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Abstract Saha ionization equation, discovered 100 years ago, is widely acknowledged to transform astro-
physics from a qualitative to a quantitative science. It helped in clarifying the confusion prevailing in the
first 2 decades of the twentieth century with regard to the physical conditions present in the stellar atmo-
spheres and the abundance of elements in stars. Saha equation continues to be useful in areas far removed
from the physical conditions in stellar atmospheres for which it was developed.

1 Introduction

It is now a 100 years that Meghnad Saha, working in the
Department of Physics of the University of Calcutta,
proposed his famous equation to describe the ionization
in the stellar environment. Arguably the transformation
of astrophysics from a qualitative to a quantitative sci-
ence can be traced to the Saha ionization equation. In
this article, we take a brief look at how, in the decade
following the discovery of the equation, Saha and other
astrophysicists used it to understand the stars. We also
show that the equation continues to be useful, even a
century after its discovery, in various areas of astro-
physics which developed much later.

The article is arranged as follows. In Sect. 2 of this
brief article, we discuss the scenario in astrophysics
when the equation was proposed. Section 3 traces
the development of the equation and its application
by Saha. Immediate impact of the equation on other
researchers in the field of stellar astrophysics is dis-
cussed in Sect. 4. For more recent applications of the
equation, we select two areas which developed long after
the ionization equation was developed. We briefly point
out some of the applications of Saha equation in nuclear
astrophysics at the present time with an emphasis on
supernova nucleosynthesis in Sect. 5. The importance
of Saha equation in understanding the recombination
epoch is discussed in Sect. 6. Finally we summarize our
discussions.

2 Historical background

The first 2 decades of the twentieth century saw great
strides in observational astronomy. Particularly, spec-
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tral analysis of the Sun and stars yielded rich dividends.
Three key problems were highlighted by the wealth of
data. (1) There was the need to assign an absolute
value of temperature to the stars and explain the dif-
ference among the spectra of the Sun and the stars.
(2) The interpretation of the Harvard classification of
stars remained a mystery. (3) The elemental composi-
tion of the stars was almost unknown. These problems
were solved by the discovery of Saha equation. We very
briefly summarize the prevailing situation in these areas
prior to the publication of the equation.

Establishing the temperature scale was an urgent
requirement. Various techniques for measurement of the
temperature of stellar atmospheres were available to the
astronomers, but frequently those did not agree among
themselves. Spectrometric analyses of solar and stel-
lar spectra, assuming the objects to be blackbodies,
were compared with measured and theoretical black-
body spectral distribution to extract theoretical values
for the temperature [1,2]. However, the deviation from
black body spectra is severe in the case of the hottest
stars and consequently, there were large errors in their
measured temperature values. Observed stellar spectra
were also compared with laboratory spectra of elements
to assign temperature and pressure values to the stel-
lar atmospheres. Comparison of laboratory spectra with
those of red stars such as Arcturus and Betelgeuse, and
also with sunspot spectra indicated that their temper-
ature was lower than that general solar atmosphere [3].
Study also indicated that there were significant pres-
sure variations in the atmospheres of different classes of
stars [4]. However, no absolute value of temperature or
pressure could be inferred. Temperature was generally
obtained relative to that of the Sun but, the solar value
obtained from observations was model-dependent and
varied widely. A reasonable value for the solar atmo-
sphere was obtained by Stefan [5] using his own law, but
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acceptance was delayed and only in the second decade
of the twentieth century a consensus emerged on its
value.

Understanding the reasons behind stellar classifica-
tion was another problem. The Harvard classification
of stars was based on their line spectra. Spectral lines
of ions and neutral atoms of helium and metals, and of
atoms of hydrogen appear and disappear smoothly as
one goes through the various classes of stars. There was
an idea that different classes of stars perhaps had dif-
ferent surface temperatures. The Hertzsprung–Russel
(HR) diagram clearly pointed to a relation between
temperature and luminosity, though the absolute val-
ues of the temperature remained elusive [6]. The phys-
ical basis of the Harvard classification or the HR dia-
gram was unclear. Milne noted that though the rela-
tion between HR diagram or the spectral type and the
effective temperature was definite, the connection was
empirical only and lacked logical foundation [7]. Rus-
sell, while presenting his version of what we now call
the Hertzsprung–Russell diagram, had argued that the
sequence was an order of advancing age [8]. This was
the opinion of most of astrophysicists.

