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Abstract Proposed to study the dynamics of physiological systems in which the evolution depends on the
state in a previous time, the Mackey–Glass model exhibits a rich variety of behaviors including periodic
or chaotic solutions in vast regions of the parameter space. This model can be represented by a dynamical
system with a single variable obeying a delayed differential equation. Since it is infinite dimensional requires
to specify a real function in a finite interval as an initial condition. Here, the dynamics of the Mackey–Glass
model is investigated numerically using a scheme previously validated with experimental results. First, we
explore the parameter space and describe regions in which solutions of different periodic or chaotic behaviors
exist. Next, we show that the system presents regions of multistability, i.e. the coexistence of different
solutions for the same parameter values but for different initial conditions. We remark the coexistence of
periodic solutions with the same period but consisting of several maximums with the same amplitudes but
in different orders. We characterize the multistability regions by introducing families of representative initial
condition functions and evaluating the abundance of the coexisting solutions. These findings contribute to
describe the complexity of this system and explore the possibility of possible applications such as to store
or to code digital information.

1 Introduction

The Mackey–Glass (MG) model was first introduced to
model respiratory and hematopoietic diseases related to
physiological systems [1]. Perhaps the most remarkable
characteristic of this model is that the evolution of the
system depends on the state in a previous, or delayed,
time. MG model obtained great recognition thanks to
its ability to accurately describe in simple terms com-
plicated dynamics such as a variety of human illnesses
[2]. Nonetheless, the relevance of the MG model goes
beyond its application to specific systems and results
illuminating in a broad variety of delayed systems [3]
exhibiting chaotic behaviour and multistability.

Delayed systems are in general considerably more
complicated than non-delayed. Even in the simplest
case of a single delay, τ , the evolution of the system
at present time t depends on the state at time t − τ ,
thus, it also depends on a infinite set of previous times,
t − τ , t − 2τ , . . . . These systems are infinite dimen-
sional and mathematically they can be represented by
systems of delayed differential equations (DDE). In this
sense these equations are far more complex than ODEs
and behave like infinite-dimensional systems of ODEs
[4]. Moreover, the dynamics of DDEs are far more rich
than those of ODEs. For instance, the peculiar routes to
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chaos, or the creation and destruction of isolated peaks
in the MG system have been detailed studied by Junges
and Gallas [5].

The presence of multistability in the MG model, i.e.
several coexisting solutions for the same parameter val-
ues but different initial conditions, was reported by [6].
This coexistence of solutions of a time-delayed feedback
system could be of practical interest. In particular, it
was proposed as an alternative way for storing informa-
tion [7–9]. The ability to synchronize several coupled
MG systems is also relevant and has received consider-
able attention in the last years [10–12].

In addition to numerical studies, different experimen-
tal systems based on electronic implementations that
mimic the MG model were proposed [13,14]. Due to
the analytical and numerical difficulties, experimental
results play a major role and contribute to validate
theoretical models. In particular, experimental obser-
vations can shed light on the feasibility of the observed
solutions under the presence of noise or parameter mis-
match. Recently, an electronic system mimicking the
dynamics of the MG system, whose central elements
are a bucket bridge device (BBD) and a nonlinear func-
tion block, was proposed by Amil et al. [14]. A remark-
able characteristic of this approach is that the temporal
integration is exact, thus, experimental and numerical
simulations agree very well with each other enabling
the study of large regions in the parameter space. In a
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subsequent investigation [15], this approach was used to
explore the parameter space described in terms of the
dimensionless delay and production rate. This study
unmasked the existence of periodic and chaotic solu-
tions intermingled in vast regions of the parameter
space. A remarkable point is the existence of abundant
solutions with the same period but consisting of several
peaks with the same amplitudes but in different alter-
nations. These periodic solutions can be translated to
sequences of letters and classified using symbolic algo-
rithms.

