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Abstract In the last decades, the availability of data about the structure of social, technological and bio-
logical systems has provided important insights on the mechanisms governing their correct functioning
and robustness. These mechanisms are grounded on the complex backbone of interactions among the
constituents of the system, which include both topological and dynamical aspects. Here, we analyze inter-
dependent networks composed of two layers of interacting neuronal units and explore their robustness
when these synthetic cultures are subjected to damage in the form of either targeted attack or failure. Our
results show that the functionality of these networks does not decrease monotonically with damage but,
on the contrary, they are able to increase their level of activity when the experienced damage is sufficiently
strong.

1 Introduction

Naturally-formed neuronal circuits, from the worm C.
elegans up to the human brain, have an anatomical
structure characterized by a modular organization, in
the sense that groups of neurons (from few dozens to
millions) tend to connect more strongly within their
group than with the rest of the network [1,2]. In the
mammalian brain, for instance, the visual cortex and
the sensory-motor area shape two important modular
units, which operate as specialized circuits and that
share information when required with other modules
and the rest of the brain. In addition, these mod-
ules exist in a physical environment that combines
two-dimensional and three-dimensional characteristics,
with inherited developmental cues and wiring cost con-
straints [3,4]. Although this modular organization is
central for information processing and functional per-
formance, the topology of the modules themselves and
their interconnectivity is pivotal to shape a flexible
yet robust neuronal system [5]. Flexibility is required
to balance specialization and whole-brain integration,
while robustness is required to ensure that perturba-
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tions or damage do not critically compromise the oper-
ability of the circuits.

To understand the robustness of modular neuronal
circuits, some important aspects to take into account
are node centrality and network topology as well as
their interrelation with intrinsic neuronal dynamics and
noise. Given the inherent complexity of neuronal sys-
tems, studies in the brain [5,6] have been combined
with in vitro experiments in neuronal cultures [7–10]
and numerical simulations [11,12]. These explorations
aim at investigating the effect of damage under two
main scenarios: (i) targeted attacks, i.e., the deletion
of central neurons, and (ii) failures, i.e., the deletion of
randomly selected neurons. With these approaches it is
possible to explore the behavior of neuronal networks
as they experience the removal of units, i.e., as dam-
age progresses, and provide important information to
comprehend and model neurological disorders [13].

Recently, Faci-Lázaro et al. implemented a
biologically-realistic spatial model for the construction
of synthetic neuronal cultures and explored numeri-
cally their response to attacks and failures [12]. One
of the main results observed is that metric correlations
between the neurons, caused by the spatial embedding
of the culture, are closely linked to noise-amplification
mechanisms that trigger spontaneous activity [14].
Moreover, as the damage in the culture progressed, they
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found a transition in the network dynamics from whole-
culture to fragmented. This transition was related to
a fall-and-rise behavior of network activity level with
damage, a surprising and apparently counter-intuitive
phenomenon.

In the present work, we aim to acquire a better under-
standing of the mechanisms that underlie the former
transition and the influence of node centrality in the
behavior of a synthetic modular culture. Our work is
inspired by the intricacy of brain modularity and by
recent experiments in vitro by Yamamoto et al. [7]
and Barral et al. [8], who engineered small modular
or layered neuronal cultures and studied the collective
dynamics of the system for different coupling strengths
among neuronal populations. To this aim, instead of a
biologically realistic model, we build much simpler cul-
tures by using standard synthetic graph models, in par-
ticular the Erdös–Rényi (ER) and the Barabási–Albert
(BA) models, to represent the interconnections between
neurons. Thus, by partially renouncing the accuracy of
biologically inspired models, we gain the physical intu-
ition provided by simple graph models with reduced
complexity, and whose properties are well known and
characterized in the literature [15,16].

The article continues as follows. In Sect. 2 we intro-
duce the structure of the synthetic modular networks
and the way these graphs are combined to form sim-
ple interdependent networks with tunable correlations.
In Sect. 3 we describe the neuronal dynamic model
which, as in Ref. [12], follows the Izhikevich description.
In Sect. 4 we study the behavior of the synthetic cul-
tures when subjected to different damage processes and,
finally, in Sect. 5 we summarize the obtained results.