The abundance of elements in stars was generally
considered to be known till Saha equation established
that the prevailing opinion was completely erroneous.
The constituents of the Sun had been inferred in two
ways: estimating the intensities of the spectral lines of
different elements in the solar spectrum, and counting
the number of spectral lines of different elements in it.
At the end of the nineteenth century, the general idea
had been that the abundance of various elements in
stars closely resembles their distribution in the earth’s
crust [9]. Spectroscopic evidence obtained from study of
the Sun in the next two decades seemed to support this
argument. For example, Russell noted that six of the
eight elements, which are most common in the Earth’s
crust, are found to be among the elements which show
the strongest lines in the solar spectrum [10]. Fowler
also ventured the opinion that the composition of the
Sun may be practically identical with that of the Earth
[11]. Thus, the accepted opinion was that there were
very little hydrogen and helium in the stars. However,
the absence of some other elements in the solar spectra
was still a puzzle.

There were other puzzles in the solar spectra. Helium
was discovered in the Sun through spectroscopy of the
emission spectrum of solar corona. Surprisingly it was
nearly absent in the absorption spectrum. As also noted
by Saha himself, lines of different elements and ions
were seen at different heights in the solar chromosphere.
The reasons behind these facts were not known.

Detailed discussions on the scenario in astrophysics
prior to the discovery of Saha equation may be found
in two articles by DeVorkin and Kenat [12,13].

3 Saha and the equation

Meghnad Saha proposed the ionization equation in Ref.
[14] and followed it up in a series of articles. He explic-
itly introduced the Bohr atomic model to astrophysics
by using it to explain ionization of atoms, and also to
calculate the probability of an atom being in an excited
state in a high-temperature environment. He exploited
the idea of thermodynamic equilibrium and compared
the phenomena of ionization to chemical dissociation.
Using the language of physical chemistry, he called it
the equation of the reaction-isobar for ionization. The
reaction isobar K is related to the total pressure P and
the fraction of ionized atoms x. In Ref. [14], he applied
it to the case of ionization of atoms such as calcium,
barium, helium, hydrogen, etc. Starting from Nernst’s
formula of reaction isobars, he showed that K may be
written as a function of absolute temperature T as

log K =log
x2

1 − x2
P =

−U

4.571T
+ 2.5 log T − 6.5, (1)

where U is the ionization energy per mole in calories
and pressure is measured in atmospheric units. He used
the Sackur–Tetrode–Stern relation for Nernst’s chemi-
cal constant, which occurs in the equation for chemi-
cal equilibrium, to arrive at Eq. (1). It is important to
note that the equation comes from the theory of chem-
ical reaction in equilibrium. Saha assumed that the gas
molecules in stellar atmosphere behave like a classical
ideal gas. At high temperature, the atoms may be ion-
ized; on the other hand the ions may pick up electrons
to be neutralized. At equilibrium the forward and the
reverse rates become equal.

In the first paper of the series [14], Saha pointed out
that pressure has an unexpectedly strong effect on the
ionization. Calcium atoms are only partially ionized in
the photosphere due to higher pressure. However, they
are completely ionized in the chromosphere, where the
temperature is lower, but so also is the pressure. He also
explained that it is possible to obtain ionized helium
lines only in the hottest stars because helium has a
high ionization potential .

In the following paper [15], Saha convincingly argued,
from Eq. (1), that alkali metals like rubidium and cae-
sium are completely ionized at solar temperature, and
will show up only in the ultraviolet part of the solar
spectrum. He suggested that spectrometric observa-
tions of sunspots, which are cooler, may reveal the pres-
ence of these elements. For rubidium. this was almost
immediately confirmed by Russel from existing pho-
tographs [16]. Saha stressed on the importance of mea-
suring ionization potential of various elements, which
were not known at that time. It is a matter of histori-
cal interest that, despite his best efforts, he failed in his
attempts to create an experimental set up to measure
the ionization potential of elements.

In the third paper on the ionization equation [17],
Saha tackled the problem of radiation from a gas at
an elevated temperature. He pointed out that the line
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emission spectra depends strongly on the temperature
and also on the degree of ionization. At elevated tem-
peratures, it is possible for an atom to exist in an
excited state. If such an atom absorbs a photon, its
signature will be seen in the absorption spectra. These
will be visible in stars with a high effective tempera-
ture. He also argued that some of the spectral lines are
missing in the absorption spectra because the temper-
ature of the gas is not high enough for atoms to exist is
significant numbers in the states corresponding to those
transitions.

