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Abstract We study numerically the dynamics of a system composed of two artificial neurons connected
via an erbium-doped fiber laser. In our system, the laser acts as an optical synapse whose dynamics is
controlled with a signal generated by a presynaptic Hindmarsh–Rose neuron, while the laser output drives
a postsynaptic Hindmarsh–Rose neuron. Depending on the laser parameter, the postsynaptic neuron can
be turned to different dynamical regimes including silence, tonic spikes, bursts with different number of
spikes, and chaos.

1 Introduction

The human brain consists of approximately 86 billion
neurons interconnected in a complex way to perform
computational, cognition, and memory tasks. Neurons
usually interact via synapses, which allow information
transmission from one neural cell to the other. Each
neuron has an average of 7000 synapses, which being
subserved by a complex molecular mechanism are capa-
ble of changing the efficiency of signal transmission
between neurons by sensing their electrical activity and
the concentration of chemical components. In many
models, a synapse is usually characterized by the synap-
tic weight, strength, and efficacy. If the synaptic weight
is constant, the amplitude of the response of a postsy-
naptic neuron j to the arrival of action potential from a
presynaptic neuron i should always be the same. Elec-
trophysiological experiments, however, show that the
response amplitude is not fixed but can vary over time.
The change in the synaptic strength is called synaptic
plasticity [1].

In the formal theory of neural networks, it is assumed
that the synaptic weight of the connection of neuron
i with j is turned in such a way as to optimize the
network performance for a given task. The process of
synaptic adaptation is called learning and governed
by learning rules. In a broad sense, learning implies
synaptic changes during the reception, transmission,
and processing of information necessary to perform a
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specific task, for example, memorizing received informa-
tion or performing a movement. There are many learn-
ing rules, among which one should mention “unsuper-
vised learning”, which has great biological significance,
and “supervised learning”, which are an important issue
in the fields of artificial neural networks and machine
learning.

A number of experimental results on synaptic plas-
ticity have been accumulated. Many of these experi-
ments are inspirited by the Hebb’s postulates [2], which
state how the connection from a presynaptic neuron
to a postsynaptic neuron should be modified. It is
believed that the flexibility of the synaptic connection
with time dependence (e.g., synaptic plasticity) under-
lies the implementation of computational and cognitive
tasks in brain networks. While in living cells, the synap-
tic plasticity is mediated by complex molecular trans-
formation, in an artificial biosystem, the synaptic trans-
mission can be regulated by adjusting the parameters
of an artificial synapse.

Since the advent of artificial intelligence, great efforts
have been invested in the creation of electronic net-
works capable of reproducing biological neural activ-
ity. Among the most promising areas of interdisci-
plinary research in neuroscience, we can consider neu-
roprosthetics, that aims to develop electronic devices
implanted in the brain to repair missing or malfunction-
ing brain functions due to trauma or diseases [3]. Neu-
roprosthetics finds many biomedical applications [4–6],
and has also been investigated as potential in neuromor-
phic engineering [7–9]. In addition, much attention was
paid to the development of neuromorphic devices due
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their relevance not only for medical applications, but
also for non-medical tasks, such as information process-
ing, intellectual adaptive automatic control, biorobots,
brain–computer interfaces, etc. [10–12].

On the other hand, significant advances have been
made in neural modelling. Adequate neuron models
have been developed to simulate biological neurons. In
particular, a simplified modification of the detailed neu-
rophysiological Hodgkin–Huxley model [13], the well-
known Hindmarsh–Rose (HR) [14], has become the sub-
ject of intensive research in engineering sciences [15]
due to its relative simplicity which allows analytical
research, as well as electronic implementation capable
to generate nonlinear effects leading to the emergence
of complex dynamics simulating neural activity.

However, the electronic implementation of synaptic
communication is a rather complex technical task, pri-
marily due to synaptic plasticity. This is due to the
fact that chemical and electrical synapses are extremely
complex biomolecular devices which establish func-
tional connections between neural cells or between neu-
rons and other types of cells, controlling the transmis-
sion of neural information encoded as spike sequences
[16]. For the development of efficient neuromorphic
networks, it is important to have not only adequate
models of neuronal cells, but also effective commu-
nication devices with a high level of flexibility and
time-dependent spike transmission. A new approach to
implement synaptic circuits was developed in [17,18].
This way may be combined with nanotechnologies
based on carbon nanostructures to miniaturize artificial
synapses [19]. In addition, the information transmis-
sion from one artificial neuron to another was realized
via an optical fiber [20]. Moreover, living neurons were
stimulated by a signal generated by an artificial neuron
and transmitted via an optical fiber [21]. Furthermore,
Garasimova and colleagues [22–24] modelled and imple-
mented a synapse based on a memristive device.