2 Structural model

Our in silico interdependent neuronal cultures were
designed following a multilayer model with L = 2 lay-
ers, where each layer represents a module in a neu-
ronal network. Each layer contained N = 250 nodes
and was built as a directed graph, following either an
Erdös–Rényi (ER) [17,18] or a Bárabasi–Albert (BA)
[19] topology. We considered the situation in which
both layers in the multilayer construction had the same
topology, so that the resulting multilayer networks were
either ER–ER or BA–BA, with a total of 2N nodes. To
achieve this, the connection probability p of the ER
model, as well as the number of initial connections for
a new node m of the BA model, were set to p = 〈k〉/N
and m = 〈k〉. Here 〈k〉 is the average connectivity in
each layer. The layers were interconnected by adding
f · N2 directed links between them, where f is the
desired fraction of interlayer links.

The nodes from which each interlayer link originated
and terminated were set following a probability distri-
bution, constructed as proportional to the intralayer
degree of each node elevated to a certain exponent β�,

Fig. 1 Schematic representation of coupled BA–BA neu-
ronal networks, constructed as interdependent networks.
The two networks have the same intralayer connectivity,
but different interlayer one. The one on the left is con-
structed with a random interlayer connectivity scenario,
with β1 = β2 = 0, whereas the one on the right is con-
structed with the hub–to–hub interlayer connectivity sce-
nario, with β1 = β2 = 1. Circles represent nodes (neurons),
and their darkness is proportional to their degree. Intralayer
links are plotted in black and interlayer links in red. In this
representation it can be observed that for the β1 = β2 = 0
the generation of an interlayer link between two nodes is
independent of nodes’ degree, whereas for β1 = β2 = 1
the interlayer links are preferentially formed between high
degree nodes

with � indicating the layer, i.e. � = 1, 2. This probabil-
ity distribution then reads:

pinterj,l =

(
kintra

j

)β�

∑N
n=1 (kintra

n )β�
, with � = 1, 2. (1)

Thus, β� = 0 would correspond to the case in which
the nodes from the �-layer are chosen at random as
sources or destinations of links, whereas β� > 0 (alter-
natively β� < 0) would give preference to nodes with
higher (lower) values of intralayer degree as sources or
destinations.

Two possible scenarios for the interconnectivity ER–
ER or BA–BA can be considered depending on the val-
ues of β1 and β2:

(i) β1 = β2 = 0, so that the nodes that shape the
links between layers are chosen at random in both
layers.

(ii) β1 = β2 = 1, so that the nodes of interlayer links
are most likely those with the highest degree, i.e.
the hubs in each layer will tend to connect with
each other.

A schematic representation of the networks obtained
with this model and the above discussed values of β� is
shown in Fig. (1). The details of the parameters used in
the construction of the structural networks are provided
in Table 1.
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Table 1 Values for the structural and dynamical parameters of the in silico cultures

Culture parameters

Number of nodes per layer N = 250
Number of layers L = 2
Topological parameters
Average degree 〈k〉 = 50
Fraction of interlayer links f = 0.01
Connection probability in ER layers p = 〈k〉/N = 0.2
Initial node degrees in BA layers m = 〈k〉
Soma parameters
Resting membrane potential vr = −60 mV
Threshold membrane potential vt = −45 mV
Peak membrane potential vp = 35 mV
Reset membrane potential vc = −50 mV
Time scale of the inhibitory current τa = 50 ms
Leaky capacitance τc = 50 ms
Quadratic growth voltage factor R = 0.5 mV−1

Sensitivity to subthreshold fluctuations b = 0.5
Adaptation and recovery parameter d = 50 mV
Synapse parameters
Depression recovery time τD = 1000 ms
Depression decay β = 0.8
Current strength gA = 50 mV
Current decay time τA = 5 ms
Noise parameters
White noise strength gs = 300 mV2 · ms
Shot noise frequency λ ∈ [0.01, 0.05] ms−1

