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Abstract The detection of gravitational waves from GW170817 has provided a new opportunity to con-
strain the equation of state (EOS) of neutron stars. In this article, we investigate the possible existence
of quarks inside the neutron star core in the context of GW170817. The nucleon phase is treated within
the relativistic nuclear mean-field approach where we have employed a fully comprehensive set of available
models, and the quark phase is described in the Bag model. We show that the nucleonic EOSs which are
inconsistent with the tidal deformability bound become consistent when phase transition to quark matter
via Gibbs construction is allowed. We find that several nucleonic EOSs support the presence of pure quark
matter core with a small mass not more than 0.17M� confined within a radius of 0.9 km. We also find
that the strong correlation between tidal deformability and neutron star radii observed for pure nucleonic
stars does persist even with a nucleon-quark phase transition and provides an upper limit on the radius of
R1.4 � 12.9 km for a 1.4M� neutron star.

1 Introduction

Neutron stars (NSs) are highly compact astrophysical
objects which are produced at the end of the life cycles
of massive stars (8M� � M � 25M�) via supernova
explosions. A NS can have mass between ∼ 1−2M�,
but with a rather small radius of only between 10
and 15 km. As a result, the density inside the star
can be very high ∼ 1015−1016 g/cm3, which is sev-
eral times larger than the saturation density (ρ0 ∼
2.8 × 1014) g/cm3 of nuclear matter [1]. The state of
the matter, i.e. the equation of state (EOS) and the
composition, is not known at such high densities as lab-
oratory experiments and ab initio calculations can only
provide description of nuclear matter at around the sat-
uration density. The high-density EOS of NS matter is
thus highly uncertain and it is explored by adopting
different models [2].

To reliably constrain the EOS, one should rely
on astrophysical observations [3]. Given an EOS, the
Tolman–Oppenheimer–Volkoff equations provide an
unique sequence of masses and radii for NS with the
sequence terminating at a maximum mass Mmax. The
value of Mmax depends on the stiffness of the EOS,
i.e. how rapidly the pressure increases with the energy
density, and a stiffer EOS generates a larger maximum
mass star. Of course, the larger matter pressure in a
stiffer EOS state also generates stars with larger radii.
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Thus measurements of masses and radii of NSs can put
significant constraint on the EOS [4].

The appearance of new degrees of freedom, such as
quarks inside the core of neutron star, would soften
the overall EOS resulting in decrease of maximum mass
and radius. In fact, the deconfinement transition from
hadron to quark-gluon phase, as predicted in the theory
of strong interactions—quantum chromodynamics, has
been already observed at high temperature and small
net-baryon density in ultra-relativistic heavy ion colli-
sions. In contrast, the presence of quark matter inside
the high-density core of neutron stars still remains a
open question. By combining astrophysical observations
of mass and radii of neutron stars with various theoret-
ical models of strongly interacting matter, one can pro-
vide empirical constraints on the quark-matter content
inside stars.

The first major observational breakthrough in this
direction came with the precise measurement of masses
of two massive NS with masses of (1.928 ± 0.017)M�
[5,6] and (2.01 ± 0.04M�) [7]. Very recently, another
massive NS of mass 2.14+0.20

−0.18 within 95.4% credibil-
ity interval (2.14+0.10

−0.09, within 68.3% credibility interval)
has been detected [8]. These measurements will essen-
tially exclude the soft EOSs for which Mmax < 1.97M�.
In fact, to determine the EOS uniquely one also requires
precise measurements of radius of stars. A few mea-
surements have been performed for NS radii from qui-
escent low-mass X-ray binaries and from the thermonu-
clear bursts of accreting NS [9–12]. Although these

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00004-4&domain=pdf
mailto:nandi.rana@gmail.com


