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Abstract The nuclear matter parameters define the nuclear equation of state (EoS), they appear as coeffi-
cients of expansion around the saturation density of symmetric and asymmetric nuclear matter. We review
their correlations with several properties of finite nuclei and of neutron stars within mean-field frameworks.
The lower order nuclear matter parameters such as the binding energy per nucleon, incompressibility and
the symmetry energy coefficients are found to be constrained in narrow limits through their strong ties
with selective properties of finite nuclei. From the correlations of nuclear matter parameters with neutron
star observables, we further review how precision knowledge of the radii and tidal deformability of neutron
stars in the mass range 1−2M� may help cast them in narrower bounds. The higher order parameters such
as the density slope and the curvature of the symmetry energy or the skewness of the symmetric nuclear
matter EoS are, however, plagued with larger uncertainty. From inter-correlation of these higher order
nuclear matter parameters with lower order ones, we explore how they can be brought to more harmonious
bounds.

1 Introduction

Precise determination of the equation of state (EoS)
of nuclear matter is one of the major goals in nuclear
physics. Relying on a realistic nucleonic interaction, in
a microscopic framework, the energy density E of the
system (a finite nucleus or a macroscopic nuclear sys-
tem) is computed; the parameters of the interaction
or of the energy density functional (EDF) are tuned
so that the predicted observables calculated with the
EDF match with the experimental data. In a broad
sweep, the EoS or the EDF then entails knowledge
of the diverse nuclear matter parameters that define
infinite nuclear matter: its saturation density ρ0, the
energy per nucleon e(ρ0), the incompressibility K(ρ0),
the symmetry energy coefficient C2(ρ0) and their den-
sity derivatives of different orders. These nuclear matter
parameters enter into the EoS as Taylor expansion coef-
ficients around the saturation density; when precisely
determined they stand out as irreducible elements of
physical reality as they have the mark of defining a
model-independent nuclear EoS.

Not all of the nuclear matter parameters are known
in very good bounds. The profusion of data on the
masses of atomic nuclei has kept the uncertainties in
the values of ρ0 and e(ρ0) quite small [1–3]. Correla-
tion systematics has proved to be a useful tool in arriv-
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ing at values of many others. For example, the centroid
energy EGMR of the isoscalar giant monopole resonance
(ISGMR) is a measure of K(ρ0)(= K0 = 9ρ20

∂2e
∂ρ2 |ρ0).

The correlation diagram drawn between the predicted
ISGMR energies for a heavy nucleus like 208Pb with dif-
ferent EDFs against the related nuclear matter param-
eter K0 pertaining to the EDFs has proved to be an
effective method of projecting its value [4] at satura-
tion density. Noticing the recently found remarkable
soft nuclear matter compression from the ISGMR data
in Sn and Cd isotopes [5–9], questions are asked [10–12]
on whether ISGMR energy is a reflection of compres-
sion at saturation density or whether EGMR is related
to the nuclear matter incompressibility averaged over
the whole density range within the nucleus. The cor-
relation systematics was, however, not severely called
into question. In several non-relativistic and relativis-
tic EDFs, the ISGMR energy EGMR was found to be
well correlated to M(ρc)), the density derivative of
K(ρ) [M(ρc) = 3ρcK ′(ρc)] at a crossing density ρc that
is close to the average density in a nucleus [11]. A subtle
correlation analysis at the end then leads to a value of
K0 [13], Mc and also to Kc, the incompressibility at ρc
[11].

There is a cultivated focus in recent times in tight-
ening the bounds on the values of the isovector nuclear
matter parameters, namely, the symmetry energy C0

2 (≡
C2(ρ0)), its density derivative L0(≡ L(ρ0)), the sym-
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metry incompressibility K0
sym(≡ Ksym(ρ0)), etc. [14].

They have a fundamental role in deciding pressures
in neutron-rich matter; they determine the nuclear
masses, the neutron-skin thickness and the size and
structure of neutron stars. From a Bethe–Weizacker
type of expansion of the nuclear binding energy in pow-
ers of the mass number A, the symmetry energy C0

2 is
well obtained [1,3]; the exhibited compact correlation
of the double differences of the ‘experimental symme-
try energies’ of four neighboring nuclei with the nuclear
mass number A yields [15], however, the value of the
volume and surface symmetry energies at ρ0 with much
less uncertainty. No less important is the strong corre-
lation of the value of the centroid of the isovector giant
dipole resonance (IVGDR) energy in spherical nuclei
with the symmetry energy C2(ρ) [16] at ρ ∼ 0.1fm
−3 found in Skyrme EDFs in imposing a quantitative
constraint on the symmetry energy at a sub-saturation
density. The value (C2(ρ ∼ 0.1) ≈ 23.3 ± 0.8 MeV)
is in extremely good agreement with that found from
analysis of experimental isoscalar and isovector giant
quadrupole resonances of the nucleus 208Pb [17].

Systematics in relativistic and non-relativistic models
have revealed that there is a strong correlation between
the density derivative of symmetry energy L0 with the
neutron-skin thickness Δrnp [= (Rn − Rp), Rn and Rp

are the neutron and proton root mean squared radius
(rms)] of a heavy nucleus like 208Pb [18–20]. Analyz-
ing the correlation systematics of nuclear isospin with
neutron-skin thickness for a series of nuclei in the ambit
of the droplet model, the Barcelona group [20,21] pre-
dicted L0 in a comparatively narrow window, but it
suffers from the unavoidable strong interaction-related
uncertainties in the neutron-skin thickness derived
from anti-protonic atom experiments. Finding a model-
independent precise value of the neutron-skin thickness
is a major challenge still not quite accomplished [22],
so the converse route of finding L0 and then predict-
ing Δrnp from correlation systematics has been taken
by many. The often shifting values of L0 obtained from
different observables like pygmy dipole resonance [23],
isovector giant dipole resonance [16], nucleonic emis-
sion ratios [24], nuclear masses [3,25,26] or even astro-
physical inputs of neutron star radii [27] render L0

and thus Δrnp still somewhat uncertain. Of late, co-
variance analysis with masses of selective highly asym-
metric nuclei [28] and experimental data on collective
isovector excitations in nuclei [29] tend to constrain L0

tightly, the constraint, however, depends much on the
precision of the relevant experimental data.

The multitude of EDFs are rooted to various sets of
selective experimental data that may have occasional
overlaps. It is, therefore, not surprising that the bulk
nuclear matter parameters (tied to the various parame-
ters in the EDFs) may be intercorrelated and so the
nuclear observables display built-in correlations with
the nuclear matter parameters pertaining to the con-
cerned EDFs. As examples, further to those mentioned
earlier, the core–crust transition density ρt in neutron
star is found to be correlated [30] to the neutron-skin
Δrnp in the nucleus 208Pb, ρt is also seen to be corre-

lated with the symmetry density derivative L0 [30,31],
Δrnp has a correlation with the product of nuclear
dipole polarizability αD with the symmetry energy C0

2
[32]. Knowledge of a better known entity then throws
light on the one lesser known, this is the kernel of the
correlation systematics.

The observable properties of neutron stars offer fresh
grounds for exploring the nuclear matter EoS on a large
density plane, spanning a few times the nuclear satu-
ration density. Behind the solid crust of ∼ 1 km thick-
ness lies the central homogeneous liquid core, its den-
sity increases as one approaches the center. The outer
crust is inhomogeneous with neutron-rich nucleons and
degenerate electrons. The inner crust, loosely speaking,
starts when with increasing density and pressure, neu-
tronization sets in leading to the existence of a neutron
ocean with inhomogeneous nucleonic clusters and elec-
trons. The structure of the inner crust is modeled as a
lattice in a body centered cubic formation with the elec-
tron gas circulating throughout the structure [33], the
free neutrons are assumed to have no effect. However,
if the interactions between the neutrons and the lat-
tice are accounted for, a rethink on the structure of the
crust and its response to perturbations may be needed
[34]. The density at which neutrons drip off from nuclei
is rather well known, but the transition density at the
inner edge separating the solid crust from the liquid
core is still not well settled. The bottom layer of the
inner crust consists mostly of exotic nuclear structures
collectively known as nuclear pasta [35,36]. The transi-
tion density offers important insights into the origin of
pulsar glitches from its relation to the crustal fraction
of the moment of inertia of a neutron star [37] with
additional information on the gravitational wave radia-
tion [38] by the neutron star when subjected to a very
intense gravitational field.

In this article, we do not deal with the EoS of the
neutron star crust, it is assumed to be known [39], we
rather focus on the nuclear matter EoS for the homoge-
neous core region, from around the saturation density
ρ0 to the central density of around ∼ 5−6ρ0, and on the
specifics of the nuclear matter parameters that describe
them. The analysis of directed and elliptic flow [40]
and kaon production [41,42] from heavy ion collisions
(HIC) has helped understand the nuclear matter EoS at
supra-normal densities. Recently, the detection of gravi-
tational waves from the GW170817 binary neutron star
merger [43] has added much impetus to effectively map
the EoS at densities relevant to neutron stars.

Microscopic analysis of different kinds of laboratory
data, on the other hand, has probed the nuclear mat-
ter EoS at around the saturation density with different
levels of satisfaction. Attempts have been made to find
a link of these two [44–46] through the nuclear mat-
ter parameters, the common denominators appearing
as Taylor expansion coefficients in the nuclear matter
EoS. Scanning the multitude of terrestrial and astro-
nomical data, coherent systematics have been followed
to arrive at their values as best as possible, we aim to
describe part of it in this article.
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An alternate route, based on ab initio models (for
a brief review, see [47]), aims at analyzing the prop-
erties of finite nuclei and of infinite nuclear matter on
a more fundamental level. With a multitude of theo-
retical descriptions of the interaction between nucleons
at various levels of phenomenology [48–52], significant
efforts have been employed in solving the many-body
Schrödinger equation [53–56] with as few uncontrolled
approximations as possible. The curse of dimensionality
in solving the complex many-body problem along with
the somewhat hazy knowledge of the nucleonic interac-
tion has limited their predictive power up to only light
nuclei and up to density close to saturation density and
somewhat beyond [57–60], that too with a precision
that may be insufficient. A complementary approach
was recently proposed aimed explicitly in bridging the
ab initio methods with an ab initio equivalent Skyrme
EDF [61]. This was found to describe properties of
nuclei and nuclear matter poorly. Though fundamental,
we do not explore the quantification of the nuclear mat-
ter parameters in the framework of ab initio models, but
settle on the nuclear matter EoS based on the present
broad knowledge of the effective nucleon–nucleon inter-
action aided by a mean-field perspective.