Shot noise strength (minis) gm = 10 mV
Shot noise decay time τm = τA
Simulation parameters
Algorithm Runge-Kutta 2nd order
time step δt = 0.01 ms
Termalization time per attack or failure tterm = 1 s
Integration time per attack or failure tint = 30 s
Simulation time per attack or failure tsim = tterm + tint

3 Dynamical model

The dynamics of the neurons were simulated through
the Izhikevich model [20], which is an efficient and bio-
logically plausible model for cortical spiking neurons
[21]. Following the implementation described in Refs.
[12,14], the generation of action potentials in a neu-
ron soma is constructed as an integrate-and-fire system
with adaptation and governed by:

τc
dvj

dt
= R (vj − vr)(vj − vt) − uj + Ij + ξ,

τa
duj

dt
= b (vj − vr) − uj ,

If vj ≥ vp −→
{

vj ←− vc,
uj ←− uj + d,

(2)

where vj and uj are the membrane potential and the
recovery current of the j-th neuron; τc is the leaky
capacitance; vr and vt are the resting and threshold

potentials, respectively; Ij is the synaptic current the
j−th neuron received from the rest of the network; τa

is the main time scale of the inhibitory currents; vp is
the value of the membrane potential at which a synap-
tic pulse is emitted; vc is the reset value of the mem-
brane potential after spike emission; d accounts for the
adaptation and recovery of the neurons; R and b are,
respectively, the growth rate of the membrane poten-
tial and the neurons’ sensitivity to subthreshold fluctu-
ations; and ξ is the neuronal network noise. Two con-
tributions are taken into account: a Gaussian noise η
with 〈η(t)η(t′)〉 = 2gsδ(t − t′), associated to fluctu-
ations in the membrane potential; and a shot noise
which accounts for random synaptic pulses elicited by
the neurons without external excitation. These pulses
are called minis, occur with a frequency λ and have a
synaptic strength gm that decays with a time constant
τm.

In this model the spikes generated by each neuron
are transmitted to their neighbors as synaptic currents
of the form:
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Ij(t) =
N∑

i=1

∑

tm<t

AijEi(t, tm),

Ei(t, tm) = gADi(tm) exp
(

− t − tm
τA

)
Θ(t − tm),

dDi

dt
=

1 − Di

τD
− (1 − β)Diδ(t − tm), (3)

where Aij is the connectivity matrix of the network and
Ei(t, tm) is the current induced by the ith neuron at a
time t as a result of the spike generated at time tm.
The variables gA and τA are the strength and decay
time of the synaptic current, respectively. Di(t) is the
depression term that describes the efficacy of the neu-
ron presynaptic terminals [20,23]. The depression has
a resting value of 1 and relaxes exponentially with a
decay time of τD. β is a coefficient related to the loss
in efficiency that occurs whenever a synaptic pulse is
generated. Table 1 summarizes the parameters used in
the construction of the numerical model.

A given network with 2N neurons was simulated for
about 30 s, which provided sufficient statistics for spon-
taneous neuronal activity, which was typically charac-
terized by episodes of whole-network activity combined
with quiescent intervals. For a given activity episode
we quantified the avalanche size S and the degree of
activity A [12]. The avalanche size S was defined as the
fraction of the neurons in the network that co-activated
together. An avalanche was accepted as such whenever
any two neurons had at most a delay of 50 ms in their
activations. A larger time automatically separated an
avalanche from another. The degree of activity A was
the number of observed avalanches in the 30 s of simula-
tion. A total of 10 network realizations of either ER–ER
or BA–BA were explored. The variability among real-
izations was quantified through the standard deviation
of the mean for both S and A.

