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Abstract We review the long standing problem of superfluid pairing in pure neutron matter. For the s-wave
pairing, we summarize the state of the art of many-body approaches including different nn interactions,
medium polarization, short-range correlations and BCS–BEC crossover effects, and compare them with
quantum Monte Carlo results at low densities. We also address pairing in the p-wave, which appears at
higher densities and, hence, has large uncertainties due to the poorly constrained interactions, medium
effects and many-body forces.

1 Introduction

Superfluiditity in nuclei is nearly a 60-year-old prob-
lem. However, a satisfactory microscopic description of
the phenomenon continues to remain a challenge as the
problem is marred by uncertainties in the input interac-
tions, both at the few body level and the medium cor-
rections. The possibility of neutron superfluidity was
already pointed out around 1960 [1–3]. The observa-
tional confirmation began with the discovery of pul-
sars [4], their connection to rotating neutron stars [5]
and the subsequent observation of glitches in the period
of rotation of these pulsars. Rotating neutron stars are
almost perfect clocks with a period of rotation that
increases very slowly with time. However, sometimes,
the period of rotation suddenly decreases, followed by
long relaxation times (over years) before it returns to
its pre-glitch value. Such glitches can be explained if
one allows for the existence of a superfluid phase in
the inner crust of the star through the mechanism of
vortex unpinning [6,7] (maybe one needs also superflu-
idity in the core [8]). Further, the existence of a super-
fluid state is crucial to explain the observational data
on cooling [9–11].

The two-body interaction between two neutrons has
attractive components and while it is not sufficient
to produce a bound di-neutron state in free space, in
the presence of other neutrons, this attraction leads to
Cooper instability leading to the existence of a super-
fluid phase with s-wave pairing, which typically exists
in the inner crust of neutron stars. The NN interaction
is attractive in the spin triplet state as well that leads
to p-wave pairing, and such a phase is assumed to exist
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at higher densities in the outer layers of the core of the
star.

In addition to the physics of neutron star crusts, pair-
ing plays a crucial role in finite nuclei as well by con-
tributing to extra binding, for example the extra bind-
ing leading to an energy gap in even–even nuclei com-
pared to the quasi-particle spectrum of odd-A nuclei
or the even–odd staggering in binding energy [12,13].
Close to the drip lines, large even–odd-staggering has
been observed in isotopes of C, Ne and Mg [14–16].

In the literature, several extensive reviews already
exist on the subject of neutron star physics and super-
fluidity in both finite and infinite systems [17–20]. In
the present special topics issue, we aim to give a short
overview of the status of s-wave pairing, in particular
screening and beyond-BCS crossover effects, and of the
outstanding questions of p-wave pairing.

2 Singlet pairing

2.1 BCS gap equation

In the case of an attractive interaction between fermions,
the filled Fermi sea becomes unstable with respect to
the formation of Cooper pairs. The starting point to
study pairing is the BCS theory, where the gap or the
critical temperature is given by the BCS gap equation,
which in the s-wave spin-singlet (1S0) channel is given
by [21]:

Δ(k) = − 1
π

∫ ∞

0

dk′ k′ 2 V (k, k′)
Δ(k′) tanh

(
E(k′)
2T

)

E(k′)
,

(1)
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where Δ(k) is the momentum-dependent gap, V (k, k′)
is the matrix element of the s-wave neutron–neutron
(nn) interaction, E(k) =

√
ξ2(k) + Δ2(k) is the quasi-

particle energy with ξ(k) = ε(k) − μ and ε(k) =
k2/(2m∗), m∗ is the neutron effective mass, T the tem-
perature and μ the chemical potential (including the
mean-field energy shift). The critical temperature Tc

is the highest temperature at which there is a non-
trivial solution for Eq. (1). At T = Tc, the gap in E(k′)
can be neglected and as a result Eq. (1) becomes a
linear eigenvalue equation. In the weak-coupling limit
where Δ(kF) � μ, the gap at zero temperature is
related to the BCS transition temperature by Tc =
0.57ΔT=0(kF). In the case of neutron matter, this
formula is a good approximation at all values of μ,
because the Fermi surface remains rather well defined.
To simplify the notation, we will from now on write
Δ = Δ(kF).

In our calculations, we mostly use the renormaliza-
tion group (RG) based interactions, Vlow k [22] and
Vsrg [23]. They have an inherent scale (Λ for Vlow k and
λ for Vsrg) that sets the scale of decoupling between
the low and high momenta. Such a scale is arbitrary
and observables should be independent of this scale.
Within the simplest BCS approximation, i.e., employ-
ing the free-space nn interaction V 0(k, k′) and the free
neutron mass m∗ = m, any realistic nn interaction that
reproduces the two-body neutron phase shifts yields the
same BCS gap [24].

