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Abstract We present analytical expressions and numerical results for the rates of energy exchange between
oscillators and with the environment in a heterogeneous ensemble of globally coupled mechanical phase
oscillators. The system is in stationary motion under the combined action of an external harmonic exci-
tation, coupling, and friction. Individual moments of inertia and friction coefficients are different between
oscillators. Three dynamical regimes, with different degrees of entrainment with the external excitation,
are characterized. In two of these regimes, the rates of energy exchange show nontrivial dependence on the
moments of inertia and friction coefficients, suggesting that the transfer of power between different parts
of the ensemble can be manipulated by a convenient choice of the individual parameters.

1 Introduction

Since the inception of complex systems as a focus of
interest within Physics, ensembles of coupled oscilla-
tors have provided one of the main archetypes for
the study of the emergence of collective behavior in
systems formed by many interacting dynamical ele-
ments. Coherent motion induced by coupling—namely,
mutual synchronization of various degrees between sin-
gle oscillations—is identified as a paramount example
of the kind of phenomena brought about by the inter-
play of individual dynamics and interactions [1,2]. The
study of collective behavior in large ensembles of cou-
pled oscillators has been originally motivated by the
observation of coherent dynamics in biological systems,
ranging from molecular complexes and cell tissues to
populations of insects and other living beings [3]. The
basic mechanism underlying synchronization in oscil-
lator ensembles, initially proposed by Winfree [4] and
later formalized by Kuramoto [5], is directly inspired in
the reciprocal action of “biological clocks”.

On the other hand, although the first recognized
historical observation of synchronization was reported
for two pendulum clocks (in 1665, by Christiaan Huy-
gens [1]), ensembles of interacting mechanical oscilla-
tors have received relatively little attention concerning
their feasibility of becoming synchronized. The joint
motion of mechanical oscillators, however, not only
provides an effective theoretical illustration of coher-
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ent evolution in dynamical systems, but is also an
important matter of consideration in many technolog-
ical applications. In particular, the control of energy
exchange between different components of a mechani-
cal device, and between the device and its surroundings,
is of high relevance to the functioning of a broad class of
machines and instruments. Examples that involve cou-
pled oscillators are, for instance, equipment for energy
harvesting [6,7], pacemakers, and sensors [8–10].

In a recent contribution [11], we have studied energy
exchange in an ensemble of globally coupled mechanical
oscillators, in a situation where the system is excited
by an external harmonic force applied to one of the
oscillators. Friction forces, whose intensity varied from
oscillator to oscillator, made it possible to reach a state
of stationary motion where we characterized the flow
of energy between different oscillators and with the
environment. The conservative part of the dynamics,
which encompassed coupling between oscillators, was
described by the mean-field Hamiltonian [12,13], where
the canonical coordinates of each oscillator are its phase
and the conjugate (angular) momentum.

Here, we generalize the analysis to the case where
both the friction coefficients and the moments of iner-
tia are different between oscillators. We show that this
heterogeneity induces a varied dependence of the rates
of energy exchange on the individual parameters of each
element, which can even control the direction in which
energy flows in different parts of the system. Energy
exchange is characterized in three disparate regimes of
coherent motion, depending on the degree of entrain-
ment with the external excitation: full and partial syn-
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chronization, and desynchronization. In Sect. 2, after
introducing our model, we describe the main dynamical
properties of the three regimes. In Sect. 3, approximate
analytical solutions for the equations of motion in each
regime are presented. Using these solutions, in Sect. 4,
we calculate the respective rates of energy exchange,
and present a comparison with results obtained from
direct numerical integration of the equations. Finally,
conclusions are outlined in Sect. 5.

2 Globally coupled non-identical phase
oscillators

Our system consists of an ensemble of N phase oscilla-
tors subjected to global coupling, friction, and an exter-
nal harmonic excitation applied to one of the oscillators
–which, without generality loss, we identify as oscillator
1. The dynamical state of each oscillator is fully charac-
terized by its phase θn(t) ∈ [0, 2π) and the correspond-
ing conjugate momentum pn(t). Coupling is given by
a pair interaction which derives from the Hamiltonian
mean-field (HMF) model,

H =
N∑

n=1

p2n
2In

− K

N

N∑

n<m

cos(θm − θn), (1)

where In is the moment of inertia of oscillator n, and
K is the coupling strength. We recall that, owing to
its minimalist nature, the HFM model has been widely
applied to the study of collective behavior in Hamil-
tonian systems [12,13]. Here, we use it as a conve-
nient stylized representation of any ensemble of coupled
mechanical (nonlinear) oscillators.