2 Theoretical inputs

The energy per nucleon of asymmetric homogeneous
nuclear matter at density ρ can be written as

e(ρ, δ) = e(ρ, δ = 0) + C2(ρ)δ2 + C4(ρ)δ4 + · · · , (1)

where δ = (ρn − ρp)/ρ is the isospin asymmetry of the
system. The first term on the right-hand side (r.h.s)
of Eq. (1) is the energy corresponding to symmetric
nuclear matter (SNM), the other terms are the asym-
metry contributions. The coefficients Cn(ρ) are collec-
tively called the symmetry coefficients. For nearly all
energy density functionals, it is found that the parabolic
approximation (terms up to C2 in Eq. (1)) is quite rea-
sonable for densities up to ∼ 1.5ρ0 [62–65]. Around the
saturation density ρ0, the SNM component e(ρ, δ = 0)
can be expanded as,

e(ρ, δ = 0) = e0 +
1
2
K0ε

2 +
1
6
Q0ε

3 +
1
24

Z0ε
4 + · · · ,

(2)

where e0 = e(ρ0, δ = 0), ε = (ρ − ρ0)/3ρ0, K0

(= 9ρ20
∂2e
∂ρ2 |ρ0) is the isoscalar incompressibility, Q0(=

27ρ30
∂3e
∂ρ3 |ρ0) the skewness parameter etc. The param-

eter Q0 is related to the density derivative of the
nuclear matter incompressibility (M = 3ρdK

dρ ) at ρ0,
M0 = 12K0 + Q0. The symmetry coefficient C2(ρ) can
likewise be expanded as

C2(ρ) = C2(ρ0) + L0ε +
1
2
K0

symε2 +
1
6
Q0

symε3

+
1
24

Z0
symε4 + · · · , (3)

where C2(ρ0) is traditionally taken to be the symmetry
energy coefficient of nuclear matter, L0(= 3ρ0 ∂C2

∂ρ |ρ0) is

the symmetry slope, K0
sym(= 9ρ20

∂2C2
∂ρ2 |ρ0) the symme-

try curvature or symmetry incompressibility, Q0
sym(=

27ρ30
∂3C2
∂ρ3 |ρ0) the symmetry skewness coefficient, etc.

Precise values of these nuclear matter parameters enter-
ing in Eqs.(2)and (3) determine the nuclear matter
EoS in a model independent way. Sophisticated analy-
sis of laboratory data with microscopic theoretical tools
helps to find values for some of these quantities. The
lower order density derivatives are particularly known
in reasonable bounds. The higher density derivatives
like Q0,K

0
sym, etc. are somewhat uncertain. The lower

and higher density derivatives may, however, be linked
in a correlated chain, a correlation analysis then helps
to keep the uncertain nuclear matter parameters in
somewhat stringent bounds.

3 Symmetric nuclear matter

In a thermodynamic system, the Euler equation relates
the energy per particle with its chemical potential and
the pressure of the system. In this section, we try to
build a simple EDF exploiting this relation. We focus
first on the one component system, the SNM. The cor-
relation between the lower and the higher order den-
sity derivatives of energy is manifested here in a simple
manner without loss of generality.

3.1 EDF: a thermodynamic view point

The Euler equation reads as

μ = e +
P

ρ
, (4)

where μ is the chemical potential of a nucleon in SNM, e
its energy, P the pressure of the system, all at density ρ,
at a temperature T = 0. The chemical potential equals
the single particle energy εF at the Fermi surface,

μ ≡ εF =
P 2

F

2m
+ U =

P 2
F

2m�
+ V. (5)

Here PF is the Fermi momentum and m� the effective
nucleon mass given by �

2/2m� = δH/δK. The single
particle potential V is calculated from V = δH/δρ.
Here δ refers to the functional derivative, H is the
energy density, �

2

2mK is the kinetic energy density and
m the bare nucleon mass. The single particle poten-
tial can be redefined as U by including within it the
effective mass contribution as seen in Eq. (5). No spe-
cial assumption is made about the nucleonic interaction
except that it is density dependent to simulate many
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body forces and that it depends quadratically on the
momentum. Then the single-particle potential U sepa-
rates into three parts,

U = V0 + P 2
F V1 + V2. (6)

The term (V0 + P 2
F V1) is the Hartree–Fock potential

and the last term is the rearrangement potential that
arises from the density dependence in the interaction.
The term V1 is the result of momentum dependence of
the interaction:

P 2
F

2m�
=

P 2
F

2m
+ P 2

F V1, (7)

so that

1
m�

=
1
m

+ 2V1. (8)

In general, the effective mass is momentum and energy
dependent; in the mean-field level, the energy depen-
dence is ignored and the momentum dependence is
taken at the Fermi surface. The rearrangement term
does not enter explicitly in the energy expression when
written in terms of the mean-field potential [66,67].

The energy per nucleon at density ρ is given by

e =
〈

p2

2m

〉
+

1
2

(〈p2〉V1 + V0

)

=
1
2

(
1 +

m�

m

)〈
p2

2m�

〉
+

1
2
V0. (9)

Using Eqs. (4, 5, 6, 9), this is written as

e =
P 2

F

10m

[
3 − 2

m

m�

]
− V2 +

P

ρ
, (10)

where 〈p2〉 = 3
5P 2

F is taken.The effective mass is density
dependent, to lowest order, it is taken as m

m� = 1+ k+
2 ρ

[68], the rearrangement potential V2 = aρα̃ emerges for
finite range density dependent forces [67] or for Skyrme
interactions, and so we retain this form. The quantities
a, k+ and α̃ are numbers.

Writing for P 2
F

2m = γρ2/3 (γ = (32π2)2/3
�
2/2m), the

energy of a nucleon in SNM is then

e(ρ) =
γ

5
ρ2/3[1 − k+ρ] − aρα̃ +

P

ρ
. (11)

Since P = ρ2∂e/∂ρ, from Eq. (11),

P (ρ) =
γ

15
ρ5/3 − γ

6
k+ρ8/3 − 1

2
α̃aρα̃+1 +

ρ

18
K(ρ),

(12)

where use has been made of the relation for incompress-
ibility K = 9dP

dρ . Successive density derivatives of Eq.

(12) give iteratively a relation of a lower order density
derivative with a higher order density derivative, like

K(ρ) = 2γρ2/3 − 8γk+ρ5/3 − 9α̃(α̃ + 1)aρα̃ +
M(ρ)

3
,

(13)

where

M(ρ) = 3ρ
dK

dρ
= 27ρ

∂2P

∂ρ2
. (14)

At the saturation density ρ0, P = 0. From Eq. (11)
and Eq. (12), one then gets

e0 =
γ

5
ρ
2/3
0 [1 − k+ρ0] − aρα̃

0 , (15)

and

1
2
α̃aρα̃

0 +
γ

6
k+ρ

5/3
0 −

(
K0

18
+

γ

15
ρ
2/3
0

)
= 0. (16)

If the value of the effective mass m�
0 (≡ m�(ρ0)) is

given, then k+ is known. If e0 and the incompressibility
K0(≡ K(ρ0)) are further assumed to be known, then
the energy of SNM around ρ0 can be calculated from
Eq. (2) as the values of Q0 and further terms involving
the higher density derivatives are related in the corre-
lation chain (Eq. (15) and (16) can be solved for the
unknown quantities a and α̃) [13]. From given values of
e0, ρ0, and K0 for SNM, α̃ is calculated as

α̃ =
K0
9 + E0

F

3

(
12
5 − 2 m

m�
0

)
E0

F

5

(
3 − 2 m

m�
0

)
− e0

. (17)

3.2 The nuclear matter incompressibility

In Ref. [4], a linear correlation between K0 and the
ISGMR energy EGMR for a heavy nucleus like 208Pb
calculated with various Skyrme EDFs was shown. This
correlation led to K0 = 210 ± 30 MeV when subjected
to the experimental value of ISGMR energy of the said
nucleus. After several revisions from different corners a
near settled value of K0 = 230 ± 20 MeV was posited
[69–71]. The recent ISGMR data on Sn and Cd iso-
topes were, however, found to be incompatible with
this value of K0. These nuclei showed remarkable soft-
ness towards compression, apparently the ISGMR data
appeared best explained with K0 ∼ 200 MeV [71].

Rigorous analysis questioned the validity of the
assumption of a strong correlation between K0 and
EGMR [12,73] calculated from different forces, argu-
ments were placed in favour of the fact that the ISGMR
centroid EGMR maps the integral of the incompressibil-
ity

∫
K(ρ)dρ over the whole density rather than a sin-

gle value at ρ0. A larger value of K(ρ0) for a given
EDF can be compensated by a lower value of K(ρ)
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Fig. 1 Centroid of the ISGMR in 208Pb and 120Sn calcu-
lated with the constrained Hartree–Fock method versus the
value of Mc for various functionals. The experimental values
for 208Pb and 120Sn are taken from Refs. [5,6,72], respec-
tively, with respective error bars of ±200 and ±100 keV.
This figure is taken from Ref. [11]

at sub-saturation density so as to predict a similar
value of ISGMR energy; as a result, EGMR might be
a reflection of nuclear matter incompressibility at an
effective density lower than ρ0. Indeed, it is seen that
K(ρ) calculated with a multitude of EDFs when plot-
ted against density cross each other at a density ρc [=
(0.710±0.005)ρ0] [11]. This universality possibly arises
from the constraints encoded in the EDF from empirical
nuclear observables. This crossing density ρc looks more
relevant as an indicator for the ISGMR centroid, with
Kc(≡ K(ρc)) found to be around 35 ± 4 MeV [12]. As
the centroid energy EGMR maps the incompressibility
integral, it seems, EGMR is more intimately correlated
with M(ρc), the density derivative of K(ρ) at the cross-
ing density. The calculated values of M(ρc) from vari-
ous EDFs are found to be linearly correlated with the
corresponding EGMR’s for both 208Pb and 120Sn (see
Fig. 1). From known experimental ISGMR data for the
nuclei, a value of Mc(≡ M(ρc)) ≈ 1050 ± 100 MeV [12]
is then obtained. Coming back to Eq. (13), with known
values of ρc, Kc and Mc in conjunction with Eq. (15),
the value of a and α̃ are calculated (we already assumed
e0, ρ0 and k+ to be known). The value of K0 can now
be related as

K (ρ0) = K (ρc) + (ρ − ρc) K ′ (ρc) + (ρ−ρc)
2

2 K ′′ (ρc) +

+
(

ρ−ρc

6

)3
K ′′′ (ρc) + · · · . (18)

The higher derivatives of K(ρ) can be calculated recur-
sively from Eq. (13). With chosen values of e0 ∼ −16.0
MeV, ρ0 ∼ 0.155 fm−3 and m�/m ∼ 0.7, K0 comes out
to be ∼ 212 MeV [13]. The first term in Eq. (18) is
35 MeV, the second term turns out to be 143.3 MeV,
the third term is 35.9 MeV, the fourth term is −3.2MeV
and so on which adds up to ∼ 212 MeV. Since ‘a’ and α̃
are known, Q0 and the other higher derivatives entering

in Eq. (2) can be calculated thus defining the nuclear
matter EoS, the first few terms giving a nearly precise
description of the EoS around the saturation density.
The value of Q0 turns out to be ∼ −378 MeV.