However, uncertainties arise already at the BCS level
as soon as the effective mass m∗ �= m is included, since
this affects the density of states N0 = m∗kF/π2, where
kF = (3π2n)1/3 is the Fermi momentum with n the
number density. Recent quantum Monte Carlo (QMC)
calculations [25] found that the neutron effective mass
drops only moderately with increasing density, similar
to what one gets with effective Gogny forces [26,27],
while effective Skyrme interactions of the Saclay-Lyon
family [28] predict a stronger drop, in contrast to those
of the Bruxelles-Montreal family [29,30] which predict a
slightly increasing effective mass. In particular at higher
densities beyond kF ≈ 0.8 fm−1 (corresponding to num-
ber densities above 0.017 fm−3 or mass densities above
2.9×1013 g/cm3), where the BCS gap is maximum, the
gap depends very sensitively on the density of states,
and, therefore, the different effective masses lead to siz-
able uncertainties as can be seen in Fig. 1.

At lower densities, the effective mass is close to the
free one, and the gap is less sensitive to it. In this region,
the uncertainties come mainly from corrections beyond
the BCS approximation. These will be addressed in the
following subsections.

2.2 Screening corrections

It is well known that corrections beyond the BCS
approximation due to density and spin-density fluc-
tuations that the neutrons create in the surrounding
medium are very important. Such corrections are called
medium polarization or screening effects, since they are
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Fig. 1 BCS pairing gaps Δ = Δ(kF) obtained from Eq. (1)
using the Vlow k interaction (with a cutoff of Λ = 2fm−1)
[22,23], as functions of kF. The differences between the
results are only due to the different effective masses m∗ used
in the calculations: free mass (m∗ = m, black solid line),
effective masses from recent auxiliary-field diffusion Monte-
Carlo calculations [25] using the AV8′+UIX interaction (red
filled circles) and the chiral N2LO interaction (green empty
circles), and effective masses from three different Skyrme
parametrizations: SLy4 [28] (blue long dashes), BSk19 and
BSk21 [30] (purple short dashes and turquoise dots, respec-
tively)

analogous to the screening of the Coulomb interaction.
They can be taken into account in the gap equation by
adding the induced interaction to the bare nn interac-
tion, so that,

V (k, k′) = V 0 (k, k′) + V (a) (k, k′) + V (b) (k, k′) , (2)

where the induced interactions, V (a) and V (b), are
as seen in Fig. 2. In this figure, diagram (a) allows
for one particle-hole (ph) bubble insertion while dia-
gram (b) sums the ph bubble series (random-phase
approximation, RPA, represented by wavy lines). In
these diagrams, the interaction Ṽ shown by the dot-
ted lines is meant to be antisymmetrized, 〈12|Ṽ |34〉 =
〈12|V |34〉−〈12|V |43〉, i.e., it includes also the exchange
graphs which are not drawn.

There have been many attempts to calculate the
induced interactions in the literature [32–38]. Espe-
cially the earlier calculations [32,33] found an extremely
strong suppression of the gap. However, since the work
by Cao et al. [36], a consensus seems to emerge that
the gap is not too strongly reduced. This is shown in
Fig. 3 which summarizes more recent screening and
QMC results. In Fig. 3b, we also show the result
Δ/ΔBCS = (4e)−1/3 ≈ 0.45 (black star) obtained long
ago by Gor’kov and Melik-Barkhudarov (GMB) [31],
which should become valid in the limit |kFann| � 1,
with ann ≈ −18.5 fm the nn scattering length.

It is seen that the two screening calculations [36,38]
do not quite agree with each other. We will come back to
a more detailed discussion of these calculations below.
The QMC calculations, which are supposed to be, up
to numerical limitations, exact solutions of the many-
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Fig. 2 In the medium, the bare pairing interaction (leftmost diagram) is modified by the screening corrections (a) and (b).
Diagram (a′) illustrates the resummation of ladders in the 3p1h vertices of diagram (a) implicitly assumed in the derivation
of the GMB result [31]
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Fig. 3 a Screening and QMC results for the gap in neutron
matter as a function of the Fermi momentum kF. The blue
dashes and red dots are the final results of the screening cal-
culations of Cao et al. [36] and of our own work [38], respec-
tively. The turquoise triangles, purple points, and green
squares are QMC results of Gandolfi et al. [39], Abe and