552 Eur. Phys. J. Spec. Top. (2021) 230:551–559

measurements are important, but these are unable to
impose significant constraint on the EOS as the uncer-
tainty is quite large of ∼ 11−29%. NASA’s Neutron
Star Interior Composition Explorer (NICER) instru-
ment was installed on the International Space Station
on 2017 with the mission partly to measure the masses
and radii of NS within ∼ 5% uncertainty. Recently,
NICER collaboration has estimated [13,14] the mass
(M = 1.34+0.15

−0.16M�) and radius (R = 12.71+1.14
−1.19 km) of

the millisecond pulsar PSR J0030+0451.
On August 2017, LIGO-Virgo Collaboration (LVC)

detected first ever gravitational waves from the binary
NS merger event GW170817 [15]. This historic detec-
tion has opened up a new avenue to constrain the EOS
at high densities. During the inspiral phase of a binary
NS merger the strong gravitational field of each star
tidally deform the other leaving detectable imprint in
the emitted gravitational wave signal [16]. By analyz-
ing the data of GW170817, LVC obtained an upper
bound on the tidal deformability of a 1.4M� neutron
star of Λ1.4 ≤ 800. Due to its strong sensitivity on the
radius (Λ ∼ R5), tidal deformability can put stringent
constraint on the EOS. Subsequently, several studies
were carried out to constrain the EOS [17–21] using
the tidal deformability bound provided by GW170817.
These studies provided an upper bound on the radius
of a 1.4M� neutron star of R1.4 � 13.5−13.8 km [17–
21]. Upper bounds on the maximum mass Mmax �
2.2M� were also obtained by several authors by ana-
lyzing the data of gravitational wave signal as well as
the electromagnetic counterparts of GW170817 [22–
24]. Both these bounds imply that the EOS cannot
be very stiff. Later LVC improved their analysis of
GW170817 data by assuming a common EOS for both
the stars and improved waveform model and obtained
Λ1.4 = 190+290

−120, which translates to an more stringent
upper bound of Λ1.4 ≤ 580 [25].

Recently, we performed an extensive analysis of
the widely used relativistic mean-field (RMF) model
EOSs using the observational constraints on the max-
imum mass of neutron star and tidal deformability of
GW170817 and also employing the latest bounds on the
saturation properties of nuclear matter [26]. We found
that only 3 out of 269 RMF model EOSs are consistent
with all the constraints. Using a few selected nucleonic
EOSs and limited range of quark matter parameters,
we further showed that if the phase transition from
nucleonic matter to quark matter via Gibbs construc-
tion is incorporated in the EOS at higher density, sev-
eral EOSs become consistent with all the observational
bounds [20,26]. In this article, we shall make a compre-
hensive analysis of the properties of the neutron star
with a nucleon-quark first-order phase transition. For
this purpose, we shall employ all the available nuclear
RMF models for the nucleon sector and the Bag model
for the quark sector where the Bag model parameters
are allowed to encompass the entire permissible range of
the quark matter parameter space. We shall show that
majority of the pure nucleonic model EOSs, which are
consistent with the neutron star maximum mass bound

of Mmax ≥ 1.97M�, do not satisfy the tidal deformabil-
ity bound of Λ1.4 ≤ 580 [25]. Inclusion of a quark phase
in the neutron star softens the overall EOS, and we
find that these stars become consistent with the tidal
deformability bound for realistic values of Bag model
parameter space. We shall also show that pure quark
matter, though of small mass, can exist in the core of
neutron stars.

The article is organized as follows. In Sect. 2, we pro-
vide the details of EOS calculation for both the nucle-
onic phase and the quark phase. In Sect. 3, we present
the results for the maximum mass and radii of pure
nucleon stars and with nucleon-quark phase transition.
We discuss the resulting implications on the compo-
sition and content of quark matter in light of maxi-
mum mass and tidal deformability constraints. Finally,
in Sect. 4, we conclude with a discussion.

2 Setup

In this section, we discuss the construction of EOSs
for both the nucleonic matter and quark matter and
the phase transition between them. We also discuss the
calculation of tidal deformability of neutron stars.