4 Asymmetric nuclear matter

We now consider asymmetric nuclear matter (ANM), a
two component system consisting of neutrons and pro-
tons. To lowest order in the asymmetry parameter δ, the
energy of ANM contains, in addition to the SNM term
(see Eq. (1)) a contribution C2(ρ)δ2. The knowledge
of C2(ρ) Eq. (3) involves understanding of its higher
order density derivatives like L0, K0

sym, etc. around ρ0,
in addition to C0

2 , the symmetry energy coefficient of
ANM at ρ0. In the following, we discuss on constraining
the values of the symmetry elements through their cor-
relations with various observables pertaining to finite
nuclei and neutron stars. We further explore the pos-
sibility of plausible correlations among the symmetry
elements themselves to see how the knowledge of known
lower order symmetry elements can throw light on the
values of the unknown higher order symmetry elements.

4.1 The symmetry energy coefficient

The value of C0
2 is now known in very tight bounds

[15]. The higher order density derivatives are, however,
not very precisely known. The microscopic–macroscopic
mass formula improved with the consideration of mirror
nuclei constraint [74] describes the binding energies in
the entire nuclear mass table extremely well; removing
the contributions of volume, surface, Coulomb, pair-
ing and Wigner terms of this mass formula from the
experimental binding energies, one is left with the sym-
metry energy that is called the ‘experimental symme-
try energy’ S(Z,A) for a nucleus with charge Z and
mass A. It may be a little approximate representation
of the symmetry energy because of remnants of the
effects due to shell structure, but the double differences
of these experimental symmetry energies of neighbor-
ing nuclei (denoted by Rip−jn(Z,A)) effectively can-
cel the shell effects and then the double difference
becomes a powerful tool for extracting the symmetry
energy elements from the observed compact correlation
of Rip−jn(Z,A)[Rip−jn] with mass number A. The dou-
ble difference is defined as

Rip−jn(Z,A) = S(Z,A) + S(Z − i, A − i − j)
−S(Z,A − j) − S(Z − i, A − i).

(19)

The values of Rip−jn(Z,A)/(ij) are displayed in
Fig. 2 for (i, j) = (1, 2), (2, 1), (2, 2) and (3, 2). No
noticeable difference is seen between even–odd and
odd–even nuclei, or between even–even and odd–odd
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Fig. 2 Rip−jn/(ij) (MeV) versus mass number A. Rip−jn

is given by double difference of experimental symmetry ener-
gies of four neighboring nuclei. Refer to the text for details.

a (i, j) = (1, 2) and (2,1), b (i, j) =(2,2) and c (i, j) = (2, 3)
and (3, 2). The solid red lines are used to guide the eyes.
The figure is taken from Ref. [15]

nuclei for Rip−jn. Assuming

S(Z,A) = asym(A)I2A =
(
Cv

sym − Cs
symA−1/3

)
I2A,

(20)

an expression for Rip−jn can be obtained in Cv
sym

and Cs
sym, which when fitted across the mass spec-

trum yields value for Cv
sym = 32.10 ± 0.31 MeV and

for Cs
sym = 58.91 ± 1.08 MeV. In Eq. (20), asym(A)

is the symmetry energy coefficient of a finite nucleus,
the volume symmetry energy Cv

sym is identified with
C2(ρ0) (≡ C0

2 ), Cs
sym is the surface symmetry energy

coefficient and I = (N − Z)/A, the equivalent to the
asymmetry parameter δ of ANM. The volume symme-
try energy, so obtained does not differ significantly from
that (C2(ρ0) = 31.95±1.75 MeV) obtained from analy-
sis of excitation to isobaric analog states [75] augmented
with empirical values of neutron skins determined using
hadronic probes.

4.2 The density derivatives of symmetry energy

The density derivatives of the symmetry energy coeffi-
cients (L0,K

0
sym, etc.) are not yet known with desirable

certainty. Calculations with selective Skyrme and rela-
tivistic EDFs show a nearly linear correlation of C0

2
with L0 [23,75–77] pointing to a value of the symmetry
derivative L0. In a considerable density range around
ρ0, it has been found that the ansatz

C2(ρ) = C2(ρ0)
(

ρ

ρ0

)β

(21)

works well [78,79], where β is a constant ∼ 0.69. Then
L0 = 3ρ0

∂C2
∂ρ

∣∣∣
ρ0

= 3βC0
2 . In Ref. [23], with a few

Skyrme interactions. a nearly linear correlation of L0

with C0
2 has been reported. This is, however, approx-

imate. The tendency of a larger L0 with larger C0
2

can not be overlooked though. Different nuclear physics

observables like isospin diffusion, nuclear emission ratio,
isoscaling, giant dipole resonances, pygmy dipole reso-
nance, etc. [16,23,24,79,80] hint at a central value of
L0, all differing from each other, astronomical data on
neutron star masses and radii providing a further differ-
ent value [27]. In a novel exercise involving the nuclear
Droplet Model (DM), Centelles et al. [20,21] showed
that the neutron-skin Δrnp of a nucleus can be recast
to leading order in L0 lending a good linear fit of Δrnp
with L0 (see Fig. 3). With Δrnp known from hadronic
probes, a value of L0 = 75 ± 25 MeV was arrived at.
In the ambit of microscopic calculations with different
EDFs, this idea was advanced further, the correlation
of the neutron-skin thickness with L0 helped to find L0

in narrower limits [25,26]. However, the estimates on
neutron skin thickness based on the hadronic probes
are model dependent. The 208Pb Radius EXperiment
(PREX) and 48Ca Radius EXperiment CREX exper-
iments based on the electroweak probe would allow
the model independent determination of the neutron
skin thickness in 208Pb and 48Ca nuclei. These experi-
ments are designed to extract the neutron skin thickness
from parity violating electron scattering. The extracted
208Pb skin thickness Δrnp = 0.33+0.16

−0.18 fm [22] has
very large statistical uncertainty. The future experi-
ment PREX-II is designed to achieve the originally pro-
posed experimental precision in Δrnp to 1% [81]. The
CREX is expected to provide precision in Δrnp of 48Ca
to 0.6% [82]. The 48Ca being a light nucleus may pro-
vide the key information for bridging ab initio calcula-
tions and those based on the density functional theo-
ries.

The shroud of uncertainty looms larger on the higher
symmetry derivatives K0

sym(= Ksym(ρ0) = 9ρ20
∂2C2
∂ρ2 |ρ0)

and Q0
sym(= Qsym(ρ0) = 27ρ30

∂3C2
∂ρ3 |ρ0). The values of

K0
sym and Q0

sym, in different parameterizations of the
Skyrme EDFs lie in very wide ranges [− 700 MeV <
K0

sym < +400MeV, − 800 MeV < Q0
sym < 1500 MeV]

[83,84]. From the ansatz in Eq. (21), it is seen that
K0

sym = 3(β − 1)L0 and so should have a perfect linear
correlation with L0 when β is a constant. Danielewicz
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Fig. 3 Correlation of the
neutron-skin thickness
Δrnp for 208Pb with the
slope of the symmetry
energy L0 a, the ratio
L0/C0

2 b, and with
C0

2 − asym(A) c, for various
nuclear models (DD and
PC stand for density
dependent and point
coupling models). From
left to right, the correlation
factors are r = 0.961, 0.945,
and 0.970. The figure is
taken from Ref. [20]

and Lee [85] have shown a linear relationship between
K0

sym and L0, studied with 118 Skyrme EDFs. Tews et
al. [86] propose a relation of the form:

K0
sym ≈ 3.41L0 − 306 ± 40 MeV. (22)

Mondal et al. [87], with a total of 237 Skyrme EDFs
also find a correlation between them, but the correlation
is not very strong (correlation coefficient r ∼ 0.8); the
correlation becomes more robust only when a selected
subset of 162 EDFs are chosen (r ∼ 0.91). These 162
Skyrme EDFs are selected by constraining the iso-scalar
nucleon effective mass m∗

0
m to 0.85±0.15 and the isovec-

tor splitting of effective mass | m�
n−m�

p

m | to less than
unity, which more than covers the values from the lim-
ited experimental data [88–90] and recent theoretical
values on it.

4.3 Interrelating symmetry elements

Starting from a plausible set of approximations on the
nucleonic interaction (density dependent, quadratically
dependent on momentum) as stated in the beginning
of Sect. 3, for asymmetric nuclear matter, the equation
for the energy per nucleon can be generalized from Eq.
(10) to

e(ρ, δ) =
1
ρ

[∑
τ

P 2
F,τ

10m
ρτ

(
3 − 2

m

m�
τ (ρ)

)]

−V2(ρ, δ) +
P (ρ, δ)

ρ
. (23)

Here τ is the isospin index, ρτ = (1 + τδ)ρ
2 ; τ = 1 for

neutrons and − 1 for protons. The Fermi momentum
of the component nucleonic matter can be written as
PF,τ = g2ρ

1/3
τ with g2 = (3π2)1/3

�. The effective mass

for the two component nuclear matter, to lowest order
in ρ is written as

m

m�
τ (ρ)

= 1 +
k+
2

ρ +
k−
2

ρτδ, (24)

and the rearrangement potential generalized for ANM

V2(ρ, δ) =
(
a + b δ2

)
ρα̃. (25)

The new constant b is a measure of the asymme-
try dependence of the rearrangement potential. Since,
P = ρ2 ∂e

∂ρ , Eq. (23) can be integrated [91]

e(ρ, δ) =
3

10
γ

[∑
τ

(1 + τ δ)5/3

{
ρ2/3 +

1

2
ρ5/3 (k+ + k−τ δ)

}]

+
(
a + b δ2

) ρα̃

(α̃ − 1)
+ K(δ)ρ, (26)

where γ = g22/(25/3m) and K(δ) = (K1+K2δ
2+K4δ

4+
...) is a constant of integration. The symmetry coeffi-
cient C2(ρ)(= 1

2
∂2e
∂δ2 |δ=0) is then derived as

C2(ρ) =
bρα̃

(α̃ − 1)
+

γ

3
ρ2/3

[
1 +

1
2

(k+ + 3k−) ρ

]
+ K2ρ,

(27)

so also L(ρ) and Ksym(ρ),

L(ρ) =
3α̃

(α̃ − 1)
bρα̃ +

2
3
γρ2/3

+
5
6
γρ5/3 (k+ + 3k−) + 3K2ρ, (28)

Ksym(ρ) = 9α̃bρα̃ − 2
3
γρ2/3 +

5
3
γρ5/3 (k+ + 3k−) .

(29)
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A little algebra then leads to an equation interrelating
C0

2 , L0 and K0
sym

K0
sym = −5

[
3C0

2 − L0

]
+ 3bρα̃

0 (3α̃ − 5) + E0
F . (30)

We note at this point that the r.h.s of Eq. (23) can be
expanded in powers of δ using expressions for P and
V2(ρ, δ). Comparing with Eq. (1) and equating coeffi-
cients of the same order in δ one gets an expression for
C2(ρ) (it looks somewhat different [92] from that given
in Eq. (27) though they are equivalent)

C2(ρ) = −bρα̃ + ρ
∂C2

∂ρ
+

γ

9
ρ2/3 [1 − (k+ + 3k−) ρ] .