To the equations of motion derived from the Hamil-
tonian in Eq. (1), we add friction forces proportional to
the velocities θ̇n, and the external harmonic excitation,
getting

Inθ̈n=
K

N

N∑

m=1

sin(θm − θn) − γnθ̇n+F sin(ωt − θ1)δn1,

(2)

for n = 1, . . . , N , where γn are the friction coeffi-
cients. In the last term, F and ω are the amplitude
and frequency of the external excitation, and δn1 is
Kronecker’s delta. Note that this forcing is equivalent
to the interaction of oscillator 1 with an oscillator of
prescribed phase ωt, having the same dependence on
phases as the coupling described by the first term in
the right-hand side.

Equations (2) adopt a more tractable form if we intro-
duce a Kuramoto-like order parameter [5]

R eiΘ =
1

N − 1

N∑

n=2

eiθn . (3)

Because of the special dynamical status of oscillator 1,
which experiences the action of the external force, we
have restricted the sum in Eq. (3) to n > 1. Hereafter,
the group of oscillators with n = 2, . . . , N is called the
Ω set.

It is convenient, moreover, to rescale time in such a
way that the frequency of the excitation equals unity.
This amounts to renaming ωt → t, ω−2K → K,
ω−1γn → γn, and ω−2F → F for all n. With these
definitions, Eqs. (2) finally read

I1θ̈1 = K̄R sin(Θ − θ1) − γ1θ̇1 + F sin(t − θ1) (4)

for oscillator 1, and

Inθ̈n = K̄R sin(Θ − θn) − γnθ̇n + k sin(θ1 − θn) (5)

for n = 2, . . . , N , with K̄ = (N−1)K/N , and k = K/N .
The instantaneous power exchanged by oscillator n

with the rest of the system is given by the product
Inθ̇nθ̈n. As the oscillator receives or releases energy,
this quantity is respectively positive or negative. Its
average over time, wn = In〈θ̇nθ̈n〉t, can be divided
into contributions coming from the three mechanisms
that drive the dynamics, namely, coupling, friction, and
the external excitation. Specifically, we write wn =
wΩ

n + wΓ
n + wF

n , where

wΩ
n = K̄〈R sin(Θ − θn)θ̇n〉t (6)

is the rate of energy exchange between oscillator n and
the Ω set, and

wΓ
n = −γn〈θ̇2n〉t, (7)

equals the power lost by friction. Moreover,

wF
1 = F 〈sin(t − θ1)θ̇1〉t (8)

corresponds to the power received or released by oscil-
lator 1 from or towards the source of external forcing,
and

wF
n = k〈sin(θ1 − θn)θ̇n〉t, (9)

for n = 2, . . . N , is the rate of energy exchange of an
oscillator in the Ω set with oscillator 1.

As discussed in our previous publication [11], the
present system is expected to exhibit three qualita-
tively different stationary regimes of collective behav-
ior, depending on the parameters which control the
dynamics. These regimes are characterized by diverse
degrees of synchronization with the external excitation.
It is important to remark that they are not necessar-
ily separated by sharp boundaries in parameter space,
but rather belong to well-differentiated ranges of K, F ,
and of the individual parameters In and γn. The three
regimes are schematized in Fig. 1.
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Fig. 1 Upper row: Illustrative diagram of the position and
the velocity of oscillators around the circle of phases, in the
three regimes of collective behavior described in the text.
The cross indicates the phase of the external excitation.
Open and full dots represent oscillator 1 and the Ω set,
respectively. Single arrows stand for the frequency of exci-

tation and the average frequency of oscillators, and double
arrows denote small oscillations around the average motion.
Lower row: Schematic representation of the time dependence
of phases for the excitation, oscillator 1, and the Ω set, as
indicated in the legend

When the external excitation is sufficiently strong as
compared to the action of coupling and friction, oscilla-
tors reach a state of full synchronization. In this regime,
the whole ensemble moves rigidly with the same fre-
quency as the forcing. Different oscillators, however,
have different phases, depending on their individual
moments of inertia and friction coefficients.