2.1 Nucleonic EOS

We construct the EOS of the nuclear matter contain-
ing neutrons, protons, electrons and muons by adopting
RMF approach introduced by Walecka [27] and refined
over the years by many authors [28–32]. In this model,
the interactions between nucleons are described via the
exchange of several mesons. The most general form of
the Lagrangian can be written as [33]

L =
∑

N

ψ̄N

[
γμ

(
i∂μ − gωωμ − 1

2
gρτ · ρμ

)
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+
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2
ωg2

ρωμωμρμ · ρμ , (1)

where ψN is the isospin doublet of nucleons, σ, ω, ρ and
δ represent scalar-isoscalar, vector-isoscalar, vector-
isovector and scalar-isovector meson fields, respectively.
There are another class of RMF models, where the
nucleon–meson couplings are not constants but density
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dependent [34,35] and they do not contain any self-
coupling or cross-coupling terms of mesons.

Some of the parameters appearing in the Lagrangian
are determined by fitting to the known saturation prop-
erties of nuclear matter such as binding energy per
nucleon, the saturation density, the symmetry energy
(J), the incompressibility (K) and the nucleon effective
mass (m∗) [1]. Rest of the parameters are essentially
free and can be varied to match various nuclear and
NS properties. For certain EOSs, the binding energies
and charge radii of some finite nuclei are also used to
determine the parameters [32,34,36]. Out of 269 RMF
parameter sets, only 67 are found [26] consistent with
the latest experimental/empirical bounds on the follow-
ing saturation properties [2]:

210 ≤ K (MeV) ≤ 280
28 ≤ J (MeV) ≤ 35
30 ≤ L (MeV) ≤ 87. (2)

A wider range than the generally accepted values for
incompressibility, namely K = 248 ± 8 MeV [37] or
K = 240 ± 20 MeV [38], were used because of their
model dependence [2]. In this article, we consider all the
RMF parameter sets which satisfy the above bounds
and also consistent with observational bound on the
maximum mass, i.e. Mmax ≥ 1.97M�.

2.2 Quark EOS

To construct the EOS of quark matter, we adopt the
modified MIT Bag model that provides phenomenolog-
ical description of the quark phase. The grand potential
is given by [20,39]:

ΩQM =
∑

i

Ω0
i +

3μ4

4π2
(1 − a4) + Beff , (3)

where Ω0
i denotes the grand potentials of non-interacting

Fermi gases of up (u), down (d) and strange (s) quarks
and electrons. The other two terms in Eq. (3) corre-
spond to the strong interaction correction and the non-
perturbative QCD effects which are accounted via two
effective parameters a4 and Beff , with μ(= μu+μd+μs)
being the baryon chemical potential of quarks.

We consider the phase transition from the nucleonic
matter to the quark matter via Gibbs construction [1,
40] which is characterized by the appearance of a mixed
phase of nucleonic and quark matter between the pure
nucleonic and pure quark phases.

2.3 Tidal deformability

At the initial stage of an inspiraling binary NS, the tidal
effect on a star can be written at linear order as [41]:

Qij = −λEij , (4)

where Qij represents the induced quadrupole moment
of the star and Eij is assumed to be the external static
tidal field exerted by the partner. The parameter λ is
related to the dimensionless quadrupole tidal love num-
ber k2 as (G = c = 1)

λ =
2
3
k2R

5,

Λ = λ/M5, (5)

where Λ is the dimensionless tidal deformability.
We follow the framework developed by Hinderer and

collaborators [16,41] to calculate k2 and subsequently
Λ. The value of k2 depends on the EOS and lies in the
range � 0.05−0.15 [16]. This quantity can be expressed
in terms of C = M/R, the compactness parameter as

k2 =
8C2

5
(1 − 2C)2[2 + 2C(y − 1) − y]

×{2C[6 − 3y + 3C(5y − 8)]
+4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]
+3(1 − 2C)2[2 − y + 2C(y − 1)]ln(1 − 2C)}−1,

