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Abstract This paper, on the one hand, proposes a statistical technique to detect potential causal relation-
ships when the researcher has georeferenced data but not time dimension, and, on the other, applies this
new methodology to the analysis of potential partial causal determinants of home prices. In particular, we
find that the direction of causality for home prices in California goes from the income level to prices.

1 Introduction

The evolution of the social and economic dynamics
related to the cities of the twenty-first century is closely
linked to the evolution of the spatial configuration of
cities. There are a number of determinants that help
explain the constituency or district configuration. In
this sense, home prices contain extraordinarily valuable
information.

In this work, we are especially interested in the intrin-
sic and extrinsic determinants that can help shape the
future of population settlements in the form of a city.
In particular, we intend to discriminate by means of a
semi-parametric approximation which are the elements
that potentially cause the formation of prices associated
with housing. There are many elements that undoubt-
edly affect the market price of a necessary good such
as housing, discerning which of these elements have a
causal link is a challenge on which we intend to shed
some light. This is challenging to the extent that we will
be using cross-sectional data that have no time compo-
nent. Note that causal relationships are independent
of the spatial or temporal configuration, although they
have to develop (and therefore be detected) in time and
space.

Central for this paper is that we consider space (loca-
tion) as a critical element that is required to be taken
into account to study any form of causality on this
regard. The methodological approach to certain form
of spatial causality is based on the Granger–Wiener
concept of incremental information content. Causation
means that the variable cause must provide additional

a e-mail: mherreragomez@conicet.gov.ar (corresponding
author)

information about the variable effect. Particularly, this
information should be unique, meaning that, once we
take into account the spatial structure inherent to the
data, then variable x causes y when the information
contained in x helps to reduce the uncertainty associ-
ated with y.

For another point of view, this approach might be
partially understood as a consequence of the well-
known Gibbons and Overman critique [1] to spatial
econometrics. This critique advocate for an experimen-
tal methodological approach in spatial econometrics, as
opposed to the dominant structural approach in which
theory is the main source of identification in the model.
Instead of using external variation to identification,
we propose to use a semi-parametric approach. This
approach is presented in Sects. 2 and 3 and it is illus-
trated in Sect. 4 where census information regarding
houses in a given California district are studied.

2 Entropy measures and symbolic analysis

Given a random spatial process {Xs = (X1s,X2s, . . .
Xks)}s∈S (either univariate or multivariate), where S
is a set of geographical coordinates that are given
and fixed, one can measure the amount of uncertainty
through its entropy H(X) defined as

H(X) = −
∑

(x1,...,xk)∈χ

P (X1 = x1, . . . , Xk = xk)

log (P (X1 = x1, . . . , Xk = xk)) . (1)
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Based on this definition of entropy, given two spa-
tial processes {Xs = (X1s,X2s, . . . Xks)}s∈S and {Zs =
(Z1s, Z2s, . . . Zks)}s∈S we can define the conditional
entropy as

H(X|Z) = H(X,Z) − H(Z), (2)

and this conditional entropy is understood as the
amount of uncertainty in {Xs}s∈S given knowledge
about {Zs}s∈S .

Estimating the entropy value (uncertainty) of a spa-
tial process, whose density function is unknown, is not
an easy task. As an alternative to traditional plug-in
density estimation, Sulewski [2], suggested to use equal-
bin-width histograms when dealing with symmetric dis-
tributions, while equal-bin-count histograms should be
preferred for asymmetric distributions. Nevertheless, in
our analysis we follow the symbolic approach proposed
by Herrera et al. [3] consisting in symbolizing the spa-
tial process with a finite set of natural numbers (sym-
bols), such that each observation Xs is associated with
the number of neighbors of location s that coincides
with Xs in being either above or below of the median
of the spatial process {Xs}s∈S . This symbolization pro-
cedure is trivially extended component-wise to a multi-
variate spatial process. Notice that the symbols gather
a (rough) description of the spatial distribution of the
process, and that the entropy associated with the dis-
crete symbols’ distribution measures its degree of dis-
order. This entropy is known as a form of symbolic
entropy.