(31)

This leads to expressions for K0
sym and Q0

sym as

K0
sym = −3α̃

[
3C0

2 − L0

]

+E0
F

[
(3α̃ − 4) +

(
2
3

m

m�
0

+ k− ρ0

)
(5 − 3α̃)

]
,

(32)

and

Q0
sym=15α̃

[
3C0

2 −L0

]
+ K0

sym(3α̃ − 1) + E0
F (2 − 3α̃).

(33)

Equations (32) and (33) show that there is an interre-
lationship between K0

sym and Q0
sym. Making use of Eq.

(30), one gets

K0
sym + Q0

sym = 9bρα̃
0 α̃(3α̃ − 5) + E0

F . (34)

Equation (30) looks very similar to that obtained for the
correlations among C0

2 , L0 and K0
sym in Skyrme models

[87]. This is not coincidental. There is an exact equiv-
alence of the Skyrme functional with the EDF given
by Eq. (26) provided the term K(δ) is truncated at δ2.
The parameters α̃,K1,K2, etc. can then be correlated
to the standard Skyrme parameters [91]

α̃ = α + 1

K1 =
3
8
t0

K2 = −1
4
t0

(
x0 +

1
2

)

a =
1
16

t3α

b = − 1
24

t3

(
x3 +

1
2

)
α

k+ =
m

�2

[
3
4
t1 +

5
4
t2 + t2x2

]

k− =
m

2�2

[
t2

(
x2 +

1
2

)
− t1

(
x1 +

1
2

)]
. (35)

The structure of Eqs. (30) and (32) shows that there
is a strong likelihood of a linear correlation between
(3C0

2 − L0) and K0
sym. Realizing that the EDF was

obtained from general thermodynamical considerations
and some very plausible assumptions on the nature
of the nuclear force, one may expect this correlation
to be universal; this is vindicated from the correlated
structure of K0

sym with (3C0
2 − L0) as displayed in

Fig. 4 for 500 EDFs [83,84] that have been in use to
explain nuclear properties. The correlation is seen to
be very robust, the correlation coefficient r = −0.95. In
the inset of the figure, results corresponding to EDFs
obtained from several realistic interactions (magenta
triangles) and a few Gogny interactions (green dia-
monds) are also displayed. They lie nearly on the cor-
relation line highlighting further the universality in the
correlation. Imposing a general constraint that the neu-
tron energy per particle should be zero at zero density of
neutron matter, a plausible explanation of such a cor-
relation was given recently [98]. The linear regression
analysis yields

K0
sym = d1 (3C2 − L0) + d2, (36)

with d1 = −4.97±0.07 and d2 = 66.80±2.14 MeV. One
sees that d1 is very close to −5 as expected form Eq.
(30). In a recently developed density-dependent Van der
Waals model for nuclear matter, with some constraints
on K0, exactly such a relation was found [99] where
d1 = −6.3 and d2 = 51.5 MeV. As mentioned earlier,
from Eq. (22) one also expects a correlation between
K0

sym and L0, but it is comparably weaker (see Fig. 5).
With a total of 237 Skyrme EDFs Mondal et al. [87]
looked for correlation between Q0

sym and (3C0
2 − L0)

and also with L0. The correlation found was poor, only
with a selected subset of Skyrme models as discussed
earlier, an improved correlation was found (see Fig. 6).

Estimates of the symmetry elements L0,K
0
sym etc.,

were made by Centelles et al. [20] from the correla-
tion systematics of L0 with the neutron-skin of nuclei
obtained from hadronic probes. The neutron skins have
large uncertainties, so do L0. From equations we have
set up, we show that knowledge of the symmetry energy
at another density (but for ρ0), say a sub-saturation
density ρ1, helps to find a more controlled value of L0.
We choose the value of C2(ρ1)(= 24.1 ± 0.8 MeV) at
ρ1 = 0.1 fm−3 found from its strong correlation with
the centroid of the GDR resonance energy in spher-
ical nuclei in Skyrme EDFs [16]. An initial estimate
of L0 can be done from Eqs. (3) and (36). Leaving
out terms beyond ε2 in Eq. (3) (which may not be a
very bad approximation), with C0

2 = 32.1 ± 0.3 MeV,
ρ0 = 0.155±0.008 fm−3, C2(ρ1) and ρ1 being just men-
tioned, one gets L0 ∼ 61.3 MeV. A more dependable
value is, however, obtained from an input value of the
effective mass m∗

0.
Then, keeping terms upto Q0

sym in Eq. (3), from Eqs.
(33) and (36), L0, K0

sym, Q0
sym can be calculated. For

the effective mass, a value of m∗
0/m = 0.70 ± 0.05 is

taken that is consistent with many analyses [100,101].

123



Eur. Phys. J. Spec. Top. (2021) 230:517–542 525

-50 0 50 100

[ 3C0
2 - L0 ]  (MeV)

-600

-400

-200

0

200

400

K
0 sy

m
  (

M
eV

)

Skyrme
RMF

-50 0 50 100
[ 3C0

2 - L0 ]   (MeV)

-600

-400

-200

0

200

400

K
0 sy

m
 (M

eV
)

r = -0.95

M
DI

(-1
)

M
DI

(1
)

AP
R

BH
F,

 B
CP

M

M
DI

(0
)

SB
M

Fig. 4 The correlation between K0
sym and

[
3C0

2 − L0

]
as

obtained from 500 EDFs [83,84]. The black circles corre-
spond to the Skyrme-inspired EDFs, and the red squares
refer to those obtained from RMF models. The models con-
sistent with all the constraints demanded by Dutra et al.
[83] are highlighted by orange circles for Skyrme EDFs [83]
and blue squares for RMF EDFs [84]. The inner (outer)
colored regions around the best-fit straight line through

these points depict the loci of 95% confidence (prediction)
bands of the regression analysis. The inset shows the corre-
lation line obtained from the Skyrme-RMF models, and the
magenta triangles are the results obtained from EDFs with
realistic interactions, MDI(0), MDI(1), MDI(−1) [62] APR
[93], BHF [94], BCPM [95], and SBM [96], respectively. The
green diamonds represent results from a few Gogny interac-
tions [97]. The figure is taken from [92]

Fig. 5 The correlation of
K0

sym with L0 and with[
3C0

2 − L0

]
are depicted in

the right and left panels,
respectively. Results for
237 Skyrme EDFs (‘ALL’)
are displayed in the upper
panels, the lower panels
contain the results for a
selected subset of 162
models (‘SELECTED’)
(see text for details). The
inner(outer) colored
regions around the best-fit
straight line in upper left
panel depict the loci of
95% confidence
(prediction) bands of the
regression analysis. The
figure is taken from Ref.
[87]

-500

-250

0

250

ALL

-50 0 50 100

(3C
0
2 - L0)  (MeV)

-450

-300

-150

0

SELECTED

-75 0 75 150 225

L0  (MeV)

K
0 sy

m
  (

M
eV

) r = -0.926 r = 0.808

r = -0.931 r = 0.914

123



526 Eur. Phys. J. Spec. Top. (2021) 230:517–542

Fig. 6 Same as Fig. 5,
but for Q0

sym. The
confidence bands of
regression analysis are
given only for the subset of
models (‘SELECTED’) in
the lower left panel. The
figure is taken from Ref.
[87]
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The value of the symmetry elements then turn out to
be L0 = 60.3 ± 14.5 MeV, K0

sym = −111.8 ± 71.3 MeV,
and Q0

sym = 296.8 ± 73.6 MeV. The value of k− can be
calculated from Eq. (32). It is a measure of the isovector
effective mass splitting Δm∗

0 at asymmetry δ,

Δm�
0 =

(
m�

n − m�
p

m

)
ρ0

∼= −k−ρ0

(
m�

0

m

)2

δ. (37)

Its value turns out to be Δm∗
0 = (0.17 ± 0.24)δ.

4.4 Electric dipole polarizability: relations to
symmetry elements

Under the action of an isovector probe, semi-classically
speaking, the centers of the neutron and the proton
fluids separate leading to an electric dipole polarization
in the nucleus. The dipole polarizability αD is defined
as

αD =
8πe2

9

∫ ∞

0

ω−1R (ω,E1) dω =
8πe2

9
m−1(E1).

(38)

Here R(ω,E1) is the electric dipole strength as a
function of the excitation energy ω and m−1(E1) is
called the inverse energy weighted sum rule for the
electric dipole (E1) excitations. The dipole polariz-
ability is an experimentally measurable quantity and
thus becomes an effective indicator of the symme-
try elements related to asymmetric nuclear matter.
The m−1 moment may be obtained with the random-
phase-approximation (RPA) methodology, the so-called
dielectric theorem [102,103] also allows to extract it
from a constrained ground state calculation. It is

related to the constrained energy Ex [102] as

(
m−1

m1

)1/2

= 1/Ex, (39)

where mk is the kth moment of the energy weighted
sum rule (EWSR)

mk =
∫

dω ωk R (ω,E1) . (40)

Solving the constrained problem classically in the ambit
of the Droplet Model (DM) [104], it was shown [105]
that for a nucleus of mass A, the dipole polarizability
can be written in terms of the symmetry energy con-
stant C0

2 as

αDM
D =

πe2

54
A

〈
r2

〉
C0

2

(
1 +

5
3

× 9
4

C0
2

Q
A−1/3

)
. (41)

In Eq. (41), 〈r2〉 is the mean-square radius of the
nucleus and Q the surface stiffness constant, a measure
of the resistance of the motion of neutrons against pro-
tons. Equation (41) has a few consequences. The ratio
C0

2/Q and the density slope parameter L0 are known
to show a strong linear correlation [20,21] for a large
set of EDFs, the electric dipole polarizability is there-
fore expected to be very closely tied to the symme-
try properties of asymmetric nuclear matter. The DM
relates the symmetry energy coefficient asym(A) of a
finite nucleus with C0

2/Q as

asym(A) =
C0

2

1 + 9
4

C0
2

Q A−1/3
. (42)
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Expanding Eq. (42) to first order in the small param-
eter C0

2
Q A−1/3, Eq. (41) may be written as

αDM
D ≈ πe2

54
× A〈r2〉

C0
2

(
1 +

5
3

C0
2 − asym(A)

C0
2

)
.