In spite of these extensive studies, there are still
numerous open questions, in particular, in which regions
of the parameter space the system presents multista-
bility and where the coexistence of solutions is more
abundant. Here we report the presence of tongue-like
structures of stability in the midst of chaotic regions
in the parameter space and that these solutions seem
to retain some of their structure inside these regions of
stability. We also go deeper into the organization of the
solutions and the impact of multistability. Given that
there are infinite initial condition functions, we select a
specific family of functions as a proxy to quantitatively
evaluate the strength of the multistabilty. Our study
shows that, although there are some general trends,
there exist regions in which the coexistence is clearly
more noticeable than in others. The rest of this work
is organized as follows. In the next Section we shortly
summarize the basic ingredient of the model and review
the numerical methods used. In Sect. 3 we numerically
explore the parameter space identifying the most inter-
esting regions. The analysis of the multistability and
the abundance of coexistent solutions with the same
parameter values but different initial conditions is pre-
sented in Sect. 4. Finally, Sect. 5 is devoted to the final
remarks.

2 The MG model and the numerical
method

The original model describes the dynamics of a physio-
logical variable, P (t) representing the concentration of
a particular cell population in the blood. The temporal
evolution is governed by the following equation

dP

dt
=

β0θ
nPτ

θn + Pn
τ

− γP (1)

where Pτ = P (t − τ) is the delayed variable and β0, θ,
τ , n, γ are real parameters [1]. In this equation the first
term in the right hand side represents the nonlinear,
delayed, production and the second term accounts for
the natural decaying. The number of parameters can be
reduced by re-scaling the variables x = P/θ and t′ = γt
in Eq. (1) obtaining,

dx

dt′
= α

xΓ

1 + xn
Γ

− x (2)

where xΓ = x(t′ − Γ ), α = β0/γ and Γ = γτ . From
now on we denote the re-scaled time simply as t.

The temporal evolution of the dimensionless variable
x(t) is given by Eq. (2) which is the center of our anal-
ysis. This equation depends on three parameters: n, α,
and Γ . The first one, n is directly related to the mech-
anism of production of the particular blood component
and it is kept fixed at n = 4 through all this work.
The other two parameters, α and Γ , correspond to the
production rate and the decay and we will take them as
the main variables of the control or parameter space. In
this DDE with a single delay, the initial condition must
specify a function in the interval (−Γ, 0) to univocally
determine the solution x(t).

The numerical integration of the DDE requires to
redesign a standard numerical methods for ordinary
differential equations [16]. The first alternative is to
appeal to standard numerical methods, like Runge–
Kutta schemes with constant step-size, and store at
each step the previous values of the variables in an
interval at least equal to the maximum delay. Moreover,
in the first steps during a time lapse at least equal to
the maximum delay it is necessary to rely on another
method to advance. In general, this approach is not the
most efficient and it is difficult to verify the stability
and accuracy. Other methods to solve DDEs numeri-
cally include the Bellman’s method of steps and wave
relaxation methods as shown in [17].

In a very different approach [14], we proposed an elec-
tronic system that reproduces MG model. Moreover,
we showed that taking into account the specific expres-
sions for the nonlinear function and the delay block
an explicit discretization scheme can be derived. This
scheme presents the advantage that in addition to being
more natural and easier to implement than standard
methods the temporal evolution is exact in time.

This exact discretization of the Mackey–Glass equa-
tion [14] can be obtained by taking discrete times
tj = jdt, where dt is the sampling time. The number of
values stored in the BBD, N (in this work, N = 1194),
the time delay, Γ and the sampling time are related
through dt = Γ/N . The MG variable x(t) is also dis-
cretized as xj whose temporal evolution is governed by
the following equation

xj+1 = xje
− Γ

N +
(
1 − e− Γ

N

) αxj−N+1

1 + xj−N+1
. (3)

It can be shown that this numerical method based on
the exact discretization is a reliable representation of
the experimental electronic system and a good approx-
imation of Eq. (2) for sufficiently large values of N , as
well as being more efficient than standard numerical
algorithms [14,15].