Seki [40], and Gezerlis and Carlson [41], respectively. For
comparison, the BCS result ΔBCS obtained without effec-
tive mass is shown as the black line (same as in Fig. 1). b
Same data as in a but normalized to ΔBCS. The GMB result
[31] is shown as the black star

body problem, show only a moderate suppression. The
gaps of Ref. [39] (turquoise triangles), were obtained
with the auxiliary-field diffusion Monte Carlo technique
using the Argonne V8′ nn interaction (AV8′) and the
Urbana IX three-body force (UIX) and is not signifi-
cantly reduced compared to ΔBCS up to kF ∼ 0.6 fm−1,
but the error bars are huge. The purple points of
Ref. [40] were obtained within a method based on the
discretization of the Hamiltonian on a lattice (determi-
nantal quantum Monte Carlo). The interaction used in
this calculation is much simpler, as it includes only the
leading and next-to-leading orders (NLO) of pionless
effective field theory (EFT), and is only valid at low
momenta, i.e., low densities. These gaps are reduced by
an almost constant factor of about 0.6–0.7 compared
to ΔBCS (see Fig. 3b). The almost perfect agreement of
these results with the red dashed curve is probably acci-
dental. A similar behavior was found in Ref. [41] using
the AV4 interaction within the variational and subse-
quent Green’s function Monte-Carlo method. At very
low densities, these results tend (within the error bars)
towards the GMB limit. According to Ref. [41], the dis-
crepancy between Refs. [39] and [41] might be due to
the less optimized wave function used in Ref. [39].

Let us now discuss in some more detail the screening
calculations. In Fig. 4, we display again the ratios of

screened gaps to our reference curve ΔBCS which is the
BCS gap with the free neutron mass (black solid line in
Fig. 1), including the results obtained at intermediate
steps on the way to the final results. Figure 4a sum-
marizes the neutron-matter results of Ref. [36]. In that
work, the 3p1h vertices Ṽ (dotted lines in Fig. 2) are
the Brückner G matrix. Up to the projection on the 1S0

wave, diagram (a) can be schematically written as

V (a) =
π

2

∑
pσ

Ṽ
n(p − q

2 ) − n(p + q
2 )

ε
(
p + q

2

) − ε
(
p − q

2

) Ṽ , (3)

where we have omitted all momentum and spin labels
of Ṽ . Here, p and σ are the momentum and spin labels
that are summed over in the ph loop and q = k− k′ is
the momentum transfer. The occupation numbers can
be safely approximated by step functions n(p) = θ(kF−
|p|). Also, as it is usually done, the static approximation
is made, i.e., the energy transfer in the ph bubble is
neglected. To simplify this complicated expression, the
authors of Ref. [36] replaced Ṽ by its average value 〈Ṽ 〉,
where the averaging is done around the Fermi surface,
so that it could be taken out of the sum, which then
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Fig. 4 Results for the screened gap in neutron matter as a function of the Fermi momentum kF at different steps of the
screening calculations of Ref. [36] (a) and of our own calculations [37,38] (b). See text for details

gives

V (a) = −π

2
〈Ṽ 〉2 Π0(q/kF) , (4)

where Π0(q̃) is the static Lindhard function [Π0(0, q̃) in
Eq. (12.46b) of [42], with m replaced by m∗] with q̃ =
q/kF. The subsequent projecting of V (a) on the s wave
finally amounts to averaging the Lindhard function over
the angle between k and k′, i.e., over q in the range |k−
k′| ≤ q ≤ k + k′. Since Π0 < 0, the induced interaction
V (a) is repulsive and, therefore, reduces (screens) the
bare interaction V 0. The solution of the gap equation
with V 0 + V (a) is shown as the purple dash-dot line in
Fig. 4a. We see that the screening disappears at low
densities, which is easily understood since Π0 ∝ kF in
Eq. (4).

The next step is to include also diagram (b) of Fig. 2.
Using the Landau approximation, the residual ph inter-
action is approximated as V = f0 + g0 σ1 · σ2, with f0
and g0 the Landau parameters, and thereby the RPA
series can be separately summed in the S = 0 and
S = 1 channels, where S denotes the total spin of the ph
excitation. Then, the inclusion of diagram (b) modifies
Eq. (4) to

V (a) + V (b) = −π

2
〈Ṽ 〉2

(
3
2
ΠS=1 − 1

2
ΠS=0

)
, (5)

with

ΠS=0 =
Π0

1 − f0Π0
, ΠS=1 =

Π0

1 − g0Π0
. (6)

Notice that, in dilute neutron matter, g0 > 0 and
f0 < 0. Together with Π0 < 0, this implies that,
with increasing density, the RPA enhances the attrac-
tive S = 0 contribution in Eq. (5), while it reduces
the repulsive S = 1 contribution. The net effect of dia-
gram (b) is, therefore, that the gap (green solid line in
Fig. 4a) is much less screened than with diagram (a)
only.

To obtain the final result of Ref. [36], another effect
was taken into account. Namely, the energy dependence
of the self-energy Σ(k, ω) computed in Brückner theory

(Fig. 1(b) of [43]) leads to a reduction of the quasipar-
ticle weight Z(k) = 1/(1 − ∂Σ/∂ω). This effect can be
accounted for by introducing a factor of Z(k)Z(k′) on
the right-hand side of the gap equation (1), which then
yields the final result shown in Fig. 3 and in Fig. 4a as
the blue dashed lines.

