Phys. 36, 700
(2006)

9. M.A. Lieberman, J.A. Lichtenberg, Phys. Rev. A 5,
1852 (1971)

10. L.D. Pustylnikov, Trans. Mosc. Math. Soc. 2, 1 (1978)
11. J.E. Howard, J. Humphreys, Phys. D Nonlinear Phe-

nom. 80, 256 (1995)
12. N. Fiedler-Ferrara, C.P.C. do Prado, Caos: Uma

introdução, 1st edn. (Blucher, São Paulo, 1994)
13. S.H. Strogatz, Nonlinear Dynamics and Chaos: With

Applications to Physics, Biology, Chemistry and Engi-
neering, 2nd edn. (CRC Press, New York, 2018)

14. E.D. Leonel, J. Penalva, R.M.N. Teixeira, R.N.C. Filho,
M.R. Silva, J.A. de Oliveira, Phys. Lett. A 379, 1808
(2015)

15. J. Penalva, Master thesis (Univ Estadual Paulista, Rio
Claro, 2014)

16. J.M. Greene, J. Math. Phys. 20, 1183 (1979)
17. E.D. Leonel, P.V.E. McClintock, J.K.L. da Silva, Phys.

Rev. Lett. 93, 014101 (2004)
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