In the fourth paper [18] of the series, Saha applied
the equation to explain the Harvard classification of
stars. He discussed excitation as well as single and mul-
tiple ionization of atoms, and showed how competi-
tion between these phenomena can explain the appear-
ance and disappearance of spectral lines of various ele-
ments and ions, and thus lead to the observed spec-
tral sequence as a function of stellar temperature. By
considering the temperatures at which different spec-
tral lines show marginal appearances, he could deduce
an absolute temperature scale for all the classes of the
stars.

This paper contains an idea about the composition
of stars, which was carried forward, as we will see in the
next section, not by Saha but by others. He suggested
that whether lines of a particular element appear or
disappear in the stellar spectra depends crucially on
the physical conditions, i.e. temperature and pressure
in the stellar atmosphere. Thus one is not justified in
deciding on the constituents of a star based only on the
presence of characteristic lines of elements and ions in
its spectra. This pointed to the uniformity of compo-
sition of stellar atmospheres. He emphasized that the
absence of Lymann series of hydrogen or correspond-
ing series of helium in stellar spectra does not indicate
that these elements are absent. However, he could not
explain the unexpectedly strong hydrogen lines in hot
stars and suggested that they may be from doubly ion-
ized helium or triply ionized lithium.

In this way, Saha showed that an analysis of the stel-
lar spectra can lead to measurements of the physical
conditions in the stars and thus connected the Bohr
atomic model, spectroscopy and the stars. It is no exag-
geration to say that this ushered in the era of quantita-
tive astrophysics. In the next section, we will consider
the works of other astrophysicists in this regard.

Although the importance of the equation was clear,
physicists hesitated to accept Saha’s method of deriva-
tion, which utilized the concepts of physical chemistry.
It became widely accepted only after Fowler and Milne
rederived the equation using Boltzmann’s statistical
approach [19]. This work was based on Fowler and Dar-
win’s work for the treatment of assembly of atoms in
ground and excited states as well as ions in equilib-
rium [20,21]. A brief summary of the derivation is given
below for completeness.

The number densities of i-th and (i + 1)-th ionized
state of the same element are given by ni and ni+1,
respectively, while the density of free electrons is given
by ne. The energy to free an electron from the ground

state of an ion or atom in the i-th ionization state is
given by Ui. The energy of an electron of momentum p
with respect to the same state is Ui + p2/2m, the elec-
tron mass being m. Thus, at temperature T , the ratio
of atomic population, in states of successive ionization,
is given by the Boltzmann relation, including two spin
states for the electron, as

ni+1

ni
=

2Gi+1

Gi

Ve

(2π�)3

∫ ∞

0

exp
(

−Ui+p2/2m

kT

)
4πp2dp

=
2Gi+1

Gi

1
ne(2π�)3

(2πmkT )3/2 exp(−Ui/kT ), (2)

where Gi is the partition function for the i-th ionized
state. The last step involved the relation between the
volume available for an electron Ve and electron den-
sity ne, i.e. Ve = 1/ne. This is the more familiar form
of the equation. Using the ideal gas law for pressure of
electrons, P = nekT , it can be reduced to Eq. (1) for
neutral and singly ionized atoms after certain approxi-
mations.

It should be noted that the ionization equation was
published earlier than Saha by Eggert [22] and Linde-
mann [23]. However, in a recent article Rai Choudhuri
[24] has argued that, though Saha was not the first one
who arrived at the equation, he definitely first under-
stood clearly that the equation, with data from atomic
physics, will unlock the stellar spectra. Cenadelil [25]
also is of the opinion that Saha’s work is a fundamental
work in history because, although he was not the first
to arrive at the equation, he first showed that it can
be a bridge between observational data and quantum
theory, and will lead to the spectral sequence and quan-
titative spectral analysis. He played a pioneering role in
all these fields. The fact is also clear from the preced-
ing paragraphs. In the next section, we summarize the
work that immediately followed the publication of the
equation.