(43)

Since C0
2 − asym(A) = as

symA−1/3, where as
sym is the

surface symmetry term, it is evident that αDM
D is sen-

sitive to the ratio of the surface and bulk symmetry
energies. Since,

asym(A) ≈ C2 (ρA) , (44)

where ρA is close to the average density of a nucleus
(which is necessarily lower than ρ0), Eq. (43) shows that
the symmetry energy at the sub-saturation density ρA

can be gauzed [17] if the dipole polarizability is known.
In Ref. [20], ρA for 208Pb is taken as ∼ 0.1 fm−3. In Ref.
[25], it is shown how to evaluate it in a local density
approximation. From Eq. (3), to lowest orders, C2(ρA)
can be written as C2(ρA) = C0

2 + L0εA, using this in
Eq. (41) results in

αDM
D ≈ πe2

54
A〈r2〉
C0

2

[
1 − 5

3
L0

C0
2

εA

]
, (45)

where εA = (ρA −ρ0)/3ρ0. This formula is suggestive of
a close relationship between αD and the symmetry ele-
ments L0 and C0

2 . Indeed, it has been seen with Skyrme
and six different families of systematically varied EDFs
that αDC0

2 has a nearly linear relationship with L0 [17]
as seen in Fig. 7. Specifically with an adopted value of
C0

2 = (31 ± 2est) MeV, it is found that

L0 = 43 ± 6exp ± 8theo ± 12est MeV, (46)

where ‘est’ refers to the uncertainties derived from dif-
ferent estimates on C0

2 .
The simplicity of the DM allows one to extract a

relationship between αD and the neutron-skin thickness
Δrnp. In terms of the bulk nuclear matter properties,
the neutron skin in DM can be written as [20],

Δrnp =

√
3
5

⎡
⎣3r0

2

C0
2

Q (I − IC)

1 + 9
4

C0
2

Q A−1/3

⎤
⎦ + Δrcoulnp + Δrsurfnp ,

(47)

where I = (N − Z)/A is the relative neutron excess
in the nucleus, IC = e2Z/(20C0

2R), R = r0A
1/3, r0 =

( 3
4πρ0

)1/3,Δrcoulnp = −√
3/5(e2Z)/(70C0

2 ) is the correc-
tion caused by electrostatic repulsion and Δrsurfnp =√

3/5[5(b2n − b2p)/2R], a correction coming from the dif-
ference in surface widths of the neutron and proton
density profiles [2]. Expanding Eq. (47)to first order in

Fig. 7 Dipole polarizability in 208 Pb times the symmetry
energy at saturation as a function of the slope parameter
L0 calculated with some modern EDFs (see Ref. [106] for
further details). The linear fit gives 10−2αDC0

2 = (4.80 ±
0.04) + (0.033 ± 0.001)L0 with a correlation coefficient r =
0.96, and the two shaded regions represent the 99.9% and
70% confidence bands. This figure is taken from Ref. [106]

C0
2

Q A−1/3, a little algebra [17] gives the following rela-
tion,

αDM
D ≈ πe2

54
A〈r2〉
C0

2

[1 +
5
2

ΔrDM
np − Δrcoulnp − Δrsurfnp

〈r2〉1/2(I − IC)
].

(48)

With an adopted value of C0
2 = 31±2 MeV, one finds

for 208Pb that IC ≈ 0.028 ± 0.002,Δrcoulnp ≈ −0.042 ±
0.003 fm. It was further shown for 208Pb from a large
number of EDFs that Δrsurfnp ≈ 0.09 ± 0.01 fm [107].
Consequently, the small variations in Δrcoulnp ,Δrsurfnp and
IC can reasonably be ignored, resulting in, to a good
approximation,

αDM
D ≈ πe2

54
A < r2 >

C0
2

[
1 +

5
2

ΔrDM
np

I〈r2〉1/2

]
. (49)

Equation (49) suggests a strong correlation between
αDC0

2 with the neutron skin. This tight correlation (see
Fig. 8) was validated [106] in a self-consistent mean-
field plus RPA calculation for both neutron-skin thick-
ness and electric dipole polarizability using a large set
of representative non-relativistic and relativistic mod-
els. If the symmetry energy coefficient C0

2 and αD are
known in good precision, a consequence of this correla-
tion is a pointer to the value of the neutron-skin thick-
ness. Combining the measured value of αD [108] for
208Pb with the adopted value of C0

2 as mentioned, the
neutron skin thickness of 208Pb is predicted to be,

Δrnp = 0.165 ± (0.009)exp ± (0.013)theo ± (0.021)estfm.

(50)

It is to be noted that in the DM model αDC0
2 is better

correlated to Δrnp rather than αD alone to Δrnp [106];
this is in contravariance to that obtained in Refs. [108,
109].
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Fig. 8 Dipole polarizability times the symmetry energy at
saturation of each model against the neutron skin thickness
in 208Pb predicted by the EDFs of Fig. 7. The linear fit
gives 10−2αDC0

2 = (3.01±0.32)+(19.22±0.73)Δrnp with a
correlation coefficient r = 0.97, and the two shaded regions
represent the 99.9% and 70% confidence bands. This figure
is taken from Ref. [106]

4.5 The isovector and isoscalar mass: nucleon
isovector mass splitting

Experimental data on dipole polarizability [108,110–
112] add new to the wealth of information on atomic
nuclei and can be exploited to gain more confidence
on the nuclear matter parameters entering the EoS. In
the following, we show how it aids in guiding to the
nuclear matter EoS, to finding the isovector nucleon
mass, the isovector splitting of nucleon mass and then
the other nuclear matter parameters [91]. The isovector
nucleon mass m∗

v,0 is the effective mass of a proton in
pure neutron matter or vice versa, and is defined as

m

m∗
v,0

= 1 +
m

2�2
ρ0Θv, (51)

where

Θv =
�
2

2m
(k+ − k−). (52)

We have already seen that k+ gives the isoscalar
nucleon mass and k− (from Eq. (37)) defines the isovec-
tor mass splitting. In Skyrme methodology, one can
check from Eq. (35) that the isovector parameter Θv

is,

Θv = t1(1 + x1/2) + t2(1 + x2/2). (53)

The energy weighted sum rule m1 (see Eq. (40)
for the isovector giant dipole resonance (IVGDR) of a
nucleus can be written as [68],

m1 =
9
4π

�
2

2m

NZ

A
(1 + κA), (54)

where κA is the polarizability enhancement factor for
the nucleus. It has a relation to Θv as [113],

κA =
2m

�2

A

4NZ
Θv × IA, (55)

where the integral IA =
∫

ρn(r)ρp(r)d3r, ρn(r) and
ρp(r) being the neutron and proton density distribu-
tions in the nucleus. In principle, m1 can be determined
from the experimental strength function R(ω), κA is
then determined. If IA is known from some other source,
then Θv, and hence the isovector mass can be calcu-
lated. If the isoscalar effective mass is further known,
one gets k− and thence the isovector mass splitting
Δm∗

0. Any knowledge of the dipole polarizability αD

is redundant in the extraction of Θv, it appears.
The fact that the high-energy component of the

strength function is plagued with ‘quasi-deuteron effect’
renders the determination of m1 not very reliable; this
forces us to look into dipole polarizability as an extra
experimental input. From Eqs. (38) and (39), m1 is
written as

m1 =
9

8πe2
E2

xαD. (56)

To find the values of Θv, values of m1 are constructed
from reasonable inputs on the constrained energy Ex

and the integrals IA, which are found from correlation
systematics.

We first find the isovector integrals IA. From the neu-
tron and proton densities ρn(r) and ρp(r) calculated
in the Hartree–Fock (HF) approximation for the four
nuclei, viz., 48Ca, 68Ni, 120Sn and 208Pb (for which
the data for αD are available) with selected Skyrme
EDFs (called ‘best-fit’ Skyrme EDFs [114]), it is found
that the integrals IA for a particular nucleus are nearly
independent of EDFs [91]. The values of m1 calculated
from the HF +RPA and hence κA are different for dif-
ferent EDFs with differing values of Θv, but there is
an extremely strong correlation (with correlation coef-
ficient r practically unity) between Θv and κA as dis-
played in Fig. 9. The slopes of the correlation lines are
taken as measures for IA for each nuclei; they are shown
in respective panels in the figure.

As noted already, experimental values of m1 are
somewhat uncertain due to ’quasi-deuteron’ effect.
With reasonable choice of the constraint energy Ex, we
try to gauze m1 in good bounds from existing data on
αD for the four nuclei as mentioned. Two choices of Ex

are made. For the lower values of Ex, the known peak
energy Ep of the experimental IVGDR strength func-
tion is chosen. For the higher value, Ex = 1.05Ep is
taken. This choice is not arbitrary, in RPA calculations
with the ’best-fit’ Skyrme EDFs [114], it has always
been found that Ex is higher than Ep by ∼ (4 − 6)%
for the nuclei studied. These two choices of Ex provide
the lower and upper bounds of m1.

The value of Θv is then obtained as follows: Ex

equated with Ep, m1 calculated from Eq. (56) for the
four nuclei with the experimental values of αD, κA
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Fig. 9 The correlation of the isovector parameter Θv

obtained from the Skyrme EDFs [114] with the cal-
culated dipole enhancement factor κA for the nuclei
48Ca,68 Ni,120 Sn, and 208Pb. The corresponding values of
the integrals IA (in units of fm−3) and the correlation coef-
ficients are shown in each panel. The figure is taken from
Ref. [91]

Fig. 10 The calibrated values of EWSR (m1) displayed for
the four nuclei (black squares). The upper panel shows the
values with Ex = Ep, the lower panel displays the same with
Ex = 1.05Ep (see text for details). The solid lines are drawn
to show the fit with Θv = 105 MeVfm5 and 185 MeVfm5,
respectively. The figure is taken from Ref. [91]

obtained from Eq. (54). With known values of IA, the
so-obtained κA are then subjected to a χ2 minimization
by varying Θv (Eq. (55)). The optimized value of Θv is
found to be Θv = 105.0 MeV fm5. The calculation is
repeated with Ex = 1.05Ep. The optimized value of Θv

is now 185.0 MeV fm5. The fitted two sets of results are
shown in Fig. 10. The fits are seen to be very good in
both cases. An average value of Θv ≈ 145.0±40.0 MeV
fm5 can be inferred from the calculation. Since, Θv is

the difference between k+ and k− and is a constant,
if k+ increases k− should also increase or vice versa.
The dipole polarizability then helps to find the isovec-
tor parameter Θv or the isovector mass m∗

v,0, but does
not give directions to separately find k+ (the isoscalar
mass m∗

0) or k− (the isovector mass splitting Δm∗
0).

Inference on the value of the effective isoscalar mass
m∗

0 has been drawn from many corners; they seem to lie
in a rather broad range. Skyrme EDFs yield m∗

0/m in
the range 0.6−−1.0 [62,83,115,116]. Many body calcu-
lations, irrespective of their level of sophistication give
m∗

0/m ∼ 0.8± 0.1 [117–119]. Analysis of isoscalar giant
quadrupole resonance (ISGQR) [17,88,120] points to a
similar value (∼ 0.85 ± 0.1), but the analysis is model
dependent. Optical model analyses of nucleon–nucleus
scattering, on the other hand, yield a value of the effec-
tive mass somewhat less, m∗

0/m ∼ 0.65±0.06 [101], rel-
ativistic models compatible with saturation properties
of nuclear matter together with the constraints on low-
density neutron matter from chiral effective field theory
ab initio approaches [121] and some recent astrophysi-
cal constraints also yield a value of effective mass in a
similar range, 0.55 ≤ m∗

0/m ≤ 0.75 [122].