3 Exploring the parameter space

As mentioned, the Mackey–Glass system exhibits a rich
variety of dynamics depending on the parameters: the
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Fig. 1 Time series evolution as control parameters α and
Γ are varied. Columns correspond to Γ = [15, 25, 35] from
left to right and rows correspond to α = [4, 6, 8] from bottom

to top. A transient time of 5000Γ was neglected. In all the
panels, initial conditions were set to xin(t) = 1 ∀t ∈ (−Γ, 0)

nonlinear function exponent n, the production rate, α,
and the delay Γ , and also on the initial condition func-
tion. We start considering temporal series for represen-
tative values of the delay, Γ = 15, 25, 35 and α = 4, 6, 8
while the initial condition function and the exponent
n are kept fixed. In Fig. 1 the temporal series shown
exhibit periodic behaviour for α = 6 and α = 8 for
all Γ values. The number of peaks per period is 30,
25 and 35 for the top series and 29, 22 and 28 for the
ones in the middle. The bottom series, corresponding
to α = 4, are all chaotic. We observe that series in
the same row reveal different period while their shape
changes abruptly. In this case, T = 125.9, T = 102.9
and T = 142.9, for Γ = 15, Γ = 25 and Γ = 35 respec-
tively. The creation and destruction of peaks manifested
in series along the same column is clear where the tem-
poral series present the same period but different peaks
count (indicated in each panel).

Figure 2 shows bifurcation diagrams obtained by
plotting the local maximums (peaks) of the numeri-
cally computed solutions as a function of Γ for three
different values of α. In all the cases, the initial con-
dition functions is xin(t) = 1 in the interval (−Γ, 0).
These diagrams show the familiar periodic branches
and chaotic behaviour. For α = 4 and Γ < 8, typical
period-doubling branches are exhibited, and the system
presents a no return to periodicity for Γ > 8. For α = 6
and α = 8 three different periodic regions are observed
after the first transition to chaos. Creation and destruc-

tion of branches is also evident in Fig. 2 for all three
diagrams, which is typical of delayed systems. All peri-
odic regions appear similar inside the diagrams even
as the delay parameter Γ is increased. The diagrams
also reveals regions of periodic solutions with similar
peak structures for a range of values of α. In general,
complex arrangements appear for high Γ values as α is
increased. For example the creation of a high number of
spontaneous branches is shown for Γ = 30 and α = 8.

Figure 3 shows bifurcation diagrams where parame-
ter Γ was swept up (top row) and down (bottom row)
using the previous solution as the initial condition (the
first initial condition function is xin(t) = 1 in the inter-
val (−Γ, 0)). The three columns correspond to differ-
ent values of α. Similar behaviour to that observed in
Fig. 2 concerning that of period-doubling and creation
and destruction of branches is noticed, but in Fig. 3
periodic solutions appear for α = 4 and Γ > 8 whereas
in Fig. 2 that region was entirely chaotic, evidencing
the multistability of the system. Furthermore, the dif-
ferences between the top and bottom row diagrams sug-
gest a sort of hysteresis loop since the diagrams vary as
Γ is swept up or down. This hysteresis phenomena is
further hint of the multistability of the system as the
initial conditions are not the same when sweeping Γ up
to those when sweeping Γ down.

A more general picture of the global behavior can
be obtained plotting isospike diagrams in which a color
scale indicates the number of peaks in a given period
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Fig. 2 Bifurcation diagrams for different values α = 4 (left
panel), α = 6 (center panel) and α = 8 (right panel). Peaks
are recorded in a span of 200Γ after a transient of 5000Γ

was neglected. Initial conditions were set to xin(t) = 1
∀t ∈ (−Γ, 0). Vertical dashed lines correspond to the param-
eter values of Fig. 1

Fig. 3 Bifurcation diagrams for different values α = 4 (left
column), α = 6 (center column) and α = 8 (right column).
Peaks are recorded in a span of 200Γ after a transient of
2000Γ was neglected. The initial condition for Γ = 2 was

set to xin(t) = 1 ∀t ∈ (−Γ, 0), then the previous solution
was used as the initial condition as Γ was swept up and then
down. The top row corresponds to sweeping Γ up whereas
the bottom row correspond to sweeping Γ down
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Fig. 4 Isospike diagram obtained changing control param-
eters α and Γ . 1000 × 1000 parameter points are displayed.
The number of peaks in a period is represented in colors
according to the color bar shown in the right. Colors were
recycled after 14 to represent more peaks per period. The
initial conditions correspond to a constant value xin(t) = 1
∀t ∈ (−Γ, 0) for each point of the diagram. To count the
number of peaks a time of 200Γ was recorded after a tran-
sient time of 1000Γ . Horizontal dashed lines correspond to
the bifurcation diagrams of Fig. 2

of the variable or black in the case of chaotic solutions
[18,19]. Figure 4 shows an isospike diagram as param-
eters α and Γ were varied. As shown in this figure
intricate patterns arise in the parameter space, even in
regions of high delay Γ where chaos is to be expected.
Several regions of periodicity are shown matching those
seen in Fig. 2 reveling the complexity of the model as
α and Γ grow. The temporal series presented in Fig. 1
are also coherent whit these figures revealing that a
region consists of similar series with variations due to
creation and destruction of peaks while different regions
will have different series structures. These patterns are
examples of the intricacy and richness of delayed sys-
tems.