4 Immediate impact on other
astrophysicists

The publication of the equation drew immediate atten-
tion. As already pointed out, the examination of
sunspot spectrum yielded the signature of rubidium
[16]. Refinement of Saha’s work was undertaken inde-
pendently by Russel in Princeton, and Fowler and Milne
in Cambridge. Russel [26] introduced the idea of the
mixture of gases and multiple ionization stages. He
showed that the ratio of the number of ionized to neu-
tral atoms for two elements do not depend on pres-
sure or relative abundance of the elements. He argued
that the ionization potential is a periodic function of
the atomic number. He also explicitly showed that the
pressure in the ionization equation is actually electron
pressure. Russel found that spectra of alkali metals with
a single optical electron can easily be explained using
the ionization equation. However, alkaline earth met-
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als like barium, with two optical electrons were more
difficult to explain [27]. Russel noted that sodium and
barium have similar ionization potentials, yet the latter
was more ionized. Seeking the solution of this puzzle,
Russel was led to introduce the L–S coupling or Russel–
Saunders coupling in atoms [28].

Fowler and Milne [19] argued that the maximum
intensity of a line obviously does not depend on the
abundance, i.e. given the statistical nature, there exists
a maxima for atoms of a particular ionized state
depending on the temperature and pressure alone. Rus-
sel and Stewart [29] and Fowler and Milne [19] inde-
pendently showed that the pressure of gas in the Sun
is much smaller than expected. Pressure in the pho-
tosphere is of the order of 10−2 atmosphere while in
the reversing layer it goes down to 10−4 atmosphere,
and finally comes down to 10−7 atmosphere or even
lower in the chromosphere. These values were less than
those assumed by Saha. These estimates established the
importance of radiation pressure in the outer layers of
a star. Fowler and Milne then went on to calculate tem-
peratures from various stellar spectra and compared
them to the Harvard classes.

The temperature scale was finally settled by the
works of Menzel, and of Payne, both of whom used
the Fowler-Milne modification of Saha’s theory. Men-
zel [30] studied the spectra of 20 giant stars and sug-
gested a provisional temperature scale. Payne showed
that the temperature of the hottest stars are actu-
ally underestimated [31,32]. In her Ph.D. thesis, she
studied a wide range of temperature and pressure and
firmly established the Harvard classification as a tem-
perature sequence [33]. The temperature scale proposed
by her was widely accepted. By this time, Eddington
had shown that the stars in the main sequence of HR
diagram was not an evolutionary sequence but actually
correspond to locus of equilibrium points reached by
stars of different mass [34].

The problem of the excessively intense hydrogen lines
in the hottest stars, as discussed in the last section, was
also noted by Menzel [30]. Fowler and Milne [19] pointed
out that the relative abundance of various elements in
the stars can easily be obtained from the intensity of
spectral lines by employing Saha’s theory [19]. Earlier,
applying Saha’s work to the spectra of O-type stars,
Plaskett could infer the overabundance of helium, but
he tried to explain it away [35,36].

Payne, after she established a sufficiently reliable
temperature scale, went on to determine the abundance
of elements. In Ref. [37], she calculated the relative
abundance of various elements in stars. She commented
that the hydrogen and helium concentration were too
high and ‘almost certainly not real’ and omitted their
values from the final table. Influenced by the comments
of Russel and Eddington, she downplayed the abun-
dance of the two elements in her thesis also. By this
time, Saha’s suggestion that the composition of the
atmospheres of different stars were actually uniform
was commonly accepted.

The evidence for a high abundance of hydrogen in
stellar atmospheres continued to mount, but efforts
were made to explain away the data. For example,
Rosseland suggested that hydrogen may be concen-
trated at the surface of the star, being expelled from
the core [38]. Moore and Russel [39] studied the most
widened lines in solar spectra and concluded that the
widening in the solar atmosphere depends on the abun-
dance of the element. However, in spite of their own
evidence, they considered the calculated abundance of
hydrogen as an anomaly. Unsöld [40,41] independently
used the same approach and deduced a hydrogen abun-
dance similar to the work of Payne. Yet he was scep-
tical of the result himself. Stewart followed Russel’s
arguments but concluded that the number of hydrogen
atoms per unit column above the solar photosphere may
be as high as 1022, i.e. the atmosphere may be chiefly
made of hydrogen [42]. Adams and Russel [43] were led
to the great abundance of hydrogen but suggested that
either hydrogen, being light, is expelled from the core
by radiation pressure to the outer surface, or thermody-
namic equilibrium may not hold in stellar atmosphere.