If the external excitation remains dominant but fric-
tion forces overcome the effects of coupling, the aver-
age motion of oscillator 1 is still synchronized with the
forcing. In contrast, the Ω set detaches itself from syn-
chronized motion and, on the average, moves at a much
slower pace. Moreover, in this regime of partial synchro-
nization, all oscillators perform small-amplitude oscil-
lations around their average phase drift.

Finally, when the external force is weak as compared
to coupling and friction, the excitation is unable to
entrain the ensemble and desynchronization follows. In
this situation, oscillator 1 becomes aggregated to the
Ω set, and the whole ensemble moves with a frequency
much smaller than that of the forcing, also modulated
by small oscillations.

In the following, we provide a quantitative descrip-
tion of these three stationary dynamical regimes, within
some simplifying assumptions that make the problem
analytically tractable. Results allow us to explicitly cal-
culate the rates of energy exchange wΩ

n , wΓ
n , and wF

n of
Eqs. (6) to (9). These quantities are compared with esti-
mations obtained from numerical solution of the equa-
tion of motion, illustrating the variety of behaviors that
energy exchange can adopt all over the system.

3 Analytical treatment of collective
dynamics

The equations of motion (4) and (5) can be dealt with
analytically if the standard deviation of the friction
coefficients and the moments of inertia over the ensem-
ble, σγ and σI , respectively, are sufficiently small as
compared with the coefficients themselves. Numerical
integration of the equations show that, under these con-
ditions, the dispersion of phases between the oscillators
in the Ω set is small. Based on this evidence, we assume
that the individual phases θn differ from their arith-
metic average 〈θ〉 = (N − 1)−1

∑N
n=2 θn by quantities

εn = θn − 〈θ〉 which are proportional to σγ and σI .
Neglecting terms of order σ2

γ and σ2
I in Eq. (3), we get

R exp(iΘ) = exp(i〈θ〉) or, equivalently,

R = 1, Θ = 〈θ〉. (10)

Moreover, if we disregard statistical correlations between
friction coefficients and velocities on one side, and
moments of inertia and accelerations on the other, we
can write

1

N − 1

N∑

n=2

γnθ̇n = 〈γ〉〈θ̇〉, 1

N − 1

N∑

n=2

Inθ̈n = 〈I〉〈θ̈〉,

(11)

where 〈·〉 stands for averages over the Ω set. Naturally,
the validity of these assumptions is to be assessed from
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comparison with numerical results, which we postpone
to next section.

Replacing our simplifying hypotheses in Eqs. (4) and
(5), we get a pair of coupled equations of motion for the
phase of oscillator 1 and for the average phase of the Ω
set, θ1 and Θ, of the form

I1θ̈1 = K̄ sin(Θ − θ1) − γ1θ̇1 + F sin(t − θ1), (12)

〈I〉Θ̈ = −〈γ〉Θ̇ + k sin(θ1 − Θ). (13)

The equation of motion for the individual phase differ-
ences in the Ω set, εn = θn −Θ, is obtained by dividing
Eq. (5) by In, subtracting Eq. (13) divided by 〈I〉, and
approximating to the first order in εn:

ε̈n = −K̄nεn +
Kn − K

N
sin(θ1 − Θ) − (γn − 〈γ〉)Θ̇ − γnε̇n.

(14)

Here, for the sake of brevity in notation, we have
renamed γn/In → γn, 〈γ〉/〈I〉 → 〈γ〉, and K/〈I〉 → K.
Also, we have defined Kn = K/In, K̄n = K̄/In. Note
that Eq. (14) couples the dynamics of εn with those of
θ1 and Θ.

Equations (12) to (14) constitute our approximation
to deal analytically with the equations of motion (4)
and (5). In the following, we study their solution in the
three synchronization regimes pointed out in Sect. 2.

3.1 Full synchronization

For the whole ensemble to synchronize with the external
excitation it is necessary, first, that oscillator 1 becomes
entrained by the harmonic force. This requires that, in
Eq. (4), the last term in the right-hand side dominates
over the other two, F � K̄, γ1. Under these conditions,
for long times, the phases of oscillator 1 and the external
excitation differ by a small quantity

η(t) = t − θ1(t). (15)

To the first significant order in η, Eq. (4) becomes

η̈ = K̄ sin(τ − Θ) − γ1(η̇ − 1) − Fη, (16)

while from Eq. (5) we get

Θ̈ = −〈γ〉Θ̇ + k sin(t − Θ). (17)

This is the equation of motion for a mechanical oscil-
lator of phase Θ subjected to friction and an external
harmonic force of unitary frequency. It can be readily
shown [2,11] that, for long times, its solution becomes
synchronized to the force if k > 〈γ〉. Thus, this is the
second condition that defines the regime of full syn-
chronization in our oscillator ensemble. The asymptotic
stationary solution for the average phase in the Ω set

is

Θ = t − arcsin
〈γ〉
k

. (18)

Replacing this result in Eq. (16), and taking into
account the first condition that defines the regime of
full synchronization, we consistently verify that |η| � 1
for long times.