(6)

where y is defined as y ≡ y(r)|r=R. The function y(r)
can be obtained by solving the following first-order dif-
ferential equation:

r
dy

dr
+y(r)2+y(r)eλ(r) {

1 + 4πr2 [p(r) − ε(r)]
}
+r2Q(r) = 0,

(7)
with

Q(r) = 4πeλ(r)

[
5ε(r) + 9p(r) +

ε(r) + p(r)
dp/dε

]

−6
eλ(r)

r2
−

(
dν

dr

)2

, (8)

eλ(r) =
[
1 − 2m(r)

r

]
,

dν

dr
=

2
r

[
m(r) + 4πp(r)r3

r − 2m(r)

]

(9)

and boundary condition y(0) = 2. Given an EOS and
the central pressure p(0), the Love number and the
tidal deformability can be obtained by solving Eq. (7)
together with the Tolman–Oppenheimer–Volkoff (TOV)
equations [1]:

dp

dr
= − [p(r) + ε(r)]

[
m(r) + 4πr3p(r)

]

r[r − 2m(r)]
(10)

m(r) = 4π
∫ r

0

ε(r)r2 dr. (11)
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3 Results and discussion

We construct an EOS with nucleon-quark phase tran-
sition via Gibbs construction. For the nucleonic part,
we consider all the RMF EOSs which are consistent
with both the latest saturation properties as given in
Eq. (2) and the observational lower bound on maxi-
mum mass Mmax ≥ 1.97M�. In Table 1, we list all
the nucleonic EOSs considered here along with their
saturation properties and maximum mass. Since the
choice of the crustal EOS does not significantly affect
the NS observables [52], we employ the Baym–Pethick–
Sutherland (BPS) EOS [53]. The crust–core matching
is modeled in a thermodynamics consistent fashion by
following Ref. [54]. Also tabulated are the values of tidal
deformabilities for a 1.4M� NS calculated using Eq. (5).
It is seen that only three EOSs, namely HC, TW99 and
NLρ are consistent with the tidal deformability bound
Λ1.4 ≤ 580 as also found in Ref. [26].

We generate a large number of quark matter EOSs
corresponding to different values of B

1/4
eff and a4 given

in Eq. (3). These EOSs are then combined with all the
nucleonic EOSs considered via the Gibbs construction.
However, we discard EOSs for which the starting den-
sity of mixed phase is smaller than the crust–core tran-
sition density.

Figure 1 shows the maximum masses as a function
of the Bag parameter B

1/4
eff for all the EOSs with a

nucleon-quark phase transition obtained with values of
a4 = 0.5 (left panel) and 0.6 (right panel). The results
for the EOS BKA22 are not shown as it gives a star
with maximum mass of 1.97M�, and further addition of
quarks makes the EOS softer leading to a Mmax below
the observed bound. Note that different EOSs within
a family are obtained by varying the single parameter,
namely α′

3 for S271 and NL3v and α′
2 [47,48] for NL3σρ

(see Eq. (1)) that provides different symmetry energy
behavior without affecting the Mmax, as can be seen
from Table 1. For each of these three families, we only
display results corresponding to the highest and low-
est values of the parameter; the results for the other
parameters fall in between these two limits.

At a fixed a4, a small Beff leads to a stiffer quark
matter EOS as evident from Eq. (3) and noting that
P = −ΩQM . This causes the onset of phase transi-
tion i.e. the mixed phase to occur early at a lower
density and also of wider extent, resulting in soften-
ing of the overall nucleon-quark EOS and generating
star with smaller Mmax. With increasing Beff , the quark
phase has a smaller effect on the overall EOS due to its
delayed appearance which causes the Mmax to increase
and eventually gives maximum mass for pure nucleonic
star. Obviously, the effect is enhanced for much stiffer
quark matter EOS for large values of a4.