4 Results: dynamical response to damage

Once the cultures were constructed and their dynam-
ics characterized, we adjusted the parameters to ensure
that any culture —pair of interconnected layers—
operated in a synchronous manner, i.e., that all 2N neu-
rons activated together in a short time window. In this
situation, we studied their response to damage caused
by sequential neuronal deletion, and where the connec-
tivity k of each neuron, given by k = kintra + kinter,
was the important measure to decide whether a neuron
was a central node or not. Indeed, to assess the dynam-
ical response of the cultures to damage, we compared
the results obtained when removing nodes in decreasing
order of degree k (attacks) with those obtained when
removing the neurons at random (failures). We also
studied the effects of the degree correlation between
the two network layers and the influence of the degree
distributions of each layer in the response to damage.

fraction of removed neurons, q

BA
ER
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BA
ER
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Fig. 2 Size of the giant component G, avalanche size S
and degree of activity A upon targeted attack for single
layer cultures with ER and BA topologies. The panels show
the evolution of G, S and A as a function of the fraction of
removed nodes in the network q following a node deletion
from higher to lower connectivity k, comparing BA networks
(blue) and ER (red) ones. To better compare the ER and BA
configurations, the avalanche size S is given as the fraction
of neurons in the network that activate together, while A is
scaled relative to the activity value at q = 0 (17 avalanches
in 30 s for ER, 20 avalanches in 30 s for BA). Data is aver-
aged over n = 10 numerical realizations of each topology,
with the shading corresponding to the standard deviation
of the mean. Both networks show an increase in activity for
q ≈ 0.8. For the ER networks, this increase in activity is
accompanied by a slight drop in avalanche size while the
giant component remains G ≈ 1. Instead, for BA networks,
the avalanche size remains large while the activity increases
even though the size of the giant component starts decreas-
ing for q ≈ 0.85, eventually reaching G = 0 for q ≈ 0.95

For the sake of clarity, before analysing the dynami-
cal response to damage in two-layer cultures let us show
the behavior of monolayer cultures, i.e. single ER or BA
networks. In Fig. 2 we show the evolution as a function
of the fraction of removed neurons, q, of three different
metrics that capture the structural and dynamical evo-
lution, namely the giant component of the network G,
the avalanche size S and the degree of network activ-
ity A. The two latter (dynamical) metrics appear nor-
malized to their corresponding values at q = 0, i.e. to
those of the original culture, while in the case of G we
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compute the number of nodes in the giant connected
component divided by the total number of nodes with
degree ki > 0. In this way we avoid the trivial decrease
of G due to the removal of nodes while, at the same
time, we easily capture potential giant component break
down events.

From the panels it is clear that the dynamical
response of both networks remains unaltered as q
increases until large values of q are reached. In partic-
ular, a fraction of neurons q ≈ 0.7 should be removed
to observe a substantial change in the activity of the
network that, for both ER and BA networks, experi-
ments an increase while maintaining the same average
avalanche size S. It is important to note that the boost
of the dynamical activity of ER and BA networks occurs
for G ≈ 1, i.e. it is not related to a network fragmenta-
tion that, in its turn, occurs for much larger values of q
(q ≈ 0.9). Summing up, for both ER and BA monolayer
networks, the impact of structural damage on network
behavior appears before the giant component breaks
down; an impact that is reflected in the increase of net-
work activity up to 50% of the original network (q = 0).
This increase has a non–trivial nature associated to the
complex interplay between connectivity, intrinsic neu-
ronal activity and noise.