Finally, substituting Eq. (18) in Eq. (14), we obtain
the individual deviations of oscillators in the Ω set with
respect to their average phase:

εn =
〈γ〉
K̄n

(δKn − δγn) , (19)

with

δKn =
Kn − K

K
, δγn =

γn − 〈γ〉
〈γ〉 . (20)

Note that εn results from the combination of the devi-
ations of individual coupling constants Kn and fric-
tion coefficients γn with respect to their average val-
ues. Depending on their relative sign, these deviations
can mutually reinforce their effect or compensate each
other.

3.2 Partial synchronization

When F � K̄, γ1 and 〈γ〉 > k, Eqs. (15) and (16)
still hold and, therefore, oscillator 1 is entrained by the
external excitation and moves with the same frequency,
but the Ω set does not synchronize with oscillator 1.
This situation defines the regime of partial synchro-
nization, for which we are able to provide an analyt-
ical description in the limit 〈γ〉 � k. On the basis of
numerical evidence, as advanced in Sect. 2, we propose
a stationary solution where the average phase in the Ω
set moves with a small constant drift velocity ν and, at
the same time, oscillates around this uniform motion
with a small amplitude and a frequency induced by its
interaction with oscillator 1, namely,

Θ(t) = A cos[(1 − ν)t − Ψ ] + νt. (21)

Substitution into Eq. (17) gives, to the leading order in
ν and A,

A =
k√

1 + 〈γ〉2 (22)

where we have neglected higher-harmonic contributions
coming from the last term in the right-hand side. Fur-
thermore, averaging the equation over the fast oscilla-
tion of frequency 1 − ν, we find

ν =
1
2
A2 =

k2

2(1 + 〈γ〉2) (23)
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for the drift velocity. Consistently with our approxima-
tion to the regime of partial synchronization, we have
A, ν � 1. Moreover, replacing the stationary solution
for the average phase in the Ω set into Eq. (16), and
using the defining conditions of this regime, we find
that the approximation |η| � 1 holds. This implies
that oscillator 1 is entrained by the external excitation,
which makes our analytical description consistent.

For asymptotically long times, the individual devi-
ations from the average motion of the Ω set are now
time-dependent:

εn(t) = A

√
(δKn)2 + 〈γ〉2(δKn − δγn)2

(
K̄n − 1

)2
+ γ2

n

cos(t − ψn), (24)

with A given by Eq. (22). The phase shifts Ψ in
Eq. (21) and ψn in Eq. (24) can also be given explicit
expressions. However, since these algebraically cumber-
some formulas are not involved in the rates of energy
exchange we are interested in, we avoid reporting them
for brevity.

Note that, in contrast with the result of Eq. (19)
in the regime of full synchronization, the deviations
εn in Eq. (24) cannot be suppressed by mutually com-
pensating δKn and δγn. In the regime of partial syn-
chronization, a dispersion in the values of Kn –i.e. in
the moments of inertia– is enough to induce non-trivial
dynamics inside the Ω set.

3.3 Desynchronization

When the condition on the external excitation that
defines the regimes of full and partial synchronization
is inverted, F � K̄, γ1, the oscillator ensemble cannot
be entrained by the force, and moves out of synchrony.
In this regime, at long times, both oscillator 1 and the
Ω set exhibit a slow drift with the same velocity, and
small oscillations around this motion. Our proposal for
the solutions to Eqs. (4) and (5) is now

θ1(t) = a1 cos[(1 − ν)t − ψ1] + νt,

Θ(t) = A cos[(1 − ν)t − Ψ ] + νt + Θ0.
(25)

To the leading order in amplitudes and velocities, we
get

a1 =
F√[

q̄K̄ − 1 + q(N − 1)
]2 + (q̄γ1 + qΓ )2

, (26)

A =
√

qF√[
q̄K̄ − 1 + q(N − 1)

]2 + (q̄γ1 + qΓ )2
, (27)

and

ν =
1
2
A2 +

q̄γ1
2Γ

a2
1, (28)

with Γ =
∑N

n=2 γn and

q ≡ k2

(k − 1)2 + 〈γ〉2 , q̄ = 1 − q. (29)

The individual deviations εn have the same form as
in Eq. (24), with A now given by Eq. (27). As in the
regime of partial synchronization, the phase shifts in
Eqs. (25) and in the expression for εn can be given
explicit expressions, which we do not report here.