In spite of the reasonable agreement with the QMC
results at high density, the increase of the gap at low-
densities (kF � 0.27 fm−1) looks somewhat suspicious.
Furthermore, besides the approximation of Ṽ by its
average 〈Ṽ 〉 mentioned above, Ref. [36] used the Babu-
Brown theory [44] to determine the Landau parame-
ters in a self-consistent way, with the aim to avoid the
liquid–gas instability in low-density symmetric nuclear
matter. However, the validity of this argument may be
questioned as the liquid–gas instability exists.

For these reasons, the screening problem was recon-
sidered by the authors in Refs. [37,38]. As input nn
interaction, V 0(k, k′) in Eq. (2), as well as in the anti-
symmetrized 3p1h vertices, we use Vlow k. For the ph
interaction in the RPA, as well as in the calculation
of the effective mass m∗, we use for simplicity a phe-
nomenological Skyrme energy-density functional (SLy4
in the present example). No further approximations are
made, and in particular, the full momentum depen-
dence of the 3p1h vertices is taken into account when
summing over the loop momenta.

Starting with diagram (a) in Fig. 2, computed with
the Vlow k interaction obtained for a common choice of
the cutoff Λ = 2fm−1, one obtains the gap shown in
Fig. 4b as the black dashed line. As already observed
in [35,36], the screening vanishes and the BCS result
is recovered in the limit kF → 0, in contradiction to
the GMB result. In fact, the GMB result [31] is also
based on diagram (a) (since all other diagrams can be
neglected in the limit kFa → 0), but with a subtle dif-
ference: In the 3p1h vertices, one has to use the scat-
tering length (i.e., the full T matrix), and not just the
bare interaction V used in diagram (a). This amounts
to implicitly summing ladders to all orders in the 3p1h
vertices, as shown in diagram (a′).

Making use of the RG flow of the Vlow k interaction,
a simple way to solve this problem was suggested in
Ref. [37]. First, notice that, when decreasing the cut-
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off Λ, the RG flow guarantees that the scattering length
ann remains constant by increasing the matrix elements
of the interaction as V ≈ (m/a − 2mΛ/π)−1. In this
way, the interaction becomes more and more perturba-
tive in the sense that the Born term is already a good
approximation to the full T matrix. Second, the RG
evolution of Vlow k leaves the BCS gap independent of
the cutoff Λ, as long as Λ � 2.5kF. So, it is preferable
to scale the cutoff with kF, using at each density the
lowest permissible cutoff Λ = 2.5kF. Calculating dia-
gram (a) of Fig. 2 with this prescription, one obtains
the result shown in Fig. 4b as the purple dash-dotted
line, which indeed reproduces the GMB result (black
star) in the limit kF → 0.

At higher densities, the RPA corrections (Fig. 2b)
become important. In the case that the ph interaction
is of the Skyrme type, it is rather straightforward to
resum the RPA bubble series exactly [38,45,46]. This
gives our final result shown as the red dotted lines in
Figs. 3 and 4b. As discussed above, the inclusion of
Fig. 2b strongly reduces the screening effect of diagram
(a).

If we use in diagram (b) instead of the full RPA the
Landau approximation, as it was done in Refs. [35–
37,47], we obtain the green solid line shown in Fig. 4b.
Comparing this result with the red dashed line, one
concludes that the Landau approximation is only valid
for kF � 0.4fm−1. Beyond this density, it overesti-
mates the effect of the RPA and, for kF > 0.7fm−1, it
even predicts anti-screening (i.e., the gap is enhanced)
because of the large values of the Landau parameters.
Anti-screening was already found long ago in Ref. [33],
but only at much higher densities (kF � 1.3fm−1).
The strong anti-screening effect found in [37] within
the Landau approximation at higher density is absent
or strongly suppressed within the full RPA calculation
[38].

So far we have concentrated only on the low-density
region with kF < 0.9fm−1. At higher densities, as we
have seen in Sect. 2.1, the effective mass m∗ leads
to large uncertainties. Similarly, for the screening dia-
gram (b), uncertainties arise from the Landau param-
eters f0 and g0 and more generally, if one goes beyond
the Landau approximation, from the ph residual inter-
actions. Hence, in [38], we repeated the calculations
with a couple of different Skyrme parametrizations. All
screened results shown in Fig. 5a (thick lines) were
computed with the full RPA and with the density-
dependent cutoff Λ = 2.5 kF for kF < 0.8fm−1, while we
kept Λ = 2fm−1 constant for kF ≥ 0.8fm−1 since this
cutoff gives the correct BCS gap in the whole density
range, and with larger values of Λ the advantage of the
soft Vlow k interactions would be lost. Surprisingly, when
screening is included, the dependence on the choice of
the Skyrme interaction is weaker than without screen-
ing. In particular, for all the considered Skyrme forces,
the maximum of the screened gap lies now between 2.3
and 2.5 MeV.

