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Abstract Systems with multiscroll attractors have been studied extensively in recent decades. Some efforts
have focused on understanding the mechanisms that generate complex dynamics in relatively simple sys-
tems. The chaotic properties of these systems have been found useful in cryptographic techniques. Recently,
hidden chaotic attractors have raised interest in cryptographic algorithms due to the additional complexity
they provide. Although several hidden chaotic attractors have been reported, the variety of mechanisms
involved in the appearance of hidden attractors in multistable systems is not fully understood. Here we
report an approach to generate multistable systems with nested hidden attractors. The idea behind the
construction is to use a nonlinear function to produce coexisting self-excited attractors at specific locations.
So, a hidden attractor emerges for each pair of self-excited attractors, each pair of these hidden attractors
leads to the appearance of a larger hidden attractor. In this way, hidden nested attractors appear depending
on the number of self-excited attractors. Therefore, the systems produced with the approach could possi-
bly be used in a cryptographic algorithm. The new dynamical system to generate nested attractors starts
by selecting three parameters which are related to the oscillatory behavior and appear in the linear part
(matrix A) of the system equations. Then, using the proposed simplest system description, two parameters,
which are related to the location of the equilibria, are adjusted in order to generate a bistable behavior
with two self-excited attractors. Each of these self-excited attractors is generated by a pair of equilibrium
points. Thus the two self-excited attractors emerge when the relationship between the separation of the
two pairs of equilibria and the separation by pairs of equilibria is large enough, which is controlled by
two parameters. The bistable behavior is found by choosing the appropriate parameters of the matrix A.
Once the bistable behavior has been verified, the found parameters are used in the appropriate proposed
description of the system for the desired number of attractors. A particular case with fifteen attractors is
introduced.

1 Introduction

According to [1], we can find two classes of attractors
in a system, those classical attractors self-excited by
their unstable equilibria whose basin of attraction inter-
sects with an open neighborhood of equilibria called
self-excited attractors, and those whose basin of attrac-
tion does not contain neighborhoods of equilibria called
hidden attractors. The localization of hidden attractors
is generally more difficult than in the case of self-excited
attractors. An analytical-numerical algorithm was sug-
gested in [1] for the localization of hidden attractors of
Chua’s circuit.

Recently, the use of hidden chaotic attractors instead
of self-excited attractors in cryptographic algorithms
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has been shown to increase security [2]. Some systems
with hidden attractors have been studied in [3–15], how-
ever, most of the mechanisms that lead to the appear-
ance of hidden attractors in the wide variety of classes
of systems remain unexplored.

The concept of multistability in a system is usually
related to the existence of two or more attractors. If at
least one of these is a hidden attractor, it adds addi-
tional complexity since its location is not as simple as
in the case of a self-excited attractor.

In [16] a study is presented on the widening of the
basins of attraction in multistable piecewise linear sys-
tems. In this work, a system with two double- scroll
self-excited attractors and one double- scroll hidden
attractor is reported. The hidden attractor resembles
a larger double-scroll attractor in that the self-excited
attractors act similarly to the equilibria in the center of
the scrolls of a self-excited double-scroll attractor. This
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behavior was studied in [17] for a class of piecewise lin-
ear systems that lead to the construction of multistable
systems with hidden grid attractors. In the center of
each scroll of this grid attractor is a self-excited attrac-
tor. Based on the previous results and with the objec-
tive of increasing the complexity of multistable systems,
we propose an approach which allows the generation
of 2m − 1 nested hidden attractors, with m ∈ N. The
approach allows the construction of complicated mul-
tistable systems where the shape of both, self-excited
and hidden attractors can be modified. With this nested
arrangement, more than one attractor can be found in
the center of a scroll of another attractor, which leads
to more complex attraction basins. Since the approach
allows the construction of complicated multistable sys-
tems with any number of hidden attractors, a possible
application in cryptography is expected.

The structure of this work is as follows: In Sect. 2, the
approach to generate nested hidden attractors is intro-
duced. In Sect. 3, two particular cases are presented,
one with two self excited attractors and one hidden
attractor and another with fifteen attractors. In Sect. 4
some conclusions are given.