4 Rates of energy exchange: analytical and
numerical results

Having obtained approximate stationary solutions for
the equations of motion in the three regimes of collec-
tive dynamics of our system, we can now proceed to cal-
culate the rates of energy flow and dissipation, wΩ

n , wΓ
n ,

and wF
n , given by Eqs. (6)–(9). The procedure amounts

to substituting the solutions found in the preceding sec-
tion and, within the same approximation order, com-
pute the time averages which define the quantities wΩ

n ,
wΓ

n , and wF
n . As we show in the following, the results

can be given explicit analytical expressions.
At the same time, we compare our analytical results

with estimations of the same quantities obtained from
direct numerical integration of the equations of motion
(2). This integration was performed using a standard
Runge–Kutta fourth-order ODE solver implemented in
C++. At every time step, the sum of forces acting over
each oscillator was calculated in GPU by means of the
Thrust parallel algorithms library [14]. With the aim
of maintaining consistency and accuracy in the com-
putation, we strictly adhered to the following protocol.
(i) Set the total integration time to ten times the maxi-
mum ratio between moment of inertia and friction coef-
ficient over the ensemble, 10maxn{In/γn}. This set-
ting satisfactorily ensures that transients have elapsed
and that stationary oscillations have been reached. (ii)
Choose a sufficiently small time discretization, so that
the total deviation in the conservation of energy due to
the numerical errors remains below 0.1%. (iii) Store in
video memory the data for the position and the veloc-
ity of each oscillator during ten successive oscillations in
the stationary state. (iv) Calculate the time average of
the different rates of energy exchange using the stored
data, by means of GPU parallel computation. In all
cases studied below, the relative discrepancy between
analytical and numerical results consistently remained
within a few percent.

From the analytical solutions in the regime of full
synchronization, we get

wΩ
1 = −(N − 1)〈γ〉,

wΓ
1 = −γ1,

wF
1 = (N − 1)〈γ〉 + γ1, (30)
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for oscillator 1, and

wΩ
n =

K

Kn
〈γ〉(δγn − δKn),

wΓ
n = − K

Kn
γn,

wF
n = 〈γ〉, (31)

for n = 2, . . . , N . It can be shown that wΩ
n +wΓ

n +wF
n =

0 for all n, as expected to happen in stationary motion,
where the incoming and the outgoing mechanical power
must compensate each other for each oscillator.

In this regime, the rates of energy exchange depend
linearly on the friction coefficients and are inversely pro-
portional to the constants Kn –i.e. they are linear on
the moments of inertia In (see Sect. 3). Moreover, the
exchange of energy between oscillators in the Ω set,
measured by wΩ

n , can change sign depending on the
deviations of γn and Kn with respect to their aver-
ages. These deviations, in turn, can reinforce or com-
pensate each other; cf. Eq. (19). Figure 2 shows three-
dimensional plots of wΩ

n , wΓ
n , and wF

n for the Ω set over
the plane spanned by Kn and γn. Gridded surfaces cor-
respond to the analytical results of Eq. (31) and dots
are numerical estimations for a system of 2 × 104 oscil-
lators, with the parameters indicated in the caption.

In the regime of partial synchronization, we have

wΩ
1 = −A2

2
(N − 1)〈γ〉,

wΓ
1 = −γ1,

wF
1 =

A2

2
(N − 1)〈γ〉 + γ1, (32)

for oscillator 1, where the amplitude A is given by
Eq. (22). Meanwhile, the rates of energy exchange for
the Ω set are

wΩ
n =

A2

2
K̄〈γ〉

(K̄n − 1)2 + γ2
n

[
δγn(K̄n − 1)