However, the evidence for overabundance of hydrogen
continued to come from different investigations. Par-
ticularly, the signature of a huge abundance of hydro-
gen in the atmospheres of the red giant stars could not
be explained away. Finally, Russel, in a seminal work,
considered the evidence, including the work of Payne,
and concluded that the amount of hydrogen in the stel-
lar atmosphere is ’incredibly great [44]. He pointed out
that this fact can explain a number of puzzling obser-
vations including electron pressure in the atmosphere.
After this work, it was generally accepted that hydro-
gen is the chief constituent of the stars.

After it was established that hydrogen and helium
constitute the chief ingredients of stellar matter, it was
necessary to revisit various aspects of stellar structure.
For example, Eddington recalculated the opacity and
derived the the mass luminosity relation. He also came
to the conclusion that hydrogen may be much more
abundant than he had previously assumed [45]. It is
obvious that opacity depends on the thermodynamic
state of stellar plasma and Saha equation is essential to
understand radiative transfer is stellar plasma in local
thermal equilibrium.

Thus, within a decade of Saha’s publication of the
equation, based in his work, a temperature scale of stars
was established, the pressure in the stellar atmospheres
was reliably estimated, the Harvard stellar classification
was put on a firm theoretical footing, and finally, the
abundance of various elements in the stars, including
the preponderance of hydrogen and helium, was cal-
culated. Saha equation thus transformed astrophysics
form a qualitative to a quantitative science.

In the next two sections, we discuss briefly the role
played by the equation in two fields which developed
much after the publication of the equation.
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5 Applications in nuclear astrophysics

Saha Equation has proved to be useful in many fields;
it is not possible to discuss all of them in the limited
scope of this article. In this section we briefly introduce
the nuclear astrophysics applications of Saha equation.
This is not meant as a complete review but rather as
a sample of various fields in nuclear astrophysics where
this equation is employed.

Although the equation was designed for ionization of
atoms, it can be applied in many similar situations, i.e.
reaction rate equilibrium in high-temperature environ-
ments. Readers are referred to standard text books for
details of nuclear Saha equation (see e.g. [46–48]) that
is used in nuclear astrophysics. We follow subsection
3.1.6 of Ref. [47] for a brief derivation.

For a photonuclear reaction 0+1 ↔ γ +2, where 0,1,
and 2 refer to nucleons or nuclei, the rate of reaction
is given by the difference between the forward and the
reverse rates,

r = r01→γ2 − rγ2→01 =
N0N1〈σv〉01→γ2

1 + δ01
− λγ(2)N2.

(3)

Here, 〈σv〉 is the Maxwellian averaged cross section
(MACS) and λγ(2) is the photodisintegration decay
constant at elevated temperature T . Here Ni refers to
the number density of nuclear species of type i. We
have

〈σv〉01 =
(

8
πm01

)1/2

× 1
(kT )3/2

∫ ∞

0

Eσ01→γ2 exp(−E/kT )dE

(4)

λγ(2) =
1

π2�3c2

∫ ∞

0

E2
γ

exp(Eγ/kT ) − 1
σγ2→01dEγ .

(5)

The reduced mass of the system is given by m01. At
equilibrium, r = 0 and we get

N2

N0N1
=

1
1 + δ01

(
2π�

2

m01kT

)3/2
G2

G0G1
exp(Q01→γ2/kT ).

(6)

This is the nuclear Saha equation and is applicable in
nuclear statistical equilibrium (NSE).

Such a situation occurred in the early universe. In the
Big Bang neutrons and protons were in chemical equi-
librium (which is another form of Saha equilibrium).
This ends when temperature drops below 1 MeV. In
the first step of Big Bang nucleosynthesis, protons and
neutrons combine to form deuteron. However, the tem-
perature is still very high and the deuteron production
reaction is in equilibrium with photodisintegration of

deuterium, i.e. n + p ↔ d + γ. Hence, the density of
protons, neutrons and deuterons are related through
the nuclear Saha equation (6),

Nd

NpNn
=

3
4

(
4π�

2

MNkT

)3/2

exp(Bd/kT ), (7)

where Bd is the deuteron binding energy and MN is
the nucleon mass. It is easy to see that initially the
deuteron density remained low and further nucleosyn-
thesis was not possible. This era ended only after the
temperature dropped to 0.1 MeV when the reactions
fell out of equilibrium and forward reaction started to
dominate.

In a recent article Vovchenko et al. [49] have extended
the Saha equation to nucleus–nucleus collisions in the
Large Hadronic Collider (LHC). They argue that con-
ditions equivalent to the above situation exist in heavy-
ion collisions and hence, production of light nuclei and
hypernuclei can be explained in terms of the Saha
equation. After incorporating certain corrections, their
results for Tkin = 113 ± 12 MeV agree with the most
central Pb-Pb collisions in LHC.