The first laser synapse was proposed in 2011 [25,
26]. It was based on an erbium-doped fiber laser
(EDFL) which connected and synchronized two elec-
tronic FitzHugh–Nagumo neurons. In the other words,
the laser transmitted a signal from a presynaptic neu-
ron to a postsynaptic neuron. Due to relative sim-
plicity, compatibility with modern fiber optic technol-
ogy, and possibility to control the signal waveform, the
implementation of such a synaptic device makes it very
promising for biorobotic and bioengineering applica-
tions.

In this paper, we extend the application of the EDFL
synapse to another neuron models, in particular, to the
Hindmarsh–Rose model. The paper structure is orga-
nized as follows. In Sects. 2 and 3, we present the mathe-
matical models of HR neurons and EDFL, respectively,
used for numerical simulations. The dynamics of the
presynaptic neuron, optical synapse, and postsynaptic
neuron are analyzed in Sects. 4, 5, and 6, respectively.
Finally, in Sect. 7 we present the suggested experimen-
tal setup and in Sect. 8 give the main conclusions.

2 Theoretical model

The Hindmarsh–Rose (HR) mathematical model is a
simplified version of the Hodgkin–Huxley model of a
neuron membrane. Two HR neurons unidirectionally
coupled by laser power P (x1) are modeled by the fol-
lowing equations [14,27–29]

ẋ1 = y1 − ax3
1 + bx2

1 − z1 + Iext, (1)
ẏ1 = c − dx2

1 − y1, (2)
ż1 = r(s(x1 − x0) − z1), (3)
ẋ2 = y2 − ax3

2 + bx2
2 − z2 + σP (x1), (4)

ẏ2 = c − dx2
2 − y2, (5)

ż2 = r(s(x2 − x0) − z2), (6)

where variables x1,2 represent membrane potentials of
two couple neurons, x0 stands for the resting poten-
tial, y1,2 represent fast Na+ and K+ currents, variables
z1,2 are slow Ca2+ currents, Iext is the external cur-
rent, a, b, c, d, r, s are constants, and σ is the synaptic
strength coupling. The laser power P (x1) drives the
membrane potential x1 acting as an optical stimulus
for the postsynaptic neuron.

3 Optical stimulation

The optical stimulation from the diode-pumped EDFL
is described using a power-balance approach which
takes into consideration the excited state absorption
(ESA) in erbium at the 1.5-µm wavelength and by
averaging the population inversion along the pumped
active fiber. Such a model addresses the evident factors
(i.e., ESA at the laser wavelength and the depleting of
the pump wave at propagation along the active fiber)
leading to non-dumped natural oscillations in the laser,
observed experimentally without external modulation
[27–29]

The balance equations for the intracavity laser power
P (i.e., a sum of the contra-propagating waves’ powers
inside the cavity, in s−1) and the averaged (over the
active fiber length) population y of the upper (“2”) level
(i.e., a dimensionless variable, 0 ≤ y ≤ 1) are derived
as follows

Ṗ =
2L

Tr
P{rwα0(y[ξ − η] − 1) − αth} + Psp

ẏ = −σ12rwP

πr20
(ξy − 1) − y

τ
+ Ppump,

(7)

where σ12 is the cross-section of the absorption transi-
tion from the ground state “1” to the upper state “2”.
We suppose that the cross-section of the return stim-
ulated transition σ12 is practically the same in magni-
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Fig. 1 Bifurcation
diagrams of a peak values
of x1 and b ISI of peak x1

as a function of external
current Iext. The arrows
show the parameter values
for the time series
presented in Fig. 2

tude that gives ξ = (σ12 + σ21)/σ12 = 2, η = σ23/σ12

being the coefficient that stands for the ratio between
ESA σ23 and ground-state absorption cross-sections at
the laser wavelength. Tr = 2n0(L + l0)/c is the life-
time of a photon in the cavity (l0 being the intra-cavity
tails of FBG-couplers), α0 = N0σ12 is the small-signal
absorption of the erbium fiber at the laser wavelength
N0 = N1 +N2 is the total concentration of erbium ions
in the active fiber), αth = γ0 + nL(1/R)/(2L) is the
intra-cavity losses on the threshold (γ0 being the non-
resonant fiber loss and R is the total reflection coeffi-
cient of the FBG-couplers), τ is the lifetime of erbium
ions in the excited state“2”, r0 is the fiber core radius,
w0 is the radius of the fundamental fiber mode and
rw = 1+exp[2(r0/w0)2] is the factor addressing a match
between the laser fundamental mode and erbium-doped
core volumes inside the active fiber.