3 Spatial partial causality test

Under this setting, in a totally model-free framework, in
[3] a causality in information test for spatial processes
was proposed based on symbolic entropy. Concretely,
given two real spatial processes {Xs}s∈S and {Ys}s∈S ,
and two association schemes Wx,Wy (spatial weighting
matrix) for each one of them, the statistical test for the
null hypothesis:

H0 : X does not cause Y

under the spatial association schemes Wx

and Wy (3)

is given by

δX→Y (W ) = h(Y |WyY ) − h(Y |WyY,WxX), (4)

that is, if WxX does not add extra information about
Y then δX→Y (W ) = 0, otherwise the null hypothesis
is rejected. The statistical significance is provided with
a spatial block bootstrap procedure that breaks down
the dependence structure between X and Y but pre-
serves their own spatial structure. In [4], authors apply
a similar approach for a spatial dependence tests. The
statistical behavior of the causality test, empirical size

and power, under different processes can be found in
[3,5].

Now, we want to use the statistical test given in (4) to
test for partial spatial causality, which consist in elim-
inating the effect of common inputs from latent vari-
ables when detecting the causal relationships among
several process. To this end, we will make use of the
Frisch–Waugh–Lovell (FWL) theorem, also known as
the decomposition theorem [6,7]. Specifically, consider
the following linear regression model:

Y = Xβ + u, (5)

with an N × K matrix, X, of conditioning variables,
including a possible causal variable X1 that is our focus.
Next, we decompose Xβ as

Xβ = (X1 X2 )
(

β1

β2

)
= X1β1 + X2β2, (6)

where β2 denotes the (k − 1)-vector of all beta coef-
ficients other than β1. Using a direct consequence of
FWL Theorem, if the orthogonal projection into the
orthogonal complement, X⊥

2 , of X2 is denoted by

M2 = In − X2 (X ′
2X2)

−1
X ′

2, (7)

so that by definition,

M ′
2 = M2, M2M2 = M2, M2X

⊥
2 = X⊥

2 ,

and M2X2 = 0, (8)

then multiplying (5) and (6), it follows that

M2Y = M2X1β1 + M2X2β2 + M2u. (9)

Therefore, by defining Ỹ = M2Y and X̃i = M2X1,
we obtain the following expression:

Ỹ = X̃1β1 + ũ, (10)

with ũ = M2u. This equation can be understood as the
reduced form of the relationship between Y and the
potential causal variable, X1.

Equation (10) can be estimated by means of ordinary
least-squares (OLS): First, regress Y on X2 and obtain
residuals fitted values ũY . Second, regress X1 on X2

and obtain fitted values of the residuals ũX1 . Finally,
regress the residuals to obtain

ũY = ũX1β1 + e. (11)

The FWL Theorem states:

1. The OLS estimates of regressions (5) and (10) are
numerically identical.

2. The residuals from regressions (5) and (10) are
numerically identical.

123



Eur. Phys. J. Spec. Top. (2022) 231:1735–1739 1737

An extensive revision with applications of this theo-
rem is provided by Davidson and McKinnon [8]. Under
a spatial setting, Smith and Lee [9] apply this theorem
to discuss the relationship under two spatial variables.

Our initial strategy is based on the framework pro-
posed by Smith and Lee. That is, using the FWL The-
orem, one can cancel out the effect of common inputs
from confounding variables when detecting the causal
relationships among spatial processes. Specifically, we
test whether X1 causes Y under spatial association
schemes removing the effect of other k − 1 variables,
X2, using the δX→Y (W )-test on the residuals ũX1 and
ũY . The next section shows how to use the statistical
procedure on a real data set.