Saha equation was also useful in understanding the
triple-α reaction in helium-burning phase. It involves
an intermediate 8Be formation by fusion of two α par-
ticles which then reacts with a third particle to form
12C. The nucleus 8Be is unstable and the reaction
α+α ↔8Be is in thermal equilibrium in helium-burning
phase which has a high temperature and high density.
The fraction of 8Be can easily be calculated from Eq.
(6). However, the calculated 8Be fraction was too small
to explain the observed 12C abundance. This led to the
prediction that the reaction α+8Be→12C to proceed
through a 0+ resonance of 12C very close to the thresh-
old energy [50,51] which was discovered subsequently
[52]. Readers are referred to Ref. [53] for a recent
review of triple alpha reaction and its implications for
astrophysics.

Another interesting area where Saha equation is use-
ful is the rapid proton capture or rp-process. This
occurs in high-temperature proton rich environments
when hydrogen-rich matter from a companion star falls
on a compact object like a white dwarf or a neutron
star. This dominates type I X-ray bursters and deter-
mine the crust composition of accreting neutron stars.
Readers are referred to Ref. [54] for a recent review.
The (p, γ) and the (γ, p) processes are in equilibrium
and the process reaches nuclei near the proton drip line
and then may wait for its β+ decay for further progress.
This nucleus where the process stalls is called a waiting
point nucleus. The odd-even mass difference in nuclei
indicates that there are two scenarios. Equilibrium may
be established between the nuclei (Z,N) and its iso-
tone (Z + 1, N) at a lower temperature. In this case,
the destruction rate of the waiting point nucleus will
be given by the sum of its beta decay rate and the pro-
ton capture rate of the (Z +1, N) isotone that leads the
population out of the equilibrium. At a higher tempera-
ture, the equilibrium will include the isotone (Z +2, N)
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also. In this case, the destruction rate of the waiting
point nucleus depends on its beta decay rate and the
beta decay rate of the (Z + 2, N) isotone [55]. Thus, at
a lower temperature, there is a pathway of two proton
capture that establishes a net reaction flow from the
nucleus (Z,N) to (Z,N + 2). Various waiting points
in the rp-process have been studied in the literature,
for example in Refs. [55–59]. For example, Fig. 1 shows
the effective half lives of two waiting point nuclei. It is
clear that a temperature window exists where two pro-
ton capture dominates It is also evident that the proton
separation energy, occurring in the exponential in the
Saha equation, plays a pivotal role in the rp-precess
nucleosynthesis.

Saha equation serves another useful role as it indi-
cates that the cross sections for many of the reactions
are not important for abundance calculation in nucle-
osynthesis because they remain in equilibrium in astro-
physical environments.

5.1 Supernova nucleosynthesis

In core collapse supernovae or type Ia supernovae,
Saha equation may be applied in two situations. In
the late advanced burning stages, many of the forward
and reverse reaction rates become equal and a quasi-
equilibrium exists. It is possible to determine the abun-
dances in such cases through the application of the
nuclear Saha equation. In the silicon burning stages in
stellar interiors the temperature goes to even higher val-
ues [61–63]; in the pre-supernova stage it reaches 4–5
GK. At such a high temperature, photodisintegration
of less tightly bound nuclei produces alpha particles
as well as protons and neutrons which then react with
the residual heavy nuclei. All the reactions now achieve
equilibrium through strong and electromagnetic inter-
actions. Iron group nuclei, having the highest binding
energy, are expected to dominate the statistical equilib-
rium. In such a situation, the abundance of any isotope
Y (Z,N) can be obtained by repeated application of the
Saha equation (subsection 5.6.2 of Ref. [47]) as

NY =
NZ

p NN
n

2A

(
2π�

2

mNkT

)3(A−1)/2

A3/2GY exp(BY /kT ),

(8)

which has to be solved together with the equations of
baryon number conservation and charge conservation.
It is easy to see that, depending on the density, at
extremely high temperature matter will predominantly
consist of protons and neutrons. At a lower temperature
it will be alpha-rich and still lower temperature prefers
56Ni as the main constituent.