These results can be compared with a calcula-
tion based on the self-consistent Green’s function the-

ory [47]. Here, the energy- and momentum-dependent
single-particle self-energy Σ(k, ω) is computed in lad-
der approximation, whereby all propagators are them-
selves dressed ones. This approach accounts automat-
ically for the short-range correlations created by the
realistic (hard) nn interactions, but not for screen-
ing, which corresponds to long-range correlations. In
Ref. [47], screening was in fact only included in an
approximate way, by adding V (a) + V (b) using the
same approximations as in Ref. [36] (see above). The
results, obtained with three different bare nn interac-
tions (AV18, CDBonn, and the chiral N3LO interac-
tion) are shown in Fig. 5b. As long as only screening is
included (red, green and blue points), the maximum of
the gap is again about 2.5 MeV, but the density where
it tends to zero is clearly higher than in our screen-
ing calculations (Fig. 5a). However, one should keep in
mind that for the momentum transfers needed in this
density region neither the Landau approximation nor
the full Skyrme ph interaction can be considered to be
reliable.

The effect of short-range correlations is closely related
to the Z factors included in the gap equation in
Ref. [36]. However, using the full spectral functions
as done in [47] and not just the quasiparticle peak,
it becomes somewhat more sophisticated. Taking into
account the short-range correlations in addition to
the screening (black, purple, and turquoise points in
Fig. 5b), the maximum gap is further reduced to ≈
1.8 MeV. Another observation is that also the density
where the 1S0 gap goes to zero is reduced. Apparently
this effect is important and should be studied also at
lower densities, along with a more complete treatment
of the screening. Short-range correlations can also be
included via the correlated basis function method that
once again leads to a suppression of the BCS gap [48],
but this technique will not be discussed in this short
review.

2.3 BCS–BEC Crossover

The BCS–BEC crossover has attracted a lot of atten-
tion in the last two decades, especially because of its
experimental realization in ultracold trapped atoms.
In these experiments, one can change the interatomic
interaction by varying the magnetic field, in such a
way that the system passes continuously from a BCS
superfluid in the case of weakly attractive interactions,
through a resonance where the scattering length a
diverges (unitary limit), to a Bose–Einstein condensate
(BEC) of bound dimers. For recent reviews emphasiz-
ing the analogies between ultracold atoms and nuclear
and neutron matter, see [49,50].

Of course, in nuclear systems, the interaction can-
not be changed. In this case, the crossover can be
realized with changing density. Very dilute symmetric
nuclear matter will form a BEC of deuterons which,
with increasing density, goes continuously over into a
BCS state with pn Cooper pairs [51]. In neutron matter,
however, a BCS–BEC crossover does not exist, because
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there is no bound dineutron state. But the nn scatter-
ing length is unusually large in the s wave, signaling a
nearly bound state. Hence, the Cooper pairs in dilute
neutron matter have a relatively small size (coherence
length), comparable to the average distance between
particles [52,53].

In this case, similar to the situation when there is a
true bound state, the temperature T ∗ where pairs disso-
ciate can be higher than the superfluid critical tempera-
ture Tc where the pairs undergo Bose–Einstein conden-
sation. This can be seen in Fig. 6 which shows the QMC
results of Ref. [40] for T ∗ and Tc as functions of kF. For
a better visibility of the low-density results, we have
divided T ∗ and Tc by the Fermi energy EF = k2

F/(2m).
The region between Tc and T ∗ is called the pseudo-
gap phase because, although there is no true gap, there
exists a suppression of the level density at ω = 0 (energy
measured relative to the chemical potential μ) because
of the energy needed to break a pair.

In the pseudogap region, it is usually a bad approx-
imation to compute the density from the uncorrelated

occupation numbers

nfree = 2
∫

d3k

(2π)3
f(ξ(k)) , (7)

where the factor of 2 accounts for the spin degeneracy
and f(ξ) = 1/(eξ/T + 1) is the Fermi function. Taking
into account the density corresponding to the correlated
pairs is crucial to get the correct result for Tc in the
BEC limit. This is done by the Nozières-Schmitt-Rink
(NSR) approach [54], which writes

n = nfree + ncorr . (8)

The correlated density ncorr is calculated to first order
in the self-energy Σ (in the imaginary time formal-
ism [42]),

ncorr = 2
∫

d3k

(2π)3
1
β

∑
ωn

(G0(k, ωn)
)2

[Σ(k, iωn) − Re Σ(k, ξ(k)] , (9)

where ωn are the Matsubara frequencies and G0 is the
uncorrelated single-particle Green’s function. The self-
energy Σ is calculated within the ladder approxima-
tion as shown in Fig. 7a, b. In the original NSR paper
[54], the correlated density is obtained as the derivative
with respect to μ of the thermodynamic potential rep-
resented by diagram (c) in Fig. 7, which is equivalent
to keeping the self-energy only to first order in Eq. (9)
[49]. However, the subtraction of the on-shell self-energy
Σ(k, ξ(k)) in Eq. (9) is absent in the original NSR
approach. It is necessary as this term is already taken
into account in G0 via the quasiparticle energy [55–58].