It is evident from Fig. 1 (right panel) that pure
nucleonic EOS, viz FSUGarnet, TW99 and NLρ which
have maximum mass slightly above 2M� (i.e. Mmax <
2.10M�) cannot support stars with a maximum mass of
1.97M� when quark phase is included with parameter
value a4 = 0.6. While nucleon-quark stars in FSUG-

arnet and TW99 fail to satisfy the maximum bound
for smaller values of Bag parameter, the failure in NLρ

EOS is for the entire range of B
1/4
eff studied here. All the

other 17 EOSs for a4 = 0.6 value are found consistent
with the maximum mass bound for the whole range of
Beff . In contrast, for a4 = 0.5 (left panel), all the stars
with nucleon-quark phase transition satisfy the maxi-
mum mass bound. By increasing the a4 value to 0.6 and
beyond causes more and more EOSs to fail the maxi-
mum mass constraint. This is because the quark EOS
becomes stiffer with increasing a4 as discussed above.

We now present results for the tidal deformability
of neutron stars with nucleon-quark phase transition
following the prescription presented in Sect. 2.3. With
increasing Bag constant, since the stiffer EOS gener-
ates stars with larger radii as well, the tidal deforma-
bility bound of will not be satisfied for large values of
Beff . In Table 2, we show the maximum values of B

1/4
eff

corresponding to different nucleonic EOSs, for which
the tidal deformability bound of Λ1.4 ≤ 580 is satisfied
by 1.4M� neutron star [15]. These maximum values of
B

1/4
eff are marked with “crosses” in Fig. 1. The curves

corresponding to nucleonic EOS, DDME2, NL3σρ3,
NL3σρ6, NL3v3, NL3v6, BSR1-5 with a4 = 0.5 and
NL3σρ6 and NL3v6 with a4 = 0.6 are not marked
with any cross as these EOSs are unable to satisfy the
Λ1.4 ≤ 580 bound for any value of B

1/4
eff . On the other

hand, TW99, HC and NLρ EOSs satisfy the Λ1.4 con-
straint for pure nucleonic stars. Since the inclusion of
quarks makes the overall EOS softer resulting in stars
with smaller masses and radii, the bounds are natu-
rally satisfied for all values of B

1/4
eff and hence these

EOSs with nucleon-quark phase are not marked with
any cross. It is interesting to note that out of the 17 pure
nucleonic EOSs that are not consistent with the tidal
deformability constraint, 15 EOSs (except NL3σρ6 and
NL3v6) for a range of values of Beff and a4 can generate
neutron stars with quark phase that are consistent with
the bound. However, the tidal deformability bound is
found to severely constrain the quark matter parameter
space (B1/4

eff , a4), irrespective of the nucleonic EOS.
The strong correlation between Λ1.4 and R1.4, as

expected due to Λ ∝ R5, has been explored within
various nuclear model approaches (without quarks)
[17,18,55–57]. For all the RMF EOSs considered here
and pure-nucleon stars, we obtained [26] the relation
Λ1.4 = 1.53 × 10−5(R1.4/km)6.83, with maximum devi-
ation |(Λfit

1.4 − Λ1.4)/Λ1.4| of ∼ 8%. The extra factor of
1.83 in the exponent stems from the quadrupole love
number k2 which depends on the EOS and, therefore,
on the radius of the star in a complicated fashion (see
Sect. 2.3). In Fig. 2, we present the correlation between
Λ1.4 and R1.4 using these nucleonic EOSs and incorpo-
rating nucleon-quark phase transition. We find that the
strong Λ1.4−R1.4 correlation observed for pure nucle-
onic stars still persists with phase transition which can
be fitted as Λ1.4 = 5.22 × 10−5(R1.4/km)6.35. However,
the correlations with quark phase have a slightly more
spread, the maximum deviation is ∼ 16%. Using this
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Table 1 Various relativistic nuclear mean-field models and their nuclear matter saturation properties, namely incompress-
ibility K, symmetry energy J and its slope L