The population of the upper laser level “2” is given
as

y =
1

n0L

∫ L

0

N2(z)dz,

where N2 is the population of the upper laser level“2”,
n0 is the refractive index of a “cold” erbium-doped fiber
core, and L is the active fiber length),

Psp =
10−3y

τTr

λg

w0

r20α0L

4π2σ12
,

is the spontaneous emission into the fundamental laser
mode, and the pump power is

Ppump = Pp
1 − exp[−βα0L(1 − y)]

n0πr20L
,

where Pp is the pump power at the fiber entrance and
β = αp/α0 is the ratio of absorption coefficients of the
erbium fiber at pump wavelength λp and laser wave-
length λg. We assume that the laser spectrum width is
10−3 of the erbium luminescence spectral bandwidth.

Note that Eqs. (1)–(7) describe the laser dynamics
without external modulation. The intracavity pump

power at the active fiber facet reads

Pm
p = Pp(1 + m0x1), (8)

where m0 is the modulation depth.
The parameters used in our simulations correspond

to the real EDFL with an active erbium-doped fiber of
L = 70 cm. Other parameters are n0 = 1.45, l0 = 20 cm,
Tr = 8.7 ns, r0 = 1.5 cm, and w0 = 3.5 × 10−4 cm.
The last value was measured experimentally and it
was a bit higher than 2.5 × 10−4 cm given by the for-
mula for a step-index single-mode fiber w0 = r0(0.65 +
1.619/V 1.5 +2.879/V 6), where the parameter V relates
to numerical aperture NA and r0 as V = 2πr0NA/λg,
while the values r0 and w0 result in rw = 0.308.

The coefficients characterizing resonant-absorption
properties of the erbium-doped fiber at lasing and
pumping wavelengths are α0 = 0.4 cm−1 and β =
0.5, respectively, and correspond to direct measure-
ments for heavily doped fiber with erbium concen-
tration of 2300 ppm, σ12 = σ21 = 3 × 10−21 cm2,
σ23 = 0.6 × 10−21 cm2, ξ = 2, η = 0.2, τ = 10−2 s [27],
γ0 = 0.038, and R = 0.8 that yields αth = 3.92 × 10−2.
At last, the generation wavelength λg = 1.56×10−4 cm
(hν = 1.274 × 10−19 J) is measured experimentally,
while the maximum reflection coefficients of both FBGs
are centered on this wavelength. The pump parame-
ters are the excess over the laser threshold ε defined as
Pp = εPth, where the threshold pump power

Pth =
yth
τ

n0Lπw2
p

1 − exp[−α0Lβ(1 − yth)]

and the threshold population of the level“2”

yth =
1
ξ

(
1 +

αth

rwα0

)

with the pump beam radius taken, for simplicity, to be
the same as that for generation (ωp = ω0).
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Fig. 2 Time series of
membrane potential x1 for
external currents (i)
Iext = 1.4052 (regular
spiking), (ii) Iext = 1.7396
(bursting with two spikes),
(iii) Iext = 2.4084 (bursting
with three spikes), (iv)
Iext = 2.7884 (bursting
with four spikes), (v)
Iext = 3.2064 (chaotic
bursting), and (vi)
Iext = 4.0424
(high-frequency tonic
spiking)

4 Presynaptic Hindmarsh–Rose neuron

The dynamical behavior of the membrane potential x1

of the presynaptic neuron is determined by changes in
the external current Iext, as seen from the bifurcation
diagrams of peak x1 and inter-spike intervals (ISI) pre-
sented in Fig. 1a, b, respectively, and the time series
shown in Fig. 2. All values are given in arbitrary units.
For small values of the external current (1.4 < Iext <
2.9), the dynamics of the membrane potential x1 is reg-
ular, displaying tonic spikes at Iext = 1.4052 (Fig. 2(i))
and periodic bursts at Iext = 1.7396, 2.4084 and 2.7884
containing two, three, and four spikes, as shown in
Fig. 2(ii), (iii), and (iv), respectively.