−δKn(K̄n − 1 + γn/〈γ〉)] ,

wΓ
n = −A2

2
γnK/Kn

(K̄n − 1)2 + γ2
n

[(Kn − 1)2 − 〈γ〉2δγn

+2δKn(〈γ〉γn − K̄n + 1) + (δKn)2(1 + 〈γ〉2)],
wF

n =
A2

2
〈γ〉

(K̄n − 1)2 + γ2
n

[(K̄n − 1)2 + γ2
n

−δγn(K̄ − 1 + 〈γ〉γn)
+δKnγn(1 + 〈γ〉2)/〈γ〉]. (33)

Now, as a consequence of the approximations involved
in our analytical approach to partial synchronization,
wΩ

n + wΓ
n + wF

n = 0 to the first order in δKn only.
Figure 3 shows the quantities wΩ

n , wΓ
n and wF

n for the
Ω set in the regime of partial synchronization. The first
substantial difference with the case of full synchroniza-
tion is that the rates of energy exchange are now much

smaller (the vertical axes in the plots are amplified by a
factor of 108). This is due to the fact that, as implied by
Eq. (22), oscillations have an amplitude of order K/N .
As a consequence, for a given value of K, energy flow
and dissipation are of order N−2.

However, the main feature in the rates of energy
exchange for partial synchronization resides in their
non-trivial dependence on both the friction coefficient
γn and the coupling constant Kn. The profile of the rate
of energy dissipation (middle panel of Fig. 3) points to
the existence of a resonance effect for Kn ≈ 1, which
becomes enhanced as γn approaches zero. Mathemati-
cally, the sharp downward peak of wΓ

n is a direct conse-
quence of the denominator (K̄n − 1)2 + γ2

n in Eq. (33),
which is already present in the amplitude of individual
departures from the Ω set, Eq. (24). This resonance can
be traced back to the equation of motion (14) for the
deviation εn where, as demonstrated by the first term
in the right-hand side, K̄n plays the role of the squared
natural frequency of εn. From the third term, mean-
while, we see that εn is being forced harmonically by
the Ω set, through its phase Θ. This phase moves with
unitary frequency as a collective response to the cou-
pling with oscillator 1, which is in turn driven by the
external excitation. In short, εn behaves as a damped
harmonic oscillator of squared frequency K̄n subjected
to an excitation of unitary frequency. Thus, it exhibits
a resonance at K̄n = 1. Because of their more compli-
cated dependence on K̄n, the rates wΩ

n and wF
n exhibit

a change of sign for Kn ≈ 1, with conspicuous extrema
at each side, at least, for small γn. This behavior resem-
bles the dependence of the phase of oscillation near the
resonance of a periodically forced, damped harmonic
oscillator.

Finally, for the regime of desynchronization, we get

wΩ
1 = −(N − 1)〈γ〉

(
A2

2
+ ν2

)
,

wΓ
1 = −γ1

(
a2
1

2
+ ν2

)
,

wF
1 =

A2

2
(N − 1)〈γ〉 +

a2
1

2
γ1 + Γν2, (34)

for oscillator 1, with a1, A, and ν given by Eqs. (26) to
(28), respectively. For the Ω set, in turn, we find

wΩ
n = −K̄n

A2

2

〈γ〉δrn(K̄n − 1) + γnδKn

(K̄n − 1)2 + γ2
n

−〈γ〉 K

Kn
δrnν2,

wΓ
n = −A2

2

γnK/Kn

(K̄n − 1)2 + γ2
n

[(K̄n − 1)2 + γ2
n

+(〈γ〉δrn)
2 + (δKn)

2

+γn〈γ〉δrn − (K̄n − 1)δKn] − γn
K

Kn
ν2,

wF
n =

A2

2
〈γ〉

[
1 +

γn〈γ〉Δrn − δγn(K̄n − 1) + γnδKn/〈γ〉
(K̄n − 1)2 + γ2

n

]

+
K

Kn
ν2(〈γ〉δrn + γn) (35)
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Fig. 2 Rates of energy
exchange, wΩ

n , wΓ
n , and

wF
n , in the regime of full

synchronization as
functions of the friction
coefficients γn and the
coupling constants Kn of
individual oscillators in the
Ω set. The gridded
surfaces correspond to the
analytical results of
Eqs. (31), and the dots
show numerical results for
N = 2 × 104, K̄ = 1.5 × 104

and F = 105. The friction
coefficients and moments
of inertia were drawn from
a Gaussian distribution
with mean values 〈γ〉 = 0.2
and 〈I〉 = 1, and standard
deviations σγ = 0.05,
σI = 0.1 respectively. The
bright line on the
horizontal surface of the
uppermost panel indicates
the curve in the
(Kn, γn)-plane where
wΩ