EOS K (MeV) J (MeV) L (MeV) Mmax/M� Λ1.4 R1.4 (km)

FSUGarnet [42] 229.5 30.9 51.0 2.07 638 12.95
HC [43] 231.9 31.0 58.5 2.28 440 12.26
DDME2 [44] 250.9 32.3 51.3 2.48 705 13.02
DD2 [35] 242.7 31.7 55.0 2.42 684 13.16
TW99 [34] 240.3 32.8 55.3 2.08 403 12.29
DDME1 [45] 244.7 33.1 55.5 2.44 674 13.16
DD [46] 240.0 31.6 56.0 2.41 679 13.15
NL3σρ6 [47] 270.0 31.5 55.0 2.75 974 13.78
NL3σρ5 [47] 270.0 32.3 61.0 2.75 986 13.83
NL3σρ4 [47] 270.0 33.0 68.0 2.75 1002 13.91
NL3σρ3 [47] 270.0 33.9 76.0 2.75 1027 14.01
NL3v6 [48] 271.6 32.4 61.1 2.75 948 13.77
NL3v5 [48] 271.6 33.2 68.2 2.75 965 13.84
NL3v4 [48] 271.6 34.0 77.0 2.75 992 13.95
NL3v3 [48] 271.6 34.5 82.1 2.74 1012 14.01
S271v6 [48] 271.0 32.7 59.8 2.35 629 13.05
S271v5 [48] 271.0 33.3 65.4 2.34 643 13.12
S271v4 [48] 271.0 33.8 71.8 2.34 663 13.23
S271v3 [48] 271.0 34.4 78.9 2.34 694 13.35
S271v2 [48] 271.0 35.0 86.9 2.34 742 13.51
BSR1 [32] 239.9 31.0 59.4 2.47 797 13.42
BSR2 [32] 239.9 31.5 62.0 2.39 751 13.34
BSR3 [32] 230.6 32.7 70.5 2.36 751 13.39
BSR4 [32] 238.6 33.2 73.2 2.44 790 13.49
BSR5 [32] 235.8 34.5 83.4 2.48 838 13.67
IOPB-I [49] 222.7 33.3 63.6 2.15 688 13.27
BKA22[50] 225.2 33.2 78.8 1.97 667 13.29
NLρ [51] 240.8 30.4 84.6 2.09 571 12.81

For these nuclear RMF models, some important observational properties are presented, namely the maximum mass of
neutron star Mmax, the radii R1.4 and tidal deformability Λ1.4 of a 1.4M� mass neutron star

Table 2 Listed for various nucleonic EOSs are the maximum values of B
1/4
eff that are consistent with the upper bound on

Λ1.4 ≤ 580 for the parameter values a4 = 0.5 and 0.6 of Eq. (3)

Hadronic B
1/4
eff |max R1.4(km) (ΔMQ/M�)max

EOS a4 = 0.5 a4 = 0.6 a4 = 0.5 a4 = 0.6

FSUGarnet 153 163 12.783 12.800 0.00
DDME2 NA 156 NA 12.863 0.02
DD2 146 158 12.821 12.892 0.01
DDME1 147 158 12.851 12.882 0.01
DD 146 158 12.808 12.878 0.01
NL3σρ6 NA NA NA NA 0.13
NL3σρ3 NA 146 NA 12.518 0.17
NL3v6 NA NA NA NA 0.14
NL3v3 NA 146 NA 12.520 0.16
S271v6 154 163 12.923 12.916 0.00
S271v2 152 162 13.049 13.064 0.00
BSR1 NA 155 NA 12.835 0.02
BSR2 NA 158 NA 12.901 0.00
BSR3 NA 160 NA 12.966 0.00
BSR4 NA 158 NA 12.967 0.02
BSR5 NA 157 NA 12.971 0.02
IOPB-I 152 162 12.979 12.994 0.00