4 Empirical application

This section analyses the relation between housing
prices and income in 20,433 cross-sectional observations
for the period 1990 from California census. The purpose
is testing for causality between the two variables con-
trolling for counfounders and, if so, detecting the direc-
tion of causation using the methodology introduced pre-
viously.

The data-set has been used in the second chapter
of Aurélien Géron’s book ‘Hands-On Machine learning
with Scikit-Learn and TensorFlow’ [10]. The data per-
tain to the houses found in a given California district
and some summary statistics about them based on the
1990 census data. The variables that we use are the
follows:

– Ln(price): Logarithm of median house value.
– Income: Median income.
– Age: Housing median age.
– Rooms: Total room number.
– Bedrooms: Total bedrooms number.
– Population (within a block).
– Households (within a block).
– Geographical position (Longitude and Latitude).

Block groups are the smallest geographical unit for
which the US Census Bureau publishes sample data (a
block group typically has a population of 600–3000 peo-
ple). This database has been used for prediction inter-
est; however, according our knowledge, this is the first
time used to detect causality. A summary of descriptive
statistics is presented in Table 1.

Our interest is centered on the income and its spa-
tial distribution as a determinant of housing price. To
do this, we rely on a hedonic price model [11] which is
a model that considers that prices are determined by
internal factors (age, the number of rooms, baths, etc.)
as well as by external factors ( neighborhood and/or
environmental factors). In general terms, hedonic price
models assume that the price of a product reflects
embodied characteristics valued by some implicit or
shadow prices. Therefore, it is assumed that a house

can be decomposed into characteristics such as num-
ber of bedrooms, size, distance to the city center. Par-
ticularly, the hedonic regression equation treats these
attributes separately. These estimations estimate the
extent to which each factor affects the market price of
the property.

As external factor, the spatial relevance in hedonic
house prices were first considered by Dubin [12,13] and
Can [14,15]. If non-spatial factors are controlled, the
remaining discrepancies in price will represent differ-
ences in the good’s external surroundings. In this situa-
tion, the median of income could be a spatial condition-
ing or a surrounding factor. However, the hedonic liter-
ature considers the explanatory variables as condition-
ing, no causal variables. Then, we propose to advance
in the identification of the income as a spatial causal
variable.

Our methodology considers that the spatial support
is relevant for each variable of interest, that is, distribu-
tion on space is not-randomly and give us information
about the relationship. To show this relevance, the spa-
tial distribution of both variables is presented in Fig. 1.
We observe a coincidence of high values of prices and
income, in special, near to the oceanic coast, with clus-
tering in San Francisco, Los Angeles and surroundings.

Maps reveal the importance of geographical posi-
tion between variables; however, this is only qualitative
information. Then, additionally, we present in Table 2
the different tests that detects the spatial dependence
for this variables. All spatial test requires to create a
spatial weighting matrix that captures the neighbor-
hood for each observation. In our case, the W was cre-
ated using 14-nearest neighbors.1

The null hypothesis of the first tests (Moran’s I tests)
in Table 2 is that there is no spatial auto-correlation.
This hypothesis is rejected for both original variables.
The Bivariate Moran tests for the null hypothesis of
no spatial correlation between Ln(price) and the spa-
tial neighborhood of Income; and the hypothesis is also
rejected. Tests ψ1-test and ψ2-test [4] are based on sym-
bolic analysis and testing general form of spatial depen-
dence, i.e., the tests are powerful against nonlinear spa-
tial structures, with sharply contrasts with the Bivari-
ate Moran test which is mainly focus on linear spatial
structures. Both symbolic tests detect spatial depen-
dence, of unknown form, into each variable (H0 of ψ1-
test is rejected) and between variables (H0 of ψ2-test is
rejected).