2 Approach description

In order to introduce the approach let us define P =
{P1, . . . , Pη}, with η > 1 and η ∈ N, as a finite partition
of X ⊂ R

3. Now let T : X → X, with X ⊂ R
3, be a

piecewise linear dynamical system whose dynamics is
given by a family of sub-systems of the form

ẋ = Ax + f(x)B, (1)

where x = (x1, x2, x3)T ∈ R
3 is the state vector, A =

{αij} ∈ R
3×3 is a linear operator, B = (β1, β2, β3)T

is a constant vector, and f is a functional. The vector
f(x)B is a constant vector in each atom Pi such that
the equilibria is given by x∗

eqi
= (x∗

1eqi
, x∗

2eqi
, x∗

3eqi
)T =

−f(x)A−1B ∈ Pi, with i = 1, . . . , η.
The matrix of the linear operator A is defined as

follows:

A =

⎛
⎝

a
3 + 2c

3 b 2c
3 − 2a

3

− b
3 a 2b

3
c
3 − a

3 −b 2a
3 + c

3

⎞
⎠ , (2)

where a, b ∈ R
+ and c ∈ R

−. The complexification of A,
AC has the eigenvalues λ1 = a+ib, λ2 = a−ib and λ3 =
c. Then the equilibrium point in each element of the
partition P is a saddle point whose unstable manifold
is WU

x∗
eqi

= {(x + x∗
eqi

) ∈ R
3 : x ∈ span{v1, v2}} where

v1 = (1 0 1
2 )T and v2 = (0 −1 0)T. The stable manifold

is WS
x∗
eqi

= {(x + x∗
eqi

) ∈ R
3 : x ∈ span{v3}} where

v3 = (−1 0 1)T.
The selection of this matrix A is based on the idea

that each equilibrium point x∗
eqi

is a saddle equilib-

rium point, and furthermore, if two equilibria x∗
eq1

and
x∗
eq2

are symmetrically separated along axis x1 from
a surface Σ = {x ∈ R

3 : x1 = ρ, ρ ∈ R} then
WU

x∗
eq1

∩ WS
x∗
eq2

∩ Σ = ∅ and WS
x∗
eq1

∩ WU
x∗
eq2

∩ Σ = ∅.
This condition is related to the existence of a hidden
attractor and was observed before in [17].

The constant vector B ∈ R
3 is given by:

B =

⎛
⎝

−a
3 − 2c

3
b
3

a
3 − c

3

⎞
⎠ , (3)

The functional f(x) is:

f(x) = αu

(
2

(
x1 −

m∑
i=1

wi

)
− x3, x3

)
+

m∑
i=1

wi, (4)

where α ∈ R, m ∈ N, and wi are defined as follows

w0 = 0, (5)

wi = γm+1−iu

⎛
⎝x1 −

i−1∑
j=0

wj , x3

⎞
⎠ , for i = 1, . . . ,m,

and m ≥ 1, (6)

where γ ∈ R, u(x1, x3) is a binary function with two
arguments, x1 and x3, that function values are 1 or – 1
depending on its arguments x1 and x3. Note that for
x1 = 0 can be mapped to 1 or -1 depending on the value
of x3. The function u(x1, x3) is defined as follows:

u(x, z) =

⎧⎪⎨
⎪⎩

1, if x > 0 and z ≥ 0;
−1, if x ≤ 0 and z ≥ 0;

1, if x ≥ 0 and z < 0;
−1, if x < 0 and z < 0.

(7)

The functional f(x) is responsible for the location
of the equilibria. In order to analyze it let us rewrite
it as f(x) = f1 + f2. The functional f(x) acts on a
partition P which is determined by dividing the atoms
of a partition G defined by the function f2. Therefore,
first, we consider the function f2 =

∑m
i=1 wi, for m = 1

it takes the form:

f2 = w1 = γu(x1, x3), (8)

which generates a partition G = {G1, G2} with the
switching surface {x ∈ R

3 : x1 = 0} such that for x
in G1, we have f2 = −γ, and for x in G2, f2 = γ. The
partition P is given by dividing the atoms G1 and G2

according to the function f1. The way how the atoms
G1 and G2 are divided is shown below. Now, let us
consider m = 2 then

w1 = γ2u(x1, x3), (9)
w2 = γu(x1 − γ2u(x1, x3), x3), (10)
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f2 = γu(x1 − γ2u(x1, x3), x3) + γ2u(x1, x3). (11)