One can see that for the intermediate values of the
external current (2.9 < Iext < 3.4), the x1 dynamics

exhibits chaotic bursts (Fig. 2(v)), while for larger val-
ues of of the external current (Iext > 3.4) the mem-
brane potential x1 displays regular high-frequency spik-
ing (Fig. 2(vi)). The Iext values corresponding to these
time series are shown in Fig. 1b by blue arrows. It is
worth noting that the depolarization values of the mem-
brane potential x1 (minima in the time series) for regu-
lar high-frequency spiking are above −1, while for regu-
lar spiking and bursting are under −1.5 and for chaotic
bursting it is situated in between −1.5 < x1 < −1. The
depolarization value is minimum x1 required for neuron
activation to obtain either spiking or bursting regimes.
The parameter used in Eqs. (1)–(7) are a = 1, b = 3,
c = 1, d = 5, r = 0.006, s = 4, and x0 = −1.6.
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Fig. 3 Bifurcation diagram of peak values of laser pulses
versus external current Iext for m0 = 0.9

5 Laser synaptic response

Figure 3 shows the laser response to the EDFL pump
power modulation by the membrane potential x1 of the
presynaptic neuron, as a function of the external cur-
rent Iext. In Fig. 3a we plot the bifurcation diagram of
the peak values of the laser pulses for m0 = 0.9. In
the diagram we can distinguish bistable regions shown
by blue ellipses. These regions appear at the bound-
aries between different dynamical regimes, in partic-
ular, between tonic spikes and periodic bursting with
two, three, and four spikes. The corresponding values of
Iext are indicated by blue arrows in Fig. 1b and the laser
time series are present in Fig. 4a–c. The time series show
periodic train pulses of small and large amplitudes.

In addition, bistability also exists when the mem-
brane potential changes its dynamics from chaotic
bursting to regular high-frequency spiking. This value
of Iext is indicated by the blue arrow (v) in Fig. 1b
and the corresponding time series are shown in Fig. 4d.
Besides, the laser synapse exhibits bistability for Iext >
4.0424 where it generates high-frequency periodic pulses
of small and large amplitudes, as illustrated in Fig. 4e.

6 Postsynaptic neuron response to laser
stimulation

In this section, the response of the postsynaptic HR
neuron to the laser input is considered, i.e., the response
to the signal from the presynaptic neuron transmitted
through the optical synapse. The dynamics of the post-
synaptic neuron can be controlled by manipulating two
control parameters, modulation depth m0 and synaptic
strength coupling σ. As mentioned early, the parameter
σ acts as a coupling coefficient between the laser and
the postsynaptic neuron.

Consider now the response of the postsynaptic HR
neuron to the laser input with large values of the
modulation depth m0 = 0.9 for the synaptic coupling

strength fixed at σ = 0.9. In this case, the membrane
potential x2 has a high frequency, as it can be seen
in the Fig. 5 (time series and instantaneous frequency
are shown in the left and right columns, respectively).
For small values of external current Iext = 1.5876 the
x2 present irregular burst behavior, see Fig. 5a, b, while
with an increase in the external current at Iext = 2.6212
the membrane potential x2 oscillate in regular burst
behavior, see Fig. 5c, d. For large values of Iext = 3.0164
and Iext = 3.3964, x2 (see Fig. 5e, f and g, h, respec-
tively) are changed to chaotic spiking. The bifurcation
diagram of local maxima of the time series and instanta-
neous frequency presented in Fig. 6a, b exhibit complex
dynamics of the membrane potential x2 as a function of
the external current Iext. In the case shown in Fig. 6b
the membrane potential x2 displays an average peak
frequency close to 0.3820.

Figure 7a–d show the bifurcation diagrams of the
local maxima of the time series and largest Lyapunov
exponent λ of the membrane potential x2 [30] as a func-
tion of the synaptic strength σ and modulation depth
at m0 = 0.9. For Iext = 2.7884, Fig. 7a, b represent dif-
ferent dynamical regimes of the postsynaptic neuron,
including periodic (λ ≈ 0) and chaotic (λ > 0) bursting.
By comparing the diagrams for small and large exter-
nal currents, one can see that the postsynaptic neuron
dynamics is more regular for a small current (Fig. 7a,
b) than for a strong current (Fig. 7c, d).