A direct derivation from statistical mechanical con-
sideration yields the same result as Eq. (8) (see e.g.
[64]). However, this approach allows modification of
the equation in the NSE when some important effects
are incorporated. For example, Banik et al. [65] have
pointed out that inclusion of exclusion volume correc-

tion in the Equation of State at NSE will modify the
Saha equation.

Another situation where the Saha equation may be
applied is the heavy element synthesis through the r-
process. This is expected to occur in a high neutron
density (Nn ≥ 1021cm−3) and high temperature (T ≥ 1
GK) environment. Such an environment is achieved in
a supernova. In such a scenario, both neutron cap-
ture (n, γ) and photodisintegration (γ, n) processes are
much faster than β-decay. For sufficiently large temper-
ature and density, an equilibrium exists between the for-
ward and the reverse processes along an isotopic chain.
In this case we can get the abundance ratio of succes-
sive isotopes easily from Eq. (6) (see subsection 5.6.2 of
Ref. [47]) as

N(A+1
Z X)

N(A
ZX)

= Nn

(
2πh2

mAnkT

)3/2 1
2

GZ,A+1

GZ,A
exp(Qnγ/kT ).

(9)

In the canonical r-process model [66], one assumes
that the temperature remains high and the neutron
density remains constant through out the period of r-
process. The additional condition that the equilibrium
between (n, γ) and (γ, n) holds throughout the time
period of the process is called waiting point approxima-
tion. In this approximation, for a given T and Nn, the
abundance of a given element is almost entirely concen-
trated on the isotopes which correspond to a neutron
separation energy expressed in MeV,

Qnγ ≈
(

34.075 − log Nn +
3
2

log T9

)
T9

5.04
, (10)

where T9 is the temperature in GK and Nn is expressed
in cm−3. The isotopes with approximately this value of
separation energy define the r-process path. At typical
values of temperature and density, this corresponds to
a value of 2–3 MeV, indicating that the r-process pro-
ceeds along the very neutron-rich side of the nuclear
chart. As the process approaches the magic numbers
N = 82 and N = 126, the separation energy increases
leading to a pile up at these neutron numbers. This sim-
ple model is sufficient to explain the observed r-process
abundance peaks at A ∼ 130 and 195 [66,67]. This
canonical r-process and waiting point approximation
were introduced by Seeger et al. [68]. Further details
are available in Ref. [66].

Such a high-temperature high neutron density envi-
ronment is possible in supernova neutrino wind sce-
nario. Although the canonical approximation is gener-
ally applied for site-independent studies, Saha equation
is also useful beyond this approximation. For exam-
ple Faroqi et al. [69] compared their r-process cal-
culations to the results of Saha nuclear equation to
check the extent of the (n, γ)–(γ, n) equilibrium in high-
entropy wind of core-collapse supernovae. It has been
suggested that the observed peak in the abundance in
rare-earth region occurs during the freeze out phase
when the equilibrium is weakened and reaction rates as
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Fig. 1 Effective half-life values of 64Ge and 68Se as a func-
tion of temperature. The solid line represents the results of
Ref. [59] and the dashed lines mark the two extremes for the
errors in the Q-values of the reactions involved. The dash-

dotted line shows the results obtained using the rates from
another calculation [60]. Reprinted from Ref. [59] with kind
permission form European Physical Journal A

well as β-decays become important. (See, for example,
Mumpower et al. [70].) Even in this case, one usually
starts with a seed nuclei distribution for NSE obtained
from Saha equation.

Neutron star merger is another probable site for r-
process nucleosynthesis. Observations of gravitational
waves with LIGO and corresponding observations of
the electromagnetic spectrum strongly suggest that r-
process nuclei are formed in the event [71]. The merger
creates a high temperature high neutron density envi-
ronment where neutron capture will be in equilibrium
with photodisintegration and Saha equation may be
applied to determine the abundance of elements cre-
ated in such events.

6 Recombination and Saha equation

Recombination is the epoch after the Big Bang when
the nuclei first combined with electrons to form neutral
atoms. Earlier the temperature was too high for atoms
to exist. This is the epoch when matter and radiation
decouple. Assuming the matter to consist of hydrogen
only, for the photoionization reaction,

e + p ↔ H + γ, (11)

it is possible, using Eq. (2), to write a relation involving
the densities of electrons (ne). protons (np) and neutral
hydrogen atoms (nH).

nenp

nH
=

(
2πmkT

2π�2

)3/2

exp(−B/kT ), (12)

where B = 13.6 eV is the ionization energy of the
hydrogen atom. The calculation shows that the decou-
pling temperature, i.e. the temperature at which the
hydrogen ionization fraction drops to 0.5, is 3700 K
which corresponds to a redshift of Z = 1300 [72].