This can be interpreted by parts: first, w1 generates
a partition G = {G1, G2} with the switching surface
{x ∈ R

3 : x1 = 0} such that for x in G1, we have
w1 = −γ2 and for x in G2, w1 = γ2. Then, w2 generates
a partition in G1 as follows G1 = {G11, G12} with the
switching surface {x ∈ R

3 : x1 = w1 = −γ2}. Also, w2

generates a partition in G2 as follows G2 = {G21, G22}
with the switching surface {x ∈ R

3 : x1 = w1 = γ2}.
Thus, the location of the switching surfaces along the
x1 axis is x1 ∈ {−γ2, 0, γ2}. Since f2 = w1 + w2 it
follows that:

f2 =

⎧⎪⎨
⎪⎩

−γ2 − γ if x ∈ G11;
γ2 + γ if x ∈ G12;
γ2 − γ if x ∈ G21;
γ2 + γ if x ∈ G22.

(12)

If m = 3 then the elements of the partition are dou-
bled as G = {G111, G112, G121, G122, . . . , G221, G222}
and since f2 = w1 + w2 + w3:

f2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ3 − γ2 − γ if x ∈ G111;
−γ3 − γ2 + γ if x ∈ G112;
−γ3 + γ2 − γ if x ∈ G121;
−γ3 + γ2 + γ if x ∈ G122;
γ3 − γ2 − γ if x ∈ G211;
γ3 − γ2 + γ if x ∈ G212;
γ3 + γ2 − γ if x ∈ G221;
γ3 + γ2 + γ if x ∈ G222;

(13)

while the switching surfaces are located along the x1

axis as x1 ∈ {−γ3 − γ2,−γ3 + γ2, 0, γ3 − γ2, γ3 + γ2}.
Then, one way to see the function f2 is that for each

time that m changes to m + 1 the elements of the pre-
vious partition are doubled. The number of elements of
the partition G is 2m.

It is worth mentioning that each atom of the partition
P contains an equilibrium point which is determined by
the functional f . Also, the partition P is generated by
dividing the atoms of the partition G, then the atoms of
the partition P are twice of the atoms of the partition
G. Furthermore, the functional f is designed to allow
the generation of heteroclinic orbits between a pair of
equilibria which are contained in the same atom of the
partition G.

Now, let us analyze the term f1 which can be rewrit-
ten as

f1 = αu

(
2(x1 −

m∑
i=1

wi) − x3, x3

)

= αu (2(x1 − f2) − x3, x3) . (14)

Therefore, f1 is basically the step function u(x, z) with
a scaling factor α. The arguments of u(x1, x3) take this
form to generate switching surfaces with the orienta-
tion required to generate the heteroclinic loops between

equilibria in adjacent atoms given by Pi and Pi+1, with
i = 1, 3, 5, . . . , 2m+1 − 1.

Thus f1 generates a partition with two elements for
each element of the partition generated by f2. Then
the final partition is P = {P1. . . . , P2m+1}. In each ele-
ment of the partition G there is a switching surface of
the form {x ∈ R

3, ε ∈ R : 2x1 − x3 = ε}. Also, the
number of equilibria is 2m+1 which under appropriate
parameter values generates 2m self-excited attractors.
For each pair of self-excited attractors a hidden attrac-
tor could emerge as well as for two hidden attractors
could emerge a new hidden attractor.

Then, for m = 1 there are two self-excited attractors
and one hidden attractor, each time m is incremented
the attractors (self-excited and hidden) are multiplied
by two and a new hidden attractor can emerge. Thus,
the total number of hidden attractors is 2m −1 and the
total number of self excited attractors is 2m. The total
number of coexisting attractors is then 2m + 2m − 1 =
2m+1 − 1.

The equilibria is located along the x1 axis depend-
ing on α, m and γ. The equilibria for m ∈ {1, 2, 3}
is shown in Table 1. Each self-excited attractor oscil-
lates around a pair of equilibria x∗

eqk
and x∗

eqk+1
, with

k = 1, 3, . . . , 2m+1 − 1.

3 Particular cases of nested hidden and
self-excited double scroll attractors

To illustrate the approach, consider the simplest case
for m = 1 along with α = 1, γ = 10, the system presents
three attractors, a hidden attractor and two self-excited
attractors. In the Fig. 1, two self excited attractors
are shown in red and a hidden attractor in blue. The
double-scroll self-excited attractors are nested in each
scroll of the hidden attractor.