The correlated density was calculated in [58] using
the Vlow k interaction. To accommodate the non-local
interaction, the authors expressed the correlated den-
sity in the basis that diagonalizes V Ḡ

(2)
0 , where Ḡ

(2)
0 is

the two particle retarded Green’s function. In [37,38]
the bare interaction was augmented by the induced
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Γ=Σ= +Γ V Γ

(c)(b)(a)

Fig. 7 Diagrams for the T matrix (a), the self-energy (b), and the thermodynamic potential (c) in ladder approximation
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Fig. 8 Critical temperature Tc with (red) and without
(black) screening corrections, as a function of kF computed
with (dashes) and without (solid lines) the NSR correction
to the density, for two different Skyrme parmetrizations used
in the calculation of the effective mass and of the screening
corrections V (a) + V (b) [38]

interaction as discussed in Sect. 2.2. A similar calcu-
lation using a separable interaction instead of Vlow k,
but without screening corrections, was done in [59]. In
all these calculations, the subtraction term was approxi-
mated by the first-order Hartree–Fock (HF) self-energy.
For a detailed comparison of different subtraction pre-
scriptions, see [60].

Figure 8 shows the effect of including the correlated
density on the density dependence of the transition
temperature [38]. The black lines include the effective
mass m∗, computed with SLy4 (left panel) and BSk19
(right panel), while the red lines include also the screen-
ing effects V (a)+V (b) (calculated with the same Skyrme
force as m∗). For the solid lines, kF was computed with
nfree, while for the dashed lines, kF was computed with
the NSR density nfree + ncorr. We note that the effect
of screening overwhelms the effect of NSR and, hence,
the change in the transition temperature. In particular,
with screening included, the NSR effect is even smaller
than with the bare interaction.

The smallness of the NSR effect is consistent with the
fact that the QMC critical temperature Tc of Ref. [40]
satisfies well the BCS relation Tc ≈ 0.57Δ(T = 0) as
can be seen in Fig. 6. Also, the pseudogap computed
in [60] is very small. Therefore, it is surprising that the
temperatures T ∗ up to which pair correlations survive
in Ref. [40] can be quite far above Tc.

3 Triplet pairing

Pairing in the triplet channel is supposed to occur at
much higher densities, say, kF � 1.3fm−1 (correspond-
ing to number densities n � 0.07 fm−3 or mass densities
ρ � 1.2×1014g/cm3), and hence occurs in the outer lay-
ers of the neutron star core. The evidence for pairing in
the spin-triplet channel at high densities comes from the
fact that for momenta � 1.3 fm−1, the attraction in this
channel gets stronger, resulting in positive two-body
phase shifts (see left panel of Fig. 9), until it becomes
the most attractive channel that supports pairing at
high densities [62]. In the spin-triplet channel, due to
the tensor force, the l = 1 and l = 3 partial waves are
coupled, with total angular momentum J = 2, and it is
denoted as 3P2 −3 F2 ≡ 3PF2. The zero-temperature
BCS gap is obtained by solving the angle-averaged gap
equation [63] that couples the l = J ± 1 states and is
written as,

Δl(k) = −
∑
l′

(−1)(l−l′)/2

π

∫ ∞

0

q2dqVll′(k, q)
Δl′(q)
E(q)

,

(10)
where E(q) =

√
ξ2(q) + D2(q) and ξ(q) = ε(q)−μ. Fur-

ther, the overlap between the different partial waves is
ignored and D2(q) = Δ2

1(q) + Δ2
3(q) [62,63]. The valid-

ity of the angle-averaging approximation was confirmed
in [64].

However, pairing in this channel is plagued by uncer-
tainties as the input free-space two-body interactions,
which are the starting point for the BCS gap equa-
tion, are not phase shift equivalent [47,63,65–69]. This
is seen in Fig. 9a, where the phase shifts and mix-
ing angle are compared against the experimental phase
shift [61] for two representative realistic interactions,
the phenomenological interaction, AV18 [70] and the
chiral interaction at N3LO [71], as a function of lab
energies. From Fig. 9a, it is seen that beyond lab ener-
gies of ≈ 150 MeV, the agreement is rather poor. These
discrepancies result in model-dependent gaps already at
the BCS level as seen in Fig. 9b.