The corresponding radii R1.4 of a 1.4M� star are given. NA denotes that No Allowed value of B
1/4
eff is consistent with the

bound. The last column gives the maximum mass of the pure quark part (see text for details)

123



556 Eur. Phys. J. Spec. Top. (2021) 230:551–559

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 140  145  150  155  160  165  170  175  180

a4=0.5

M
m

ax
/M

O•

Beff
1/4(MeV)

  
 

 

 
 

 

 150  155  160  165  170  175  180

a4=0.6

Beff
1/4(MeV)

DD2
DD
DDME1
DDME2
TW99
FSUGarnet
S271v2
S271v6
HC
NLρ

NL3σρ3
NL3σρ6
NL3v3
NL3v6
IOPB-I
BSR1
BSR2
BSR3
BSR4
BSR5

    

 

 

 

   

     

Fig. 1 Maximum masses of neutron stars with nucleon-

quark phase transition as a function of Bag pressure B
1/4
eff for

a4 = 0.5 (left panel) and a4 = 0.6 (right panel) of Eq. (3) for
various nucleonic EOSs as listed in Table 1. The black thick

horizontal line represents the lower bound Mmax = 1.97M�
on maximum mass. Crosses indicate maximum value of B

1/4
eff

for stars that are consistent with Λ1.4 ≤ 580 bound
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Fig. 2 Correlation between Λ1.4 and R14 for EOS with
nucleon-quark phase transition constructed from different
nuclear EOSs and for a range of Bag parameter values

B
1/4
eff ∼ 145−180 MeV and a4 = 0.5 and 0.6. The dashed line

represents the upper bound on Λ1.4 given by GW170817 [25]
and the solid line is for the fit Λ1.4 = 5.22 × (R14/km)6.35

fit function and the upper bound on Λ1.4 ≤ 580, we
obtain an approximate upper bound on the radius of
R1.4 ≤ 12.9 km. Interestingly, the same bound was
obtained on R1.4 for nucleon-only stars constructed
from the RMF EOSs [26].

In Fig. 3, we show the volume fraction χ of quarks for
the maximum mass configurations corresponding to dif-
ferent Bag parameters B

1/4
eff and values of a4 = 0.5 and

0.6. Only the EOSs of Fig. 1, that satisfy the maximum
mass bound for the quark matter parameters used, are
considered here. The cross indicate the maximum val-
ues of B

1/4
eff for which the corresponding EOS is consis-

tent with the Λ1.4 ≤ 580 bound. (NL3σρ6 and NL3v6
are not shown as these cannot support Λ1.4 ≤ 580.)
We observe that with increasing Beff , the fraction of
quarks in the star decreases. This can be explained
from the fact that larger Beff makes the quark EOS
softer which delays the appearance of mixed phase to a
higher density. Consequently, the overall EOS becomes
stiffer resulting in higher maximum mass for a neutron
star but at a lower central density (see Fig. 1).

In the mixed phase, the quark fraction increases from
χ = 0 (pure nucleonic phase) to χ = 1 (pure quark
phase) as the density increase. Since the maximum den-
sity inside the star is lower for a higher Beff , the corre-
sponding quark fraction is also smaller. Figure 3 reveals
that for a4 = 0.6 there are several RMF models for
which the neutron star core can have pure quark matter
while satisfying the Λ1.4 ≤ 580 constraint, whereas, for
a4 = 0.5, no such EOS exists that permits a pure quark
matter core. Instead, the neutron star core consists of a
mixed phase of nucleons and quarks. In Table 2, we have
also listed the maximum masses of the pure quark phase
star (ΔMQ)max. For a given RMF EOS, each combi-
nation of the parameters (B1/4

eff , a4) defines a value of
ΔMQ = Mmax − Mmp, where Mmp is the mass of the
star with the end point of the mixed phase as the cen-
tral density. (ΔMQ)max then corresponds to the maxi-
mum value of ΔMQ obtained by considering all possi-
ble combinations of (B1/4

eff , a4). From Table 2, we find
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ent nucleonic EOSs and Bag model parameters that are
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The thick grey line represents the fit ΔMQ/M� = 0.22 ×
(ΔRQ/km)2.01

that NL3σρ3 and NL3v3 EOSs have appreciable size of
quark-matter core with mass of ∼ 0.17M� which cor-
responds to ∼ 8% of total mass of the star. For other
EOSs the quark core mass is quite small up to 0.02M�.