4 Impact of the multistability

The multistability in this system is ubiquitous in large
regions of the parameter space. To gain insight, we
consider four initial condition functions in the interval
(−Γ, 0): a non-null constant value, a linear function,
and two other periodic functions [15] combining sinu-
soidal functions:

xA(t) = 1 (4)

xB(t) = 0.7
t

Γ
+ 0.3 (5)

xC(t) =
1
4

sin

(
7πt

Γ
+ φ

)

× sin

(
7πt

2Γ
+

φ

2

)
+ xoff (6)

xD(t) =
1
40

sin
(

7πt

Γ
+ φ

)

×
[

sin
(

7πt

2Γ
+

φ

2

)
+ 4

]
+ xoff . (7)

Using these functions we characterize systematically
the abundance of coexisting solutions.

To illustrate the multistability, firstly, we selected two
points labelled 1 (Γ1 = 18, α1 = 4) and 2 (Γ2 = 20,
α2 = 4) and three different initial condition functions.
These functions were labelled a, b, ch, obtained chang-
ing the parameters φ and xoff of Eq. (6). In Fig. 5
we show six temporal series (left column) and the
respective recurrence plots (right column) correspond-
ing to the two mentioned points and the three initial
conditions. Both representation, temporal series and
recurrence plot, provide supplementary pictures of the
dynamics. In all the cases, the solutions labeled a and b
are periodic while the corresponding to ch are chaotic.
The characteristics of the periodic solutions at each
point depend on the initial conditions, for example, in
a1 we observe a period of 27.3 and 4 peaks per period
while in a2 the period is 54.5 and there are 10 peaks per
period. Nevertheless, when comparing panels a and b
for both points, 1 and 2, the period and the number of
peaks is multiplied by 3 suggesting a similar bifurcation
scenario.

Figure 6 shows isospike diagrams corresponding to
the four initial condition functions, Eqs. 4–7, in a large
region of the parameter space. Each point in these
diagrams was obtained starting with the same initial
conditions function. In all the panels we appreciate
chaotic or periodic regions intermingled. Nevertheless,
we observe that although some regions are similar in
all the panels there are others that differs notably. To
identify the regions which present more variations we
included white boxes in Fig. 6. These variations demon-
strate that multistability is not evenly distributed in the
parameter space. In particular, for sufficiently low val-
ues of α or Γ , it appear only one stable solution while
increasing one or both parameters leads in the majority
of the cases to multistable behavior.

To further quantify multistability, we selected a fam-
ily of functions, given by Eq. 7, and changed sys-
tematically the parameter values. Then, the solutions
obtained were analyzed for different control parameter
values. Figure 7 shows the changes in peaks count for
a smaller region of the parameter space as the initial
conditions are changed. The initial conditions for each
diagram correspond to the Eq. (7) with xoff = 0.35 and
φ = 4πi

10 for i = 0, 1, . . . 9. Small variations between the
diagrams indicate the coexistence of multiple solutions
for different initial conditions, even when only the phase
is changed. To further assess this observation, the right
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Fig. 5 Coexisting
solutions for different
initial conditions in two
fixed points of the
parameter space. The
temporal series and
recurrence plot a1, b1 and
ch1 correspond to the
point Γ = 18, α = 4 and
a2, b2 and ch2 correspond
to Γ = 20, α = 4. The
initial condition function is
given by Eq. (6) with
control parameters φ = 0
and xoff = 0.35 for a1 and
a2, φ = π and xoff = 0.3
for b1 and b2 and φ = π
and xoff = 0.4 for ch1 and
ch2. A transient time of
2000Γ was neglected

diagram of Fig. 8 shows the number of distinct solutions
that appear in Fig. 7 for every point of the parameter
space, revealing a region where no periodic solutions
were observed (black) and regions where multiple solu-
tions coexist for different initial conditions functions
(color). The left diagram of Fig. 8 shows the same anal-
ysis for a different region of the parameter space and
a the family of initial conditions functions given by (6)
with xoff = 0.35 and φ = 4πi

10 for i = 0, 1, . . . 9. For
this condition, a region without multistability (white)
clearly appears.