Now in order to illustrate the approach with a more
complex case, consider the values m = 3, α = 1, γ = 10.
The number of attractors is now fifteen, eight self-
excited and seven hidden attractors. Projection of the
attractors on the (x1, x2) plane are presented in the
Fig. 2, the self-excited attractors are drawn in black.
There are eight double-scroll self-excited attractors and
the projection of one of them on the (x1, x2) plane is
shown in Fig. 2a. A pair of double-scroll self-excited
attractors are used to generate a double-scroll hidden
attractor. Figure 2b shows the projection of a double-
scroll hidden attractor in green which is generated by
a pair of self-excited attractors in black. Therefore, the
eight double-scroll self-excited attractors generate four
double-scroll hidden attractors in green. Each scroll of
the green hidden attractor has a self-excited attractor
nested. Each pair of green hidden attractors generates a
new hidden attractor. Figure 2c shows the projections
of three hidden attractors on the (x1, x2) plane, the
double-scroll hidden attractor in red is generated by two
hidden attractors in green. Then, the four green attrac-
tors generate two red hidden attractors. Each scroll of
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Table 1 Location of the equilibria along the x1 axist depending on m, α and γ for m ∈ [1, 3]

m Location at x1

m = 1 −γ − α, −γ + α, γ − α, γ + α
m = 2 −γ2 − γ − α, −γ2 − γ + α, −γ2 + γ − α, −γ2 + γ + α,

γ2 − γ − α, γ2 − γ + α, γ2 + γ − α, γ2 + γ + α
m = 3 −γ3 + γ2 − γ − α, −γ3 + γ2 − γ + α, −γ3 + γ2 + γ − α, −γ3 + γ2 + γ + α,

−γ3 − γ2 − γ − α, −γ3 − γ2 − γ + α, −γ3 − γ2 + γ − α, −γ3 − γ2 + γ + α,
γ3 + γ2 − γ − α, γ3 + γ2 − γ + α, γ3 + γ2 + γ − α, γ3 + γ2 + γ + α,
γ3 − γ2 − γ − α, γ3 − γ2 − γ + α, γ3 − γ2 + γ − α, γ3 − γ2 + γ + α

Fig. 1 Projection of the three attractors on the (x1, x2)
plane: Two self-excited attractors (red) and a hidden attrac-
tor (blue) exhibited for m = 1, α = 1, γ = 10

the red hidden attractor has a green hidden attractor
nested. And so on, the two red hidden attractors gen-
erate a larger double-scroll hidden attractor which is
drawn in blue in Fig. 2d. Therefore, each scroll of the
blue hidden attractor has seven attractors nested, i.e. a
red hidden attractor, two green hidden attractors, and
four self-excited attractors.

The Lyapunov exponents have been calculated for
the fifteen attractors with the Wolf’s algorithm [18]
using tanh(Nx1) approximations, Kaplan–Yorke dimen-
sion was also calculated for all the attractors and is
presented along the exponents in Table 2.

According to [19] the diameter of a set is defined as
follows:

Definition 31 [19] If S is a nonempty subset of R
n,

then

d(S) = sup {|x − y| : x, y ∈ S} ,

is the diameter of S. If d(S) < ∞, S is bounded, if
d(S) = ∞, S is unbounded.

Subsets of the basins of attraction at the plane {x ∈
R

3 : x3 = 0} were numerically estimated for the fifteen
attractors and they are shown in the Fig. 3. As shown in
the Fig. 3 the basins of attraction of different coexisting
attractors occur as disjoint sets in the phase space, this

is due to the nested geometry of the attractors. Con-
sider for instance the hidden attractor shown in Fig. 2b
in green, its basin of attraction “surround” four equi-
librium points, however, the equilibria are not part of
it, neither the two self-excited attractors in black. The
basin of attraction of each self-excited attractor “sur-
round the two equilibria” but it is also “surrounded”
by the basin of attraction of the hidden attractor.

The diameters of the estimated subsets of the basins
of attraction are also presented in Table 2.