The above calculation assumes direct recombination
to the hydrogen ground state and thermal equilibrium

between the ground and ionized state of Hydrogen
atoms. There is a background radiation field at a few
thousand K. It also assumes that recombination time
scale is much lower than the universe expansion time
scale. These assumptions are not valid during the mid-
dle and later stages of cosmic recombinations and there-
fore the resulting recombinations derived from the Saha
equation are too fast compared to the actual situation.
Peebles [73] and Zeldovitch et al. [74] relaxed these
assumptions and re-derived the recombination history.
For example, Peebles argued that direct recombination
to the ground state of the hydrogen atom emits a pho-
ton which is likely to ionize another atom leaving no
net change. He suggests that recombination forms neu-
tral atoms in higher excited states. These atoms then
decay to the 2s metastable state by a cascade of transi-
tions, and finally to the ground state by the forbidden
two photon transition. He also pointed out that another
effect; electrons in the first excited states directly jump
to the ground states and due to the universe’s expansion
a finite amount of the emitted photons get red shifted
out of the Lα resonance line. Readers are referred to
chapter 6 of Ref. [72] for details. A recent calculation
[75] shows that the presence of excited state brings
down the equilibrium temperature from 5000 to 4000
K.

However, the Saha equation can be successfully used
to estimate the first recombination of the He. The ion-
ization energies of He and He+ are 24.6 eV and 54.4 eV
and recombination of helium takes place before hydro-
gen. The first recombination follows Saha ionization
prescription as the rates are fast enough so that the
recombination process is in equilibrium. Thus, one can
find out a temperature for the first recombination from
the Saha equation as above 15,000 K. For the second
recombination, however, one needs to consider various
other factors, including recombination in excited states,
redshifting of resonance lines and absorption by existing
neutral hydrogen atoms. Thus departure from the Saha
equation is expected in this case. Readers are referred
to recent articles [75,76] for more references.
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7 Summary

Confusion prevailed in the first 2 decades of the twen-
tieth century in the field of astrophysics and it was
not possible to interpret the new observational data
on the basis of existing knowledge. Temperature and
pressure in stellar atmospheres and material composi-
tion of stars could not be reliably inferred. The situation
changed dramatically with the discovery of Saha ioniza-
tion equation. Saha combined atomic theory, thermody-
namics and spectroscopy to pave the way to determine
the physical conditions in the stellar atmospheres. par-
ticularly temperatures and pressure. He also explained
the origin of the Harvard classification of stars. Modi-
fication and extension of Saha’s work was immediately
carried out by Russel, Milne, Payne and others. Start-
ing from the equation, they established a firm temper-
ature scale for stars, determined the pressure in the
stellar atmospheres, and deduced the elemental compo-
sition of stars. Saha equation continues to be gainfully
applied in nuclear astrophysics, where often an equi-
librium between forward and reverse reactions is estab-
lished in a high-temperature environment. It is useful to
understand Big Bang Nucleosynthesis and rp-process.
Advanced stellar burning stages often go through com-
plete or partial nuclear statistical equilibrium which
may be described by the equation. Finally r-process
nucleosynthesis yields advanced burning stages; hence
the equation is useful in understanding nucleosynthesis
in supernova and neutron star merger. In the recombi-
nation era, Saha equation can be used to predict the
recombination temperature. Studies of deviation from
the predictions of Saha equation have yielded signifi-
cant results.
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Appendix A: Brief biography of Meghnad
Saha

Meghnad Saha (1893-1956) was born in East Bengal in
British India, now a part of Bangladesh. He studied in Pres-
idency college, Kolkata and then joined the newly formed
University College of Science of the University of Calcutta
as a research fellow. Working independently, he discovered
the ionization equation. After a brief stint in London and
Berlin, he joined the University of Calcutta in 1921 as a
professor, and in 1923. shifted to The University of Alla-
habad. He came back to the University of Calcutta in 1938.
Within the Department of Physics he started the Institute of
Nuclear Physics, which later became an independent orga-
nization and now bears his name. He was instrumental in
setting up the first cyclotron in Asia. Saha was involved
in national planning and, after independence, was elected
to the member of the Indian Parliament as an independent
member.
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