n = 0
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Fig. 3 As in Fig. 2, for
the regime of partial
synchronization. Here,
K̄ = 1 and F = 103. For
clarity in the
representation, scales in
the vertical axes are
multiplied by a factor 108.
Bright lines on the
horizontal planes of the
upper- and lowermost
panels indicate the curves
in the (Kn, γn)-plane
where wΩ

n = 0 and wF
n = 0,

respectively
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Fig. 4 As in Fig. 3, for
the regime of
desynchronization. Here,
K̄ = 1.1 and F = 10−2.
For clarity in the
representation, scales in
the vertical axes are
multiplied by a factor 1012
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with δrn ≡ δKn − δγn. Now, wΩ
n + wΓ

n + wF
n = 0 to the

first order in δKn and δγn.
Figure 4 shows our analytical and numerical results

for the regime of desynchronization in the Ω set. With
respect to the regime of partial synchronization, the
rates of energy exchange have diminished further, due
to the much smaller intensity of the external forcing;
cf. Eqs. (26) and (27). Otherwise, the overall behavior
of wΩ

n , wΓ
n and wF

N is similar to that of partial syn-
chronization. Namely, the rate of energy dissipation by
friction (middle panel) exhibits a resonance peak for
Kn ≈ 1 and γn ≈ 0, while wΩ

n and wF
n show a change

of sign near Kn = 1, with a maximum and a minimum
at each side. The origin of this resonance lies again in
the dynamics of the individual deviations with respect
to the Ω set, Eq. (14). Indeed, the collective average
motion of the ensemble, now added with oscillator 1
and forced with unitary frequency from outside the sys-
tem, acts as an excitation over each oscillator, induc-
ing larger responses when the individual frequencies are
closer to that of the external force.

5 Discussion and conclusion

We have studied the stationary collective dynamics of
an ensemble of coupled mechanical phase oscillators
subjected to an external harmonic excitation applied
to one of the oscillators, and to friction forces. Hetero-
geneity in the system is given by different individual
moments of inertia and friction coefficients. Our atten-
tion was focused on finding the rates at which energy
is added from the external excitation and transferred
between different parts of the ensemble, and the power
dissipated by friction. To this end, we have proposed
a series of approximations that allowed for analytical
treatment of the equations of motion. Three regimes
of collective motion were characterized, with different
degrees of entrainment with the external excitation.
Our approximations were validated by comparison of
the rates of energy exchange derived from analytical
results and from numerical integration of the equations
of motion in the three regimes.

When the external excitation is sufficiently strong,
the ensemble becomes fully synchronized with the exci-
tation and follows it rigidly. Even in this very simple
form of coherent motion, the rate of energy exchange
between the oscillators not directly connected to the
excitation varies its sign depending on how the individ-
ual moments of inertia and friction coefficients differ
from their average values over the ensemble.

Collective motion becomes richer when the entrain-
ment with the external excitation is weaker, as we have
shown in the regimes of partial synchronization and
desynchronization. In these cases, the main dynamical
feature is a resonance effect in which individual oscil-
lators respond to the overall motion of the ensemble,

which is in turn driven –but not completely entrained–
by the excitation. Superimposed to the uniform drift of
its phase, each element performs an oscillation whose
specific frequency is controlled by its moment of iner-
tia. Resonance occurs when this individual frequency
approaches the frequency of the external harmonic forc-
ing. In this situation, first, the power dissipated by
friction increases abruptly when the friction coefficient
decreases, as a consequence of the growth in ampli-
tude of individual oscillations. At the same time, the
individual rates of energy exchange between oscilla-
tors and with the external excitation switch their sign
across the resonance. In other words, the flow of energy
from each oscillator is positive or negative depend-
ing of its moment of inertia being above or below the
average.

These results show, in a simplified scenario, how
energy exchange between different parts of a sys-
tem formed by coupled mechanical oscillators can be
manipulated by tuning individual parameters, impact-
ing on the overall dynamics of the ensemble. Although
obtained within a theoretical context, such conclu-
sions may be relevant to the design and operation
of technological devices based, for instance, on fast
damping for rapid switching between different func-
tional regimes [6,9] or where, on the contrary, sustained
oscillatory motion at low dissipation rates is required
[8,10,15].
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