4 Conclusions

In this work an approach for the generation of multi-
ple hidden attractors is presented, the approach allows
the modification of shape and number of attractors via
some parameters. The proposed approach could be per-
formed following three steps: First, parameters a, b and
c related to the eigenvalues of AC are selected. Second,
parameters γ and α that produce a bistable behav-
ior are found via simulation. In case these were not
found, new parameters can be chosen in the first step.
Third, the found parameters are used in the appro-
priate proposed description of the system for the cor-
rect value of m according to the desired number of
attractors. The new system is then simulated in order
to verify the expected behavior as well as perform
the characterization of the attractors. The particular
cases used to illustrate the construction suggests that
the generated attractors, self-excited as well as hidden
are indeed chaotic. Even when the approach uses self-
excited attractors as a base for the generation of hid-
den attractors these could be replaced by hidden double
scroll attractors as those reported in [14] which would
lead to a system without equilibria. The approach could
also lead to other designs that exhibit not only dou-
ble scroll attractors but different number of scrolls or
even nested hidden grid attractors. The generation of
a multiscroll hidden attractor along several self-excited
attractors could be controlled for the use in a multi-
channel communication scheme or even in the genera-
tion of pseudo-random numbers. Also, it seems plausi-
ble the modification of the approach to generate a frac-
tal like continuous system where the attractors present
self-similarity.
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Fig. 2 In (a–c) smaller
portions of the projection
of the attractors are shown.
In (a) a double-scroll
self-excited attractor of
eight self-excited attractors
produced by the proposed
construction given by (1),
(2), (3) and (4) with
a = 0.2, b = 5, c = −3,
m = 3, α = 1 and γ = 10
projected on x1 − x2. In
(b) a double-scroll hidden
attractor contained two
nested double-scroll
self-excited attractors, c
three hidden attractors
and four self-excited
attractors, and d fifteen
attractors are shown, seven
hidden attractors and eight
self-excited attractors

Table 2 Lyapunov exponents and Kaplan–Yorke dimension of the fifteen attractors produced by the proposed construction
given by (1), (2), (3) and (4) with a = 0.2, b = 5, c = −3, m = 3, α = 1 and γ = 10 as well as the diameter of the subset of
the basin of attraction numerically

Center position Lyapunov Diameter

Attractor at x1 x(0) exponents DKY d(·)
1 – 1110.0 (−1110, 0.05, 0)T 0.343,– 0.0,– 2.745 2.125 9.409
2 – 1090.0 (−1090, 0.05, 0)T 0.343, 0.0,– 2.744 2.125 9.409
3 – 910.0 (−910, 0.05, 0)T 0.348, – 0.0,– 2.744 2.1268 9.409
4 – 890.0 (−890, 0.05, 0)T 0.347, 0.0,– 2.744 2.1265 9.409
5 890.0 (890, 0.05, 0)T 0.35, – 0.0,– 2.745 2.1275 9.409
6 910.0 (910, 0.05, 0)T 0.346, 0.0, – 2.743 2.1261 9.409
7 1090.0 (1090, 0.05, 0)T 0.346, 0.0, – 2.741 2.1262 9.409
8 1110.0 (1110, 0.05, 0)T 0.341, 0.0, – 2.739 2.1245 9.409
9 – 1100.0 (−1100, 0.5, 0)T 0.306, – 0.0, – 2.509 2.122 128.191
10 – 900.0 (−900, 0.5, 0)T 0.31, 0.0, – 2.51 2.1235 128.191
11 900.0 (900, 0.5, 0)T 0.31, – 0.0, – 2.51 2.1235 128.191
12 1100.0 (1100, 0.5, 0)T 0.31, 0.0,– 2.51 2.1235 128.191
13 – 1000.0 (−1000, 5.0, 0)T 0.35, – 0.02, – 2.46 2.1423 1302.459
14 1000.0 (1000, 5.0, 0)T 0.35, – 0.02, – 2.46 2.1423 1302.459
15 0.0 (0, 50.0, 0)T 0.36, – 0.03, – 2.43 2.1481 13201.515
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Fig. 3 Approximation of the basins of attraction of the fif-
teen attractors produced by the proposed construction given
by (1), (2), (3) and (4) with a = 0.2, b = 5, c = −3, m = 3,

α = 1 and γ = 10 on the plane {x ∈ R
3 : x3 = 0}, the white

region is not part of any basin of attraction and a different
color is assigned to each basin of attraction
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