A distinctive region of two solutions is shown in the
left diagram of Fig. 8 for the 10 initial conditions func-
tions selected. To continue with the study of multista-
bility in this region two points Γ = 18, α = 4 and
Γ = 20, α = 4 were selected and a map of coexisting
solutions was made as the initial conditions vary inside
the same family of functions. Figure 9 shows the differ-
ent solutions that arise for the points Γ = 18, α = 4
(left diagram) and Γ = 20, α = 4 (right diagram), as
initial conditions are changed. Initial conditions were
set to Eq. (6) and parameters φ and xoff were varied
finding two periodic solutions and a region of chaos for
both points. Time series are shown in Fig. 5. Similar

patterns are observed between both diagrams, primar-
ily the fact that regions of a1 in the left diagram cor-
respond to regions of a2 in the right diagram and some
structure remains on the frontier with the chaotic solu-
tions.

5 Conclusion

The Mackey–Glass delayed model was studied in this
work using a previously validated numerical scheme.
By means of temporal series, bifurcation and isospike
diagrams we explored the parameter space expressed in
terms of the dimensionless production rate and decay.
In general terms, the complexity increases as increasing
the delay. The presence of tongues of stability in the
isospike diagrams is characteristics of this system.

Varying the initial condition function we found the
coexistence of several solutions, i.e. multistability, in a
broad range of values of space parameters. Moreover,
periodic solutions consisting of maximums of several
amplitudes but in different order are abundant in var-
ious of these regions. We characterized the coexisting

123



Eur. Phys. J. Spec. Top. (2022) 231:273–281 279

Fig. 6 Isospike diagrams
for different initial
conditions functions. Each
diagram displays 1000 ×
1000 parameter points.
The number of peaks in a
period is represented in
color. Colors were recycled
after 14 to represent more
peaks per period. The
initial conditions are shown
in Eq. (4) for (A), Eq. (5)
for (B), Eq. (6) with φ = 0
and xoff = 0.3 for (C) and
Eq. (7) with φ = 0 and
xoff = 0.33 for (D). To
count the number of peaks
a time of 200Γ was
recorded after a transient
time of 1000Γ

Fig. 7 Parameter space diagrams for a family of initial
conditions. The initial conditions were set to Eq. (7) with
xoff = 0.35 and φ = 4πi

10
with i = 0, 1, . . . 9. Each diagram

displays 500 × 500 parameter points. To count the number
of peaks, a time of 200Γ was recorded after a transient time
of 2000Γ
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Fig. 8 Number of distinct solutions as the initial condi-
tions were varied for a region of the parameter space. The
initial conditions were set to Eq. (6) for the left diagram and
Eq. (7) for the right diagram with xoff = 0.35 and φ = 4πi

10
with i = 0, 1, . . . 9 and the number of peaks was recorded

for each diagram. The number of different solutions is repre-
sented in color for each point of the parameter space. Each
diagram displays 500 × 500 parameter points. To count the
number of peaks a time of 200Γ was recorded after a tran-
sient time of 2000Γ

Fig. 9 Map of coexisting solutions in a fixed point of the
parameter space as the initial conditions are changed. Each
diagram displays 1000 × 1000 parameter points. The left
diagram corresponds to the point α = 4, Γ = 18 and the

diagram to the right to the point α = 4, Γ = 20. The initial
conditions were set to Eq. (6) as parameters φ and xoff were
varied. A transient time of 2000Γ was neglected

solutions, either periodic or chaotic, in the parameter
space. Selecting representative families of initial con-
dition function we quantitatively evaluated the impact
of the multistability. We also showed the existence of
hysteresis loops by sweeping up and down the delay
parameter in the bifurcation diagrams. Undoubtedly,

the range of possible applications of delayed systems
will continue to enlarge in the near future.
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