4.6 Fitting nuclear macro data: approaching an EoS

All the seven model parameters appearing in Eq.(35)
that enter in the nuclear matter EoS can be deter-
mined, in principle, in a single go from a χ2-fitting of the
nuclear ‘macro data’. By macro data, we mean data on
nuclear matter pressure, energy and symmetry energy
at different densities accumulated from different experi-
ments involving nuclear collisions and subtle theoretical
arguments. They are listed in Table 1. The fitting proto-
col in addition, includes values of empirical nuclear mat-
ter parameters pertaining to SNM, namely its energy
per nucleon e0, the saturation density ρ0 and the incom-
pressibility K0. A free variation of all the parameters
yields a very shallow minimum in χ2 corresponding to
m∗

0/m ≈ 1.31 [91]. To get an insight into this flatness
problem, we constrain α̃ to a fixed value and then opti-
mize χ2 varying the remaining six parameters. Each
choice of α̃ leads to a different set of EDF parameters
and hence m∗

0/m. Each parameter set is found to be
equally good in fitting the macro data (see Fig. 11). An
unique value of m∗

0/m cannot thus be arrived at from
this fitting. We, however, find an unique relationship
between m∗

0/m and Δm∗
0/δ in this fitting procedure, it

is found that Δm∗
0/δ decreases with increasing m∗

0/m in
an almost parabolic way that can be well approximated
as

Δm∗
0/δ = β1 + β2(m∗

0/m)2, (57)

with β1 = 0.733 ± 0.024 and β2 = −2.029 ± 0.032. This
equation can be restated as

(k− + β1k+)ρ0 ≈ −(β1 + β2). (58)
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(c)

Fig. 11 The pressure P (ρ) for SNM (top), PNM (middle)
and symmetry energy coefficient C2(ρ) (bottom) as a func-
tion of baryon density ρ for the best-fit parameters obtained
from free variation of all the parameters (black lines) and
for the final values of the parameters (see Table 2) shown
by the red line. The figure is taken from Ref. [91]

Since, β1 and the r.h.s of this equation is seen to be
positive, one finds that as k− increases, k+ decreases
and vice versa. Coupled with the opposing trend
obtained from dipole polarizability, where k− increases
as k+ increases, one sees (see Fig. 12) that unique val-
ues of m∗

0/m and then Δm∗
0/δ can be obtained. The

value of effective mass is 0.61 ≤ m∗
0/m ≤ 0.75 and for

isovector splitting, −0.3 ≤ Δm∗
0/δ ≤ −0.1. The final

Fig. 12 The isovector effective mass-splitting as a function
of nucleon effective mass. The black dashed line refers to
the best fit obtained from macrodata for different values of
α̃; the red dashed line corresponds to the one obtained by
satisfying Eq. (57) with Θv = 145 MeV fm5. The cyan and
grey shades refer to the respective uncertainties. The figure
is taken from Ref. [91]

model parameters of the EoS [91] are listed in Table
2 that contains the correlated and uncorrelated errors
obtained within the covariance method. The isovector
mass comes out to be m∗

v,0/m = 0.78+0.05
−0.04. The other

nuclear matter parameters can be calculated with the
EoS, they are listed in Table 3.

5 Message from the heavens

5.1 Neutron star properties: relations to symmetry
elements

Neutron stars are incredibly dense objects, made of
baryonic matter, mostly of neutrons. Matter at supra-
nuclear densities, as encountered in the core of the neu-
tron star can not be accessed in terrestrial experiments,
astrophysical observations involving the neutron stars
are thus essential in understanding dense matter EoS.
The degenerate baryon pressure balances the gravita-
tional pull preventing stars as heavy as of mass ≈ 2M�
from turning into black holes. The so-far observed max-
imum mass of the neutron star with MNS ≈ 2M� [123–
126] thus serves as a stringent constraint on the nuclear
matter EoS. This observation sets, till now, the absolute
limit on the softness/stiffness of the EoS and helps in
focussing on those EDFs that satisfy this observational
criterion.

Since, the EoS is determined, in principle, by Eqs.
(2) and (3), the nuclear matter parameters entering
the EoS should show some correlation with some prop-
erties of neutron star, such as the crust–core transi-
tion density and pressure, radii, maximum mass etc.
As examples, the crust–core transition density is seen to
be strongly correlated to the symmetry slope L0 or the
neutron skin of a heavy nucleus [127,128], the transition
pressure is found to be strongly correlated with a linear
combination of L0 and the symmetry curvature K0

sym
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at a sub-nuclear density (ρ ∼ 0.1 fm−3) [31,129,130].
Such correlations point to some general interrelation-
ships between the nuclear matter parameters and the
properties of high-density nuclear matter. They may
only be useful in having a close understanding of a still
largely unknown nuclear matter parameters when its
interrelating partners are well known. For example, the
simultaneous determination of mass and radius of a low
mass neutron star has been shown to constrain better
the product of nuclear matter incompressibility K0 and
the symmetry slope L0 [131] but till now, it appears,
the NS radius or L0 are not that well constrained; to
be more specific, if the mass and radius of the low mass
NS and K0 are to be taken to the constrained values,
the value of L0 seems in present knowledge uncharac-
teristically large. It may not be hard to comprehend
that low mass neutron stars (∼ 0.6M�) may not involve
too high core density for degenerate baryon pressure to
support the gravitational pull; with that understand-
ing, the radii of low mass neutron stars were correlated
with the neutron skin of 208Pb (a manifestation of neu-
tron pressure at ∼ ρ0 [132]). However neutron star with
such low mass are not yet discovered, the lowest NS
mass observed so far is 1.17 ± 0.004M� [133]. It was
found that the correlation is extremely strong for low
mass neutron stars, getting weaker as the mass of the
neutron star increases. In the same vein, Alam et al.
[134] investigate the correlation of neutron star radii
with the key nuclear matter parameters governing the
nuclear matter EoS; they find a correlation of the NS
radii with K0,M0, and L0 but not strong enough to give
a good understanding of the EoS. A linear combination
of these nuclear matter parameters like K0 + αL0 and
M0 + βL0 with the NS radii give a better correlation,
the correlation becoming stronger with lower masses of
the neutron star (see Fig. 13). Though, the values of L0

and M0 are not very certain, their plausible values as
deduced from finite nuclear data constrain the radius
R1.4 of a canonical star of mass 1.4M� in the range
11.09–12.86 km.

5.2 Tidal deformability and relations to symmetry
elements

In August 2017, the advanced LIGO and advanced
VIRGO gravitational wave observatories detected grav-
itational waves (The GW170817 event) from merger
of two neutron stars [43]. During the last stages of
the inspiral motion of the coalescing neutron stars the
strong gravity of each induces a strong tidal deforma-
tion in the companion star. The gravitational wave
phase evolution caused by the deformation [135] is
decoded allowing for the determination of a dimen-
sionless tidal deformability parameter Λ [136–138]. It
measures the response of the gravitational pull on the
surface of the neutron star and thus becomes the cor-
relator of the pressure gradients inside the NS serv-
ing as an effective probe of the high-density nuclear
matter EoS [139,140]. A relatively large value of Λ, for
example, points to a relatively large neutron star radius

[44,141,142]; that speaks of a stiff EoS and hence a com-
paratively large value of the neutron skin of a heavy
nucleus [143].

The tidal deformability parameter λ is defined as
[135,136,138]

Qij = −λEij , (59)

where Qij is the induced quadrupole moment of a star
in a binary due to the static external tidal field Eij of the
companion star. The parameter λ can be expressed in
terms of the dimensionless quadrupole tidal Love num-
ber k2 as (we take the geometrized unit G = c = 1),

λ =
2
3
k2R

5, (60)

where R is the radius of the NS. The value of k2
depends on the stellar structure, it can be obtained
[44,136] in conjunction with solving for the Tolmann–
Volkoff equations [144]. Typically, the value of k2 lies
in the range ≈ 0.05 − 0.15 [136,145] for neutron stars.
The dimensionless tidal deformability is then defined as
Λ = 2

3k2C
−5 where C(≡ M/R) is the compactness of

the star of mass M . The Love number k2 has a veiled
NS radius dependence: Ref. [142] finds Λ ∼ R6, Ref.
[46] finds it as ∼ R6.26 while in Ref. [44], for a NS
of canonical mass 1.4M�, it is ∼ R6.13. There is thus
expected a strong correlation between Λ and R. The
tidal deformabilities of the neutron stars present in the
binary system can be combined to yield an weighted
average as

Λ̃ =
16
13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (61)

where Λ1,2 are the tidal deformabilities of the NSs
of mass M1 and M2 and q = M2/M1 ≤ 1 is the
binary’s mass ratio. Early analysis of the GW170817
event [43] puts an upper limit for Λ̃ at ≈ 800 for the
component neutron stars with masses in the range ≈
1.17M� −1.6M� involved in the merger event. Revised
values of Λ̃ seem to be substantially lower [142,146,147].
With a few plausible assumptions for a canonical neu-
tron star, a restrictive constraint has been set for Λ1.4

to ∼ 190+390
−120 [146]. From the spectral parameterization

of the pressure P (ρ) for the β-equilibrated matter to
fit the observational template, the pressure inside the
NS at supra-normal densities is also predicted. The goal
now remains to be seen: to find the most realistic EoS
that connects all the constraints involving microscopic
nuclei with those obtained from astrophysical scenario,
namely, the maximum neutron star mass and the tidal
deformability.