While [63] used realistic interactions to track the
model dependence at the BCS level in the triplet pair-
ing gaps, the input interactions used in [65–67], are the
modern NN interaction obtained via chiral perturba-
tion theory at N3LO which are further softened by the
RG running [23]. The similarity renormalization group
(SRG) interactions (Vsrg) are very useful in studying the
gaps in the spin triplet channel. For a given bare inter-
action, such as AV18 [70] or N3LO [71], the SRG evo-
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Fig. 9 Phase shifts and mixing in the 3PF2 channel
against the experimental phase shift of Arndt et al. [61].
Beyond lab energies of ∼ 150 MeV, the phase shifts from
the AV18 and N3LO do not agree with the experimental

phase shifts. This is reflected in a model-dependent gap in
at the BCS level. It should be noted that the N3LO results
for kF beyond 2.5 fm−1 becomes unreliable as the chiral cut-
off Λ ∼ 3.0 fm−1

lution preserves the phase shifts at all energies (unlike
Vlow k which preserves the phase shifts only for k < Λ)
and hence, the variation of the gap as a function of the
SRG evolution scale λ quantifies the missing 3N force
and medium corrections, and, has nothing to do with
the inequivalence of the phase shifts [66]. In a comple-
mentary study, the authors of [65], analyzed the depen-
dence of the gap on the chiral cutoff when the N3LO
interactions were used as inputs, which highlights the
differences in dealing with the two pion exchange inter-
action term (see Fig. 9 in [65]).

The correlations beyond the BCS approximation cor-
rect both the quasiparticle spectrum and the particle–
particle vertex that enters the gap equation. The first-
order Hartree–Fock self-energy is given by,

Σ(1)(k) =
∫

d3k′

(2π)3
nk′

∑
l,S,J

2π(2J + 1)

〈q|VSllJ |q〉(1 − (−1)l+S+1), (11)

where nk = θ(kF − k) is the Fermi–Dirac distribu-
tion at zero temperature and q = |k − k′|/2. The
HF self-energy changes the free quasiparticle spec-
trum to ε(k) = k2/(2m∗) + Σ(1)(k), and kF/m∗ =
[dε(k)/dk]k=kF relates the effective mass to the self-
energy. When m∗ < m, the density of states near the
Fermi surface decreases and, hence, one can expect a
suppression of pairing and therefore, smaller gaps.

Figure 10 shows the gaps with both the free single
particle spectrum (lines) and with the effective mass
m∗ (symbols—circles and squares). The black solid
line is the bare interaction and the dashed lines and
dash-dotted lines are the gaps obtained from the SRG
evolved interactions for λ = 2.0 fm−1 and 2.5 fm−1,
respectively. The filled circles are the results for the
gap with effective mass calculated from the Brückner
Hartree–Fock (BHF) by Baldo et al. [63]. The squares,
filled and empty are the first-order effective mass cal-
culated using Eq. (11) for λ = 2.5 fm−1 and 2.0 fm−1

respectively. When compared with the free single par-
ticle spectrum, the inclusion of the effective mass, both
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Fig. 10 Medium effects: Comparing the gaps with free sin-
gle particle spectrum (lines) and effective mass (symbols) for
the AV18 interaction. The blue dots are the results of Baldo
et al [63] and the squares show the gaps computed with Vsrg

for λ = 2.5 fm−1 (green filled squares) and λ = 2.0 fm−1

(red empty squares) respectively

BHF and first order, reduces the gaps, due to the sup-
pression of the density of states at kF. However, the
gaps are more suppressed with a first-order effective
mass compared to the effective mass from BHF. This
should be expected at high densities, as a first order
calculation of the self-energy is insufficient. It is inter-
esting to note that the dependence on λ is dramati-
cally lessened with an effective mass when compared
to the corresponding free spectrum result. Lowering λ
makes the SRG evolved interaction more attractive and
hence increases the effective mass. However, including
an effective mass reduces the BCS gap. The dramatic
decrease in the λ dependence arises due to a compen-
sation between these two effects.

The three-body force is expected to play a crucial role
for pairing in the triplet channel and in fact enhances
the gap [65–67,69,72,73]. These forces have been cal-
culated microscopically using semi-phenomenological
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Fig. 11 Triplet gaps including 3N interactions from
Drischler et al. [67], Srinivas et al. [66], Maurizio et al. [65],
Papakonstantinou et al. [69], and Zuo et al. [68]

interactions [68,69,72,74] as well as using chiral EFT,
where the 3N terms first enter at N2LO [73,75]. Fig-
ure 11 shows the triplet gap including the 3N inter-
action, which is usually incorporated as a density-
dependent 2N interaction. While in [65], the density-
dependent 2N interaction is generated from an in-
medium chiral 3N force, Refs. [66,67] use an effective
density-dependent 2N interaction from the 3N chiral
interactions at N2LO [73]. In addition, [67] also con-
siders the 3N contributions from N3LO. In Fig. 11,
the area shaded in gray between the solid red lines
represents the variations in the gap due to the uncer-
tainties in the low-energy constants [67] as well as the
three-body cutoff, while the black dashed lines repre-
sent the effect of varying the three-body cutoff after
fixing the chiral low-energy constants [66]. The green
hatched region between the dash-dotted green lines rep-
resents the gaps obtained with 3N interactions at N3LO
with the associated uncertainties in the low-energy con-
stants [67]. It is worth noting that the spin triplet gaps
are extremely sensitive to the three-body force com-
pared to the spin singlet gap [67,69,73]. In the 1S0

channel the corrections to the gap enter only at higher
densities, while in the 3PF2 channel, the effects of the
three-body interaction on the gap are dramatic.