Now we put our focus on the two-layer cultures. Let
us start with the case in which there are no correla-
tion between the degrees of the neurons that are cou-
pled through inter-layer links. In this case, the proba-
bility of forming an interlayer link is characterized by
β1 = β2 = 0. In Fig. 3a we show again the evolution of
normalized values of the giant component size G (top),
the avalanche size S (middle), and the degree of activ-
ity A (bottom) as a function of the fraction of removed
neurons, q, for ER–ER (red) and BA–BA (blue) cul-
tures. Again, as in the case of monolayer cultures, the
dynamical changes observed in S and A are not cor-
related with a break down of the network in different
connected components, since G remains close to 1 until
q reaches very large values (q ≈ 0.95). However, the
dynamical response of BA and ER bilayers is differ-
ent, and richer, than in the case of monolayers. On the
one hand, for ER–ER we observe a similar pattern to
that shown in Fig. 2, i.e., an increase of network activ-
ity, although here we observe two well defined peaks
instead of a single maximum. On the other, the BA–
BA behavior is clearly different form the case of the
single BA network, for it shows a significant drop in
the activity pinpointed by two local minima of A(q)
and that take place at q ≈ 0.5 and q ≈ 0.8. After these
two drops, and before the BA–BA duplex breaks apart,
the level of activity recovers to values close to the origi-
nal undamaged network, although the avalanche size is
much smaller (S ≈ 0.7). It is important to note that,
in this regime of large values of q, the large variability
between BA–BA culture realizations indicates that this
system is very sensitive to the wiring among neurons.

Now we turn our attention to the case of correlated
two-layer cultures. When the correlation between inter-
layer nodes’ degrees is introduced by using β1 = β2 = 1
[see Fig. 3b], the former observations become more

noticeable for large values of q, specially for the ER–
ER cultures. In particular, when the correlated cultures
experience damage through targeted attacks, a signifi-
cant burst in activity is found at q ≈ 0.75 for ER–ER
cultures and at q ≈ 0.8 for BA–BA ones. The only
difference between these two network designs is that,
in the ER–ER cultures, this burst is accompanied by
a substantial decrease in the size of the avalanches,
whereas this does not occur for the BA–BA cultures.
The same behavior can also be found for the case of
failures (figure not shown), but they are not as notice-
able and take place at higher values of the fraction of
removed neurons, q ≈ 0.95.

We note that, as in the case of monolayer and
uncorrelated two-layer cultures, the dynamical effects
in response to damage emerge much before the duplex
breaks down. In fact, the change in the degree of activ-
ity of the ER–ER cultures pinpoints that, as these cul-
tures experience damage, delivered through either tar-
geted attacks or failures, they eventually reach a point
in which their activity transitions from encompassing
the whole-network to a fragmented dynamical state, in
which there are more events of coherent activity but
involving a smaller fraction of the remaining neurons of
the culture, as also observed in Ref. [12].

In the case of BA–BA cultures, this transition to
coherent but fragmented dynamics is not observed,
since the size of the avalanches remains close to 100%
of the network up to q → 1. However, this is to be
expected, since the main characteristics of BA networks
are the presence of hubs and a high clustering among
these highly connected nodes. These topological fea-
tures of BA networks act as amplification mechanisms
of the activity of the culture [22] by facilitating the exis-
tence of feed-forward and feed-backward loops [14,24].

The observation that BA–BA cultures do not frac-
ture regardless the level of damage points out that
these cultures are extremely resilient and robust. This
is, BA–BA cultures are able to keep the main topo-
logical properties responsible for the presence of whole-
network coherent activations, as opposed to the ER–ER
cultures, which show a behavior closer to that of cul-
tures with biologically realistic connectivity patterns
[12]. This can be understood by taking into account
that small enough realistic cultures display a structure
of connections similar to those present in ER graphs
[24].

It is also important to note that, unlike what is
observed in realistic neuronal models [12], Fig. 3 shows
that the degree of activity does not approach zero at
any point, especially in the ER–ER cultures. For this
to occur, the structure would have to be such that it
would be possible to eliminate (almost) all avalanche
precursor nodes, and without any other node replacing
them and taking up their role before the transition to
fractured dynamics occurred. In other words, the struc-
ture would have to be hierarchical, which is a property
that the simple BA and ER graph models lack. Hier-
archical organization is a feature that has already been
proposed as a trait of great importance in biological
systems [7,25]. Thus, topological hierarchy would be a
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(a) (b)