Initial attempts in this direction have been made on
understanding the sensitivity of the tidal deformabil-
ity to the nuclear matter parameters related to nuclear
matter at saturation density. In Ref. [44], the correla-
tion of Λ, k2 and R with the nuclear matter param-
eters K0, Q0,M0, C

0
2 , L0,K

0
sym and with several linear
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combinations of two parameters, in particular, K0 +
αL0,M0 + βL0 and M0 + ηK0

sym are studied with a set
of 18 relativistic and 24 non-relativistic nuclear mod-
els that are known to yield a good description of the
properties of finite nuclei and neutron stars. The cor-
relation systematics is determined for NS masses in
the range 1.2M� − 1.6M�, since for analysis of low
spin prior as assumed in Ref. [43], these masses are
close to the GW170817 event. Calculations in Ref. [44]
show that the individual nuclear matter parameters are
weakly or moderately correlated with Λ, k2 and R, but
Λ and R have tight correlation with M0 + βL0 and
M0 + ηK0

sym over a wide range of NS masses consid-
ered; the correlation coefficient r is ∼ 0.9. The Love
number k2 is, however, only strongly correlated with
M0 + ηK0

sym(r ∼ 0.92). The values of α, β and η are
obtained from the demand of optimum correlations for
each NS mass; they are found to decrease monoton-
ically with increase in NS mass. This indicates that
the density dependence of the symmetry energy is less
important in determining the tidal deformability and
the radius at higher NS masses. Representative exam-
ples of the fit of M0 + βL0 and M0 + ηK0

sym with Λ1.4

are shown in Fig. 14. The figure shows that once Λ1.4

and L0 are known within tight limits, M0 can be con-
strained and then K0

sym. Empirical values of M0 and
K0

sym derived for different limits of Λ1.4 and L0 are
shown in Table 4. On the other end, the strong corre-
lation of Λ1.4 with R1.4 mentioned earlier puts a strong
constraint on the radius of a canonical neutron star
that can be compared to that obtained from the simul-
taneous determination of the radius and mass of a NS
with the NICER (Neutron star Interior Composition
Explorer) mission [148–150]. To further the understand-
ing of the relationship of the tidal deformability to the
isovector nuclear matter parameters, Tsang et al. [46]
studied, with a total of 240 Skyrme interactions the cor-
relation of Λ with C0

2 , L0, K0
sym and Q0

sym; they found
little correlation except between Λ − L0 and Λ − K0

sym,
the later one being the strongest as displayed in Fig. 15.
In Ref. [151], a stronger correlation between Λ and L0

than between Λ and K0
sym is reported; this has to be

critically examined further as one expects the opposite
since K0

sym impacts higher densities more.
To avoid model dependence on the results of cor-

relations between nuclear matter parameters and the
NS properties and to look for further correlations, an
approach taken in several works [13,152,153] termed
’meta-modelling’ has been applied recently [154] to con-
struct the nuclear matter EoS. Based on the Taylor
expansion of the energy functional around the satura-
tion density (as shown in Eqs. 2 and 3), with expan-
sion coefficients identified as different nuclear matter
parameters, the EoS in principle, is model-independent
provided the nuclear matter parameters are experimen-
tally known. Exploiting the idea, in Ref. [154], mil-
lions of EOSs are constructed with the eight nuclear
matter parameters (K0, Q0, Z0, C0

2 , L0, K0
sym, Q0

sym,
Z0
sym) each one having a Gaussian distribution around

the supposedly known central values. The multivariate

Gaussian is taken to have zero covariance. The satura-
tion energy and density are fixed at e0 = −15.8 MeV
and ρ0 = 0.155 fm−3. Out of the million EoSs so gener-
ated only ∼ 2000 are selected to be valid ones filtered
from imposition of the following constraints: (1) the
EoS must be thermodynamically stable (2) it should be
causal, (3) should support the observational constraint
of the maximum mass at least as high as 1.97 M�,
(4) the tidal deformability should be 70 < Λ1.4 < 580
[43] and (5) the symmetry energy C2(ρ) should be pos-
itive. All the EoSs are obtained for the matter com-
posed of neutrons, protons, electrons and muons in
β-equilibrium. The low-density part (ρ < 0.1 fm−3)
of the EoSs are matched with the SLy4 EoS so that
PSLy4(μ) = PEoS(μ), where μ is the chemical potential.

The filtered EoSs are employed to calculate the mass
(M) radius (R) and the tidal deformability (Λ) of
neutron stars and then to study the possible exist-
ing correlations between the NS observables and the
thermodynamic properties of dense stellar matter in
β-equilibrium. Strong correlations between them are
found to build up at different densities depending on
the NS masses, for example, correlation between P (ρ)
for β-equilibrated matter and RM (radius of NS of mass
M) is found to be almost unity at ρ ∼ 0.2 fm−3 for NS
mass of 1.0 M�; this peak value shifts to ∼ ρ = 0.35
fm−3 when the NS mass is 1.6M�. A similar correlation
is observed between P (ρ) and ΛM in the same range of
densities. Strong correlations are also identified between
the energy density E(ρ) with all the NS observables, but
at larger densities, ρ � 0.32 − 0.5 fm−3, the smaller NS
masses corresponding to smaller densities. The strong
correlation r ∼ 1.0 can be used as a tool to constrain
thermodynamic quantities at different densities from
the NS observables. For example, correlations between
P and Λ and between P and R for NS mass 1.4M� are
shown in the left and right panels of Fig. 16.

In both cases, the correlation is found to be very
strong at ρ ∼ 0.32 fm−3. If a simultaneous precise mea-
surement of the mass and radius of NS is possible, say
with the NICER mission, then from the radius, a con-
straint on the pressure of the β stable stellar matter can
be obtained at ρ ∼ 0.32 fm−3. This in turn gives an idea
about Λ1.4. In passing we note that in Ref. [154], corre-
lations between the energy density E and sound velocity
in stellar matter with Λ1.4 and R1.4, respectively, were
also observed, but at somewhat different densities. A
single determination ΛM or radius RM of a NS of mass
M thus allows to constrain the thermodynamical prop-
erties at three different distinct but close densities.

5.3 In tandem with micro-physics: proposing a new
EoS

The laudatory approach taken in the meta-modeling of
the EoS serves as a guide to reach to probable values
of the thermodynamical variables at different densities.
Its success, however, depends on the precision choice of
the input nuclear matter parameters. They may not be
beyond question. The truncation order (see Eqs. (2) and
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Fig. 13 Neutron star
radii R1.0 (left) and R1.4

(right) versus the linear
correlations K0 + αL0

(top) and M0 + βL0

(bottom), using a set of
RMF (blue triangles),
Skyrme (red diamonds),
and BHF+APR (green
stars) calculations. The
figure is taken from Ref.
[134]
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Fig. 14 a The M0 + βL0

and b M0 + ηK0
sym versus

the dimensionless tidal
deformability Λ1.4 for a
1.4 M� NS, using a set of
RMF and SHF models.
The figure is taken from
Ref. [44]

(3)) or the size of the parameter space may also deem to
be a suspect, particularly, at very low densities ≤ 0.5ρ0
and at very high densities, relevant to massive neutron
stars [154]. However, the efficacy of the EoS in match-
ing many details of microscopic nuclear physics in tan-
dem with astrophysical observations has not yet been
soundly checked, even if the few input nuclear matter
parameters entering the meta-modeling might be con-
sistent.

Close inspection of nuclear matter EoS shows that it
must be stiff enough to support a NS mass of ∼ 2M�,
but soft enough so that Λ1.4 < 580 [43]. Attempts have
been made to establish a connection between the tidal
deformability and microscopic nuclear physics from dif-
ferent ends, from sophisticated microscopic modeling
of the low-density EoS in chiral effective field theory
(CEFT) [155–158] or from use of a RMF inspired family
of EoS models calibrated to provide a good description
of a set of finite nuclear properties [143]. The some-
what ambivalent outcomes give the realization that the
connection of Λ to the laboratory data is not yet fully
transparent and that more stringent constraints on the
isovector sector of the effective interaction are needed.

The robust correlations of Λ1.4 and R1.4 with selec-
tive linear combinations of isoscalar and isovector prop-
erties of nuclear matter [44] throw a strong hint that
the isovector giant resonances in conjunction with the
isoscalar resonances in finite nuclei may help in guiding
to such strong constraints. To have a deeper look into
these nuances of microscopic nuclear physics, Malik et
al. [45] chose to study few experimental data of par-
ticular interest involving isoscalar and isovector prop-
erties of finite nuclei, namely (1) the centroid energy
EGMR of isoscalar giant monopole resonance (ISGMR),
(2) the peak energy Ep

GDR of the isovector giant dipole
resonance (IVGDR), and (3) the dipole polarizability
αD, all for the heavy nucleus 208Pb, corroborated with
results from astrophysical sector, namely, the maximum
mass of a NS and the tidal deformability. The analysis
was done in the Skyrme framework with twenty-eight
chosen ‘best’ accepted Skyrme EDFs. These EDFs pro-
vided a satisfactory reproduction of the binding ener-
gies of finite nuclei and their charge radii, and obeyed
reasonable constraints on the saturation density (ρ0 =
0.16 ± 0.01 fm−3), binding energy (e0 = −15.8 ± 0.5
MeV), isoscalar nucleon effective mass (m∗

0/m = 0.60−
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Fig. 15 The four panels show the correlation between the
tidal deformability of neutron starΛ for 1.4 solar-mass neu-
tron stars and Taylor expansion coefficients (from left to

right) C0
2 , L0, K

0
symand Q0

sym defined in Eq. 3 obtained for
the Skyrme functionals used in Ref. ([46]). The figure is
taken from Ref. [46]

Fig. 16 Λ1.4M� (left) and
R1.4M� (right) as a
function of the pressure for
all meta models used in
Ref. [154] at the densities
corresponding to the
maximum correlations.
These densities and
correlation coefficients are
indicated in each of the
panels. The figure is taken
from [154]

Table 1 List of fit data corresponding to the symmetric nuclear matter (SNM), pure neutron matter (PNM) and symmetry
energy coefficient (SYM) together with the range of densities in which they are determined

Quantity Density region Band/Range References
fm−3 (MeV)

SNM P (ρ) 0.32 to 0.74 HIC [40]
SNM P (ρ) 0.19 to 0.33 Kaon exp [41,42]
PNM en(ρ) 0.1 10.9 ± 0.5 [114]
PNM en(ρ) 0.03 to 0.17 N3LO [163]
PNM P (ρ) 0.32 to 0.73 HIC [40]
PNM P (ρ) 0.03 to 0.17 N3LO [163]
SYM C2(ρ) 0.1 24.1 ± 0.8 [16]
SYM C2(ρ) 0.01 to 0.19 IAS,HIC [75,164]
SYM C2(ρ) 0.01 to 0.31 ASY-EoS [165]

Here P (ρ) represents pressure of nuclear matter, en(ρ) is the energy per neutron in PNM and C2(ρ) is the symmetry energy
coefficient

Table 2 The final model parameters obtained by optimizing the χ2 function together with the uncorrelated and correlated
errors (see text for details)

α̃ K1 K2 a b k+ k−

1.11 − 1220.21 977.94 120.03 − 121.93 6.07 2.60
Unc. err. 1.16 2.38 0.15 0.33 0.10 0.15
Cor. err. 103.04 90.25 15.01 13.57 1.13 0.96

The parameters K1 and K2 are in units of MeV.fm−3, a and b are in MeV and k+ and k− are in fm3
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Table 3 Different properties pertaining to nuclear matter (NM) and neutron star (NS) obtained with the final parameters
listed in Table 2

Type Unit Value

NM
e0 MeV −15.93 ± 0.20
ρ0 fm−3 0.1620 ± 0.003
K0 MeV 225.23 ± 6.50
m∗

0/m 0.67 ± 0.04
m∗

v,0/m 0.78±0.05
0.04

Δm∗
0/δ −0.19 ± 0.08

C2(ρ0) MeV 33.94 ± 0.50
L0 MeV 68.50 ± 3.74
K0

sym MeV −47.46 ± 17.28
Kτ MeV −349.22 ± 13.19
Mc MeV 998.79 ± 41.38
Q0 MeV −359.23 ± 23.82