In Fig. 4, we display the variation of masses ΔMQ

with the radii ΔRQ of the quark-matter core for the
maximum mass neutron star configurations correspond-
ing to different RMF nucleonic EOS and Bag model
parameters. We show only those configurations which
are consistent with both the maximum mass bound and
the tidal deformability bound. In the present model
analysis, while the maximum mass of 0.17M� predicted

for the quark-matter core is confined within a radius 0.9
km, the majority of the models lead to a much smaller
masses and radii of ∼ 0.02M� and ∼ 0.3 km. It is
interesting to observe that the mass and radius of the
quark core are strongly correlated and can be fitted
as ΔMQ/M� = 0.22 × (ΔRQ/km)2.01. We note that
the central densities of these quark core stars are found
early in the pure quark phase, immediately after the
mixed phase, instead at very high densities where all the
quark EOSs have the same speed of sound (c2

s = 1/3).
However, we found that speed of sound for these quark
core stars are nearly similar which result in a strong cor-
relation between ΔMQ and ΔRQ. Nevertheless, it may
be worth investigating where other model approaches
lead to such a tight correlation in ΔMQ and ΔRQ.

4 Conclusions

Observation of ∼ 2M� neutron stars and the measure-
ment of tidal deformability from GW170817 have posed
serious challenge to the construction of EOS of a neu-
tron star. While the maximum mass bound enforces a
stiff EOS, the tidal deformability bound Λ1.4 ≤ 580
demands a soft EOS. A natural way to account such
a behavior is by incorporating a nucleon-quark phase
transition in the EOS at higher densities. In this work,
we have investigated this possibility by considering
nucleonic EOS from several RMF models, that are com-
patible with constraints imposed by experimental data
and observations, and including a quark matter EOS
(via Bag model) by exploring a wide range of quark
matter parameter space. The EOSs with phase transi-
tion are generated via Gibbs construction character-
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ized by nucleon-quark mixed phase. We have shown
that most of the nuclear EOSs that do not satisfy the
tidal deformability bound, become consistent with this
bound when transition to quark-matter is included for
a rather large combination of Bag model parameters
(Beff , a4). However, the tidal deformability constraint
is found to significantly reduce the allowed region of
quark matter parameter space, regardless of the nucle-
onic EOS. We find that, for most of the nucleonic mod-
els studied, the neutron star core contains a mixed
phase of nucleons and quarks. We also find that several
EOSs can support a neutron star with a pure quark
matter core, albeit with quite small quark core mass
within the range of ∼ (0.02−0.17)M�. Furthermore,
we showed that a strong correlation exists between the
masses and radii of the quark matter core.

Apart from the three RMF nucleonic EOSs found
in this study, there are few other nucleonic EOSs (e.g.
APR [58], SLy [59]) which are consistent with the two
solar mass and tidal deformability bounds. Therefore,
it is quite difficult to distinguish purely nucleonic stars
from hybrid stars with small quark core and/or mixed
phase, observationally. Nevertheless, recent binary neu-
tron star simulations [60] have shown that in the
so-called delayed phase transition scenario a hyper-
massive hybrid star can be formed. During this process,
the emitted gravitational wave can provide signature of
hybrid stars even with a mixed phase. However, the
signature is strong for stars with significant quark core.
The present study may thus be quite promising in the
search for hybrid stars.
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10. F. Özel, D. Psaltis, T. Guver, G. Baym, C. Heinke, S.
Guillot, Astrophys. J. 820(1), 28 (2016)
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