As discussed already in Sect. 2.2, beyond BCS corre-
lations (short and long range) lead to important mod-
ifications of the gap. The literature on including these
medium effects for the p-wave is rather sparse, with
some recent attempts by Dong et al [76] and Ding et
al [47]. The authors in [76], calculate the quasiparticle
weight Z as was done in [36] for the singlet channel (see
Sect. 2.2). The quasiparticle weight was calculated both
with and without the inclusion of a three-body force.
The presence of the Z factor suppresses the gaps by an
entire order of magnitude as well as shrinks the density
region where the gaps exist. In [47], the short-range cor-
relations are taken into account via the self-consistent
Green’s function techniques, extrapolated to zero tem-
peratures. In addition, the screening corrections as in

[36] (see Sect. 2.2) have been extended to the p-wave.
In this case it seems that the screening enhances the
gap (antiscreening) while the short-range correlations
suppress it, with the net effect of strongly reducing the
gaps compared to the BCS results.

While pairing in the triplet channel is an important
ingredient to describe the physics of the neutron star
core, much remains to be explored due to the uncer-
tainties in the free-space interactions.

4 Conclusions

In this brief review, we discussed the state of the art
concerning the s and p-wave pairing in pure neutron
matter. In the s-wave, which is most relevant at low
densities, the gap as a function of density seems to be
under control. QMC and the most recent many-body
calculations agree that the gap, before reaching a max-
imum of ∼ 2 − 2.5 MeV at kF ∼ 0.8 fm−1, follows the
behavior of the BCS gap reduced by a factor of 0.6–
0.7, except at extremely low densities (of purely aca-
demic interest) where the GMB (reduction by a fac-
tor of 0.45) limit is reproduced. Effects of BCS–BEC
crossover on the critical temperature seem to be very
weak. Beyond the maximum of the gap, there are uncer-
tainties that come from medium effects such as effective
mass, screening and short-range correlations. In addi-
tion, there are other factors such as 3N forces that are
important at higher-densities, which we have not dis-
cussed here.

In the p-wave, which is supposed to be dominant at
high densities, even at the BCS level, the gaps have
large uncertainties. Inclusion of short- and long-range
correlations seem to reduce the gaps while the 3N force
enhances it. However, since the p-wave is always in the
extremely weak coupling limit, the gaps exhibit expo-
nential sensitivity to the details of the interactions and
the approximations. At densities corresponding to the
neutron star core, it would be more realistic to consider
asymmetric matter with a finite proton fraction. This
might completely change the conclusions through the
nnp 3N interactions.
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26. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)
27. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668,

420 (2008)
28. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Scha-

effer, Nucl. Phys. A 635, 231 (1998)
29. N. Chamel, S. Goriely, J.M. Pearson, Phys. Rev. C 80,

065804 (2009)
30. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 82,

035804 (2010)
31. L. P. Gor’kov, T.K. Melik-Barkhudarov, Zh. Eksp. Teor.

Fiz. 40, 1452 (1961) [Sov. Phys. JETP 13, 1018 (1961)]
32. J. Wambach, T.L. Ainsworth, D. Pines, Nucl. Phys. A

555, 128 (1993)
33. H.J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, U. Lom-

bardo, Phys. Lett. B 375, 1 (1996)
34. C. Shen, U. Lombardo, P. Schuck, Phys. Rev. C 67,

061302 (2003)
35. C. Shen, U. Lombardo, P. Schuck, Phys. Rev. C 71,

(2005)
36. L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74,

064301 (2006)

37. S. Ramanan, M. Urban, Phys. Rev. C 98, 024314 (2018)
38. M. Urban, S. Ramanan, Phys. Rev. C 101, 035803

(2020)
39. S. Gandolfi, AYu. Illarionov, S. Fantoni, F. Pederiva,

K.E. Schmidt, Phys. Rev. Lett. 101, 132501 (2008)
40. T. Abe, R. Seki, Phys. Rev. C 79, 054002 (2009)
41. A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010)
42. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971)
43. M. Baldo, A. Grasso, Phys. Lett. B 485, 115 (2000)
44. S.V. Babu, G.E. Brown, Ann. Phys. (N.Y.) 77, 1 (1973)
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