However, the relationship between Ln(price) and
Income can be affected by other factors. Using the FWL
Theorem, these omitted factors can be removed using
linear models as:

1 The k-nearest neighbors is a criterion that works in the
following form: for each unit, the Euclidean distance from
all the other units is calculated and sorted in an increasing
order. The neighbors for each unit are then taken to be the
nearest k of those units. In case two units are at the same
euclidean distance, we take as neighbor the one with smaller
angle in polar coordinates.
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Table 1 Descriptive statistics

Variables Obs. Mean S.D. Min. Max.

Ln (price) 20,433 12.09 0.57 9.62 13.12
Income 20,433 3.87 1.90 0.50 15.00
Age 20,433 28.63 12.59 1.00 52.00
Rooms 20,433 2636.50 2185.27 2.00 39,320.00
Bedrooms 20,433 537.87 421.39 1.00 6445.00
Population 20,433 1424.95 1133.21 3.00 35,682.00
Households 20,433 499.43 382.30 1.00 6082.00

Fig. 1 Spatial distribution of Ln(price) and Income

Table 2 Spatial dependence tests

Test Value p-value Conclusion

Original variables
Moran-I Ln (price) 0.86 0.00 Spatial-autocorrelation
Moran-I Income 0.54 0.00 Spatial-autocorrelation
Bivariate Moran 0.51 0.00 Spatial-correlation
ψ1-test 7.76 0.00 Spatial-dependence
ψ2-test 0.07 0.01 Spatial-dependence

Residual variables
Moran-I ũLn (price) 0.62 0.00 Spatial-autocorrelation
Moran-I ũIncome 0.19 0.00 Spatial-autocorrelation
Bivariate Moran 0.02 0.00 Spatial-correlation
ψ1-test 7.48 0.00 Spatial-dependence
ψ2-test 0.14 0.00 Spatial-dependence

In all cases, the W was generated under 14-nearest neighbors

Ln(price) = β0 + β1Age + β2Rooms + β3Bedrooms
+ β4Population + β5Households + uLn(price),

(12)
Income = γ0 + γ1Age + γ2Rooms + γ3Bedrooms

+ γ4Population + γ5Households + uIncome.
(13)

From Eqs. (12) and (13), we obtain the estimated
residuals, ũLn(price) and ũIncome, respectively. These
residual variables have been used to test the pres-
ence of spatial correlation (Table 2, section: Resid-
ual variables). Similarly to the original variables, the
tests detect the presence of spatial relationship between
Ln(price) and Income.

The next step is to determine the direction of spa-
tial information or spatial causality. The results of this
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Table 3 Results of partial causality tests

H0 ũIncome � ũLn(price) ũLn(price) � ũIncome Conclusion
k-Nearest neighbors p-value p-value

13 0.00 0.16 Income ⇒ Ln(price)
14 0.02 0.42 Income ⇒ Ln(price)
15 0.01 0.37 Income ⇒ Ln(price)

“�” means ‘does not cause’, and “⇒” means ‘causes’. Boots: 399, Blocks: 8

test are presented in Table 3. As sensibility analysis,
we present the results for k = 13, 14, and 15 nearest
neighbors. In all cases, we detect directionality of infor-
mation from Income to Ln(price), after controlling by
potential economic confounders.

5 Final comments

Home prices contain relevant amount of information.
This information is the reflection of a series of geo-
graphic and economic determinants that help explain
the configuration of cities. In this work, we have been
especially interested in locating those determinants that
can potentially have a causal relationship when explain-
ing the behavior of prices in a given location. For
this, we have developed an approach to partial spatial
causality in terms of information.

A nonparametric statistical test has been developed
that can be used in conjunction with the FWL theo-
rem. We have illustrated the methodology by studying
the price determinants of 20,433 California homes. The
results suggest that there is a causal relationship (in
terms of spatial information) from income to prices.

The strategy of causality proposed here is very use-
ful for urban and regional studies where the spa-
tial dimension is relevant and the information is non-
experimental. Also, changing the symbolization proce-
dure, an extension of the test could apply to spatiotem-
poral data.
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