Fig. 3 Giant component size G, avalanche size S and
degree of activity A upon targeted attack. To better com-
pare the ER–ER and BA–BA configurations, the avalanche
size S is given as the fraction of neurons in the network that
activate together, while A is scaled relative to the activ-
ity value at q = 0. a Interdependent network built using
a random interlayer connectivity (β1 = β2 = 0). The pan-
els show the evolution of the different metrics as a function
of the fraction of removed nodes in the network q follow-
ing a node deletion from higher to lower connectivity k,
comparing BA–BA networks (blue) and ER–ER (red) ones.
Activity at q = 0 was 17 avalanches in 30 s for ER–ER
and 20 avalanches in 30 s for BA–BA. b Equivalent explo-
ration for a network with hub-to-hub interlayer connectivity

(β1 = β2 = 1). Activity at q = 0 was 16 avalanches in 30 s for
ER–ER and 19 avalanches in 30 s for BA–BA. In all panels
data is averaged over n = 10 numerical realizations of each
topology, with the shading corresponding to the standard
deviation of the mean. ER–ER networks show a substantial
increase in activity for q ≈ 0.8 in both interlayer configu-
rations, which is accompanied by a drop in avalanche size.
BA–BA networks show strong fluctuations in the random
interlayer configuration, but activity remains similar along
q within error bars. These networks substantially increase
in activity for in q ≈ 0.8 in the hub-to-hub interlayer config-
uration, but this increase is not accompanied by a decrease
in avalanche size. It is important to note that all these phe-
nomena occur with G ≈ 1

fundamental ingredient when trying to develop accurate
models aimed at simulating or predicting the response
to damage in biological neuronal networks.

5 Discussion

Recognizing the basic structural properties of neu-
ronal networks is fundamental to fully understand their
behavior. To this aim, in this work we have used two of
the most studied and well characterized models to built
our synthetic cultures, namely the Erdös-Rényi and the
Barabási-Albert models. With them, we created syn-
thetic bilayer cultures of ER–ER or BA–BA, intercon-

nected at random or by considering degree correlations,
and studied their response to attacks and failures.

We observed that once the culture has experienced
enough damage (q ≈ 0.8 for targeted attacks and q ≈
0.95 for failures) it experiments a burst in its activity
as well as a decrease in the average avalanche size. This
indicates that, at that level of damage, the dynamics of
the culture transitions from whole-network to fractured,
a behavior that is consistent with previous results [12].
In addition, we also observed that spontaneous activity
never reached zero in the synthetic networks studied,
i.e., they are always capable of sustaining a substantial
level of activity. This means that, regardless the amount
of avalanche initiating neurons that were removed from
the culture upon damage, there was always other nodes
able to take up their role.
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With this in mind, a first ingredient that a numeri-
cal model should have to capture the dynamics of liv-
ing neuronal systems —particularly in the context of
damage—is a broad degree distribution, so that it is
sufficiently heterogeneous for the culture to have a frac-
tion of neurons with the necessary topological proper-
ties to act as initiators of coherent activity. Some of
these properties include the presence of feed-forward
and feed-backward loops [14], which are strongly related
to high clustering coefficients and connectivity. A sec-
ond ingredient is that the model should shape a hier-
archical structure, as otherwise the culture activity
would remain somewhat constant until the transition
to a dynamic fracture state. Interestingly, experiments
in neuronal cultures in which nodes were randomly
removed (the equivalent to failure), showed an impor-
tant drop of activity, by 60%, following damage on
just a single node [9]. This illustrates how important
is the development of numerical models to understand
which ingredients are necessary for modeling experi-
mental behavior.

In a nutshell, the results obtained in this work point
out that, although some of the properties of simple
graphs can explain the dynamic behavior and robust-
ness observed in real neural cultures, the role of more
sophisticated features, such as hierarchical patterns and
metric correlations, are necessary for a correct modeling
of these neural systems.
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15. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical
processes on complex networks (Cambridge University
Press, Cambridge, 2008)

16. M.E.J. Newman, Networks, 2nd edn. (Oxford University
Press, Oxford, 2018)
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