Finally, in Fig. 8 we plot the time-averaged peak fre-
quency of x2 as a function of the synaptic strength σ, for
different values of the modulation depth m0. One can
see that the average frequency grows as σ is increased
and saturates at a certain value which depends on m0.
Moreover, the average frequency is almost independent
of m0 when m0 > 0.8 and reach the maximum value
to be equal to 0.4 Hz. It is also seen that the threshold
value of the coupling strength for the appearance of a
periodic regime increases as the modulation depth m0

is decreased.

7 Suggested experimental setup

The system described above can easily be implemented
experimentally. The suggested experiment setup is
present in Fig. 9. It consists of two electronic schemes
based on the Hindmarsh–Rose model coupled by the
EDFL. The EDFL is pumped by a laser diode (LD)
through a wavelength-division multiplexing coupler
(WDM) and a polarization controller (PC). The laser
cavity is formed by an erbium-doped fiber (EDF) and
two fiber Bragg gratings (BG1 and BG2).

The signal from the presynaptic HR neuron (Pre-N)
is connected to the controller (D) which drives the cur-
rent of the pump laser diode (LD). The EDFL output is
recorded with a photo-detector (PD) connected to the
postsynaptic HR neuron (Post-N) through a variable
resistance (C ) that acts as a coupling controller. The
output signals from both HR circuits and from EDFL
are visualized with an oscilloscope (OS).
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Fig. 4 Time series of
laser synapse representing
bistability for m0 = 0.9,
with a (i)–(ii) large and
small amplitudes with
Iext = 1.6028, b (iii)–(iv)
large and small amplitudes
with Iext = 2.1880, c
(v)–(vi) large and small
amplitudes with
Iext = 2.6212, d
(vii)–(viii) large and
small amplitudes with
Iext = 3.4116, and e
(ix)–(x) large and small
amplitudes with
Iext = 4.0424
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Fig. 5 Time series and
instantaneous frequency of
membrane potential x2 are
shown in the left and right
columns, respectively, at
m0 = 0.9 and σ = 0.9. a, b
Iext = 1.5876, c, d
Iext = 2.6212, e, f
Iext = 3.0164, and g, h
Iext = 3.3964
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Fig. 6 Bifurcation
diagrams of a local
maxima and b
instantaneous frequency of
membrane potential x2

respectively, with external
current Iext as a control
parameter for m0 = 0.9
and σ = 0.9

Fig. 7 Bifurcation
diagrams of a, c local
maxima and b, d largest
Lyapunov exponent λ for
membrane potential x2 as
a function of synaptic
strength σ at modulation
depth m0 = 0.9 and
external currents a, b
Iext = 2.7884 and c, d
Iext = 3.2064

Fig. 8 Average peak frequency of x2 versus synaptic
strength σ for different values of modulation depth m0 and
Iext = 3.2064

8 Conclusions

In summary, we have studied dynamics of a system of
two Hindmarsh–Rose neurons with synaptic coupling
by means of an erbium-doped fiber laser (EDFL). We
have demonstrated that the signal from the presynap-
tic neuron transmitted via the laser synapse exhibits a
complex dynamical behavior depending on the modula-
tion depth m0 and the external current Iext. Very rich
dynamics of the postsynaptic neuron, including spiking
and bursting periodic and chaotic regimes controlled by
the EDFL, has been obtained. The bifurcation analy-
sis of action potential x2 of the postsynaptic neuron
as a function of Iext allowed understanding how the
neuron dynamics depends on the modulation depth m0

and synaptic strength σ. Note that m0 and σ provide
additional flexibility for controlling the action potential
x2, i.e., changes in the instantaneous frequency of x2 as
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Fig. 9 Suggested experimental scheme of the system of
two electronic HR neurons connected by the EDFL synapse.
Pre-N and Post-N are the presynaptic and postsynaptic neu-
rons, D is the laser diode current controller, LD is the laser
pump diode, P is the polarizer, WDM is the wavelength

division multiplexer, EDF is the erbium-doped fiber, BG1
and BG2 are the Bragg gratings, OI is the optical isolator,
PD is the photodetector, C is the coupler, and OS is the
oscilloscope
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the laser parameters are varied. Finally, we proposed
the experimental setup for electronic implementation
of the described laser synapse.
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