NS
MNS

max M� 2.07 ± 0.03
R1.4 km 12.63 ± 0.17

Kτ is the symmetry incompressibility at saturation density corresponding to ANM: it is defined as Kτ = K0
sym − 6L0 −

Q0L0/K0

Table 4 The empirical values of M0 and K0
sym derived for different limits on Λ1.4 and L0

L0 (MeV) Λ1.4 M0 (MeV) K0
sym (MeV)

30–86 0–800 1972–2878 − 143.8 to 19.8
0–400 1972–2042 − 143.8 to 17.3

40–62 0–800 1836–3206 − 115.5 to − 48.2
0–400 1836–2371 − 115.5 to − 50.7

The value of Λ < 800(400) is derived with 90%(50%) confidence limit for GW170817. The ranges of L0 = 30–86 MeV and
40–62 MeV are taken from references [166,167]. The value of K0

sym has a good overlap with that obtained recently [168]
from NICER and LIGO/VIRGO constraints

Fig. 17 The maximum neutron star mass Mmax
NS versus

the tidal deformability parameter Λ1.4 obtained from the
28 selected EDFs. The red dashed lines refer to 1.97M�,
the observed lower bound for Mmax

NS . For more details, see
Ref. [45]. The figure is borrowed from Ref. [45]

Fig. 18 Correlation of Ep
GDR and Mmax

NS obtained using
a the set of selected models as in Fig. 17 with effective
mass m∗

0/m in the range 0.65–0.75 and b a set of system-
atically varied models with chosen fixed effective masses in
the present work. The figure is taken from Ref. [45]
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1.00) and the isoscalar nuclear matter incompressibil-
ity (K0 = 240 ± 30 MeV). The results, displayed in
Fig. 17, with the maximum mass of a NS Mmax plot-
ted against Λ1.4 are self explanatory with the symbols
marked there. They show that only 3 of the 28 EDFs
satisfy all the constraints imposed from finite nuclei and
astrophysical data. Commensurate with the constraint
on the maximum mass of a NS (Mmax ∼ 2.0M�), the
tidal deformability for a canonical star comes out to be
Λ1.4 ∼ 290 − 330, the effective mass m∗

0/m ∼ 0.7 and
the isovector mass splitting Δm∗

0 ∼ −0.2δ. The essence
of the survey is that fulfilling simultaneously isoscalar
and isovector constraints with the astrophysical ones is
extremely restrictive.

The conclusion drawn from Fig. 17 on the tidal
deformability Λ1.4 is indicative of the domain in which
its value may lie. To have a more quantitative assess-
ment on it, a new EoS, albeit in the Skyrme framework,
has been proposed [45] with a wider fit data base. These
constraints include the observed maximum NS mass,
the binding energies of spherical magic nuclei, their
charge radii, the ISGMR energies of 90Zr, 120Sn and
208Pb and the dipole polarizability αD of 48Ca, 68Ni,
120Sn and 208Pb. The IVGDR peak energies are left
out of the fitting protocol deliberately. Simultaneously
constraining all data impose severe restrictions on the
model parameters. As example, calculations with the
selected EDFs of Fig. 17 reveal the existence of some
anti-correlation (r ∼ −0.69) of Ep

GDR (208Pb) with
Mmax when the EDFs are sorted out in groups within
narrow windows of m∗

0/m (see panel (a) of Fig. 18). This
correlation shoots up to nearly unity (r ∼ 1.0) when
calculated with systematically varied models with fixed
values of m∗

0/m as displayed in panel (b) of the same
figure. For given values of Mmax and m∗

0/m, Ep
GDR is

the outcome of the calculation keeping all other data in
the fitting protocol unchanged.

Looking at the trends depicted by Figs. 17 and 18,
it is evident that the values of Λ1.4 is sensitive to the
maximum neutron mass as well as various ground and
excited state properties of the finite nuclei. The opti-
mized χ2-function obtained by fitting these data yields
the EDF parameters as listed in Table 5 [45]. The errors
on the parameters are calculated within the covariance
method [159,160]. The central value of Λ1.4 comes out
to be 267; we call this EDF SKΛ267. With this EDF
it is seen that all the nuclear matter parameters and
the lower limit on Mmax are in comfortably acceptable
bounds; Λ1.4 and R1.4 are seen to be in very good agree-
ment with those reported recently [161,162]. The value
of Mmax is (2.04 ± 0.15)M�, that of the neutron skin
Δrnp for 208Pb is 0.15 ± 0.05 fm.

The experimental value of tidal deformability is not
settled yet, we therefore test the tolerance of the fit of
the calculated observables with data by arbitrarily con-
straining Λ1.4 to different values. As example, an extra
constraint Λ1.4 = 500 ± 100 was used in the fit. The
outcome is Λ1.4 = 484 ± 215, with somewhat different
Skyrme parameters. This EoS, is called SKΛ484 [45]
is somewhat stiffer than SKΛ267. As expected, it pro-
duces a larger R1.4 13.1±1.4 km compared to 11.6±1.0
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Table 6 The constraints on isoscalar and isovector nuclear matter parameters together with radius and tidal deforma-
bility of neutron star with canonical mass and the neutron-skin thickness in 208Pb nucleus derived from microscopic and
macroscopic data in the present work

Quantity Unit Values from Refs.
[92] [91] [45] [106] [13] [25,26]

SNM K0 MeV 225.0 ± 6.4 230.0 ± 6.4 212.0 ± 20.1
Q0 −359.0 ± 23.0 −367.0 ± 12.0 −378.0 ± 31.6
m�

0/m – 0.7 ± 0.1 0.68 ± 0.04 0.70 ± 0.05
ANM C0

2 MeV 32.1 ± 0.31 33.94 ± 0.5 31.4 ± 3.1 31 ± 2est

L0 60.3 ± 14.5 68.5 ± 3.74 41.1 ± 18.2 43 ± 6exp ± 8the ± 12est 59.3 ± 12.8
Ksym,0 −111.8 ± 71.3 −47.46 ± 17.28 −123.9 ± 70.2
Qsym,0 296.8 ± 73.6 394.07 ± 24.96 564.63 ± 98.73
Δm�

0/δ – 0.17 ± 0.24 −0.19 ± 0.08 0.25 ± 0.35
208 Pb Δrnp fm 0.195 ± 0.022
NS R1.4 km 12.63 ± 0.17 11.6 ± 1.0

Λ1.4 – 267 ± 144

The isoscalar parameters considered are the nuclear matter incompressibility coefficient K0, skewness parameter Q0 and
nucleon effective mass m∗

0 and those corresponding to the isovector sector are the symmetry energy coefficient C0
2 , slope

L0, curvature K0
sym and skewness Q0

sym and the effective nucleon mass splitting Δm∗
0/δ

km for a canonical NS, a larger Δrnp 0.21± 0.04 fm for
208Pb and a somewhat larger Mmax 2.10± 0.04 M�.
The isoscalar nuclear matter parameters like e0,K0, Q0

or m∗
0 are nearly unaffected, but the isovector parame-

ters suffer some changes. Overall, it appears, the softer
model SKΛ267 is more compatible with the measured
properties of finite nuclei.

In Table 6, we collect the values of various isoscalar
and isovector nuclear matter parameters constrained
by microscopic and macroscopic data considered in the
present work. We also provide the constraints on the
radius and tidal deformability for the neutron star with
the canonical mass and the neutron-skin thickness in
the 208Pb nucleus. This table is far from being com-
plete and may be complemented with the constraints
provided recently, for instance Ref. [14]. The splitting
of effective nucleon mass are found to be positive as well
as negative. The negative values are obtained only when
the electric dipole polarizability in nuclei and the maxi-
mum mass of the neutron star are constrained simulta-
neously. The values of L0 and Δrnp presented in the
last column of the table are obtained by combining
the results from three different ansatz for the density
dependence of the symmetry energy. The best fit esti-
mates for radius and the mass of the PSR J0030+0451
obtained by NICER are R = 13.02+1.24

−1.06 km for the
MNS = 1.44+0.15

−0.14M� [150]. These values have good
overlap with the ones presented in the Table 6. More
precise values of these quantities are, however, required
to constrain the nuclear matter parameters and the
EOS.

6 Summary and outlook

All the rich physics of the interacting nucleons is tele-
scopically encoded in the nuclear matter parameters;

a model-independent EoS of symmetric and asymmet-
ric nuclear matter can be built on them. A convenient
means to link these parameters to the properties of
finite nuclei and of neutron stars is provided by the
nuclear mean-field models. The parameters such as the
binding energy per nucleon, the saturation density, the
nuclear matter incompressibility coefficient and sym-
metry energy coefficient have been determined within
a narrow window from the ground state and excited
state properties of finite nuclei, the higher order den-
sity derivatives such as the density slope of symmetry
energy or the skewness parameter are still not known
in comparative precision. Attempts have been made in
the last few years to contain them in narrow bounds
through correlation analysis, we review them in this
article. The Skyrme mean-field approach, till date has
proved to be the most comprehensive in explaining
diverse nuclear data, the review places more emphasis
on it.

The nuclear matter parameters reflect different prop-
erties of nuclear matter, but they may be correlated
to each other being the underpinnings of the varied
aspects of the same nucleonic interactions. We have
explored this correlation property analytically in the
mean-field approach. The better known low order den-
sity derivatives help in narrowing down the uncertainty
in the higher order derivatives. Additional information
comes from the correlations of selective nuclear mat-
ter parameters with selective nuclear observables. For
example, the symmetry density slope is sensitive to the
neutron-skin of a finite nucleus as well as to the radii
and the tidal deformability of neutron stars. Neutron
star properties have been seen to be particularly sen-
sitive to the higher order nuclear matter parameters.
Present state of art technology, however, has not been
able to contain the data emanating from neutron stars
in more tight bounds. We hope, from the NICER mis-
sion and from the future advanced LIGO-VIRGO detec-
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tion of gravitational waves, the cosmic data may find
more fine resolution and their consonance with labora-
tory micro-physics may guide to a better understanding
of the nuclear matter equation of state.

Acknowledgements The authors acknowledge the con-
tribution of many collaborators, who over many years
were instrumental in helping to develop the ideas that we
threaded in this review. The authors are extremely thank-
ful to Tanuja Agrawal for her assistance in the prepara-
tion of the manuscript. T. M. acknowledges the hospitality
extended to him by Saha Institute of Nuclear Physics during
the course of this work. J. N. D. acknowledges support from
the Department of Science and Technology, Government of
India, with Grant no. EMR/2016/001512.

References

1. W.D. Myers, W.J. Swiatecki, Ann. Phys. 55, 395
(1969). https://doi.org/10.1016/0003-4916(69)90202-4

2. W.D. Myers, W.J. Swiatecki, Phys. A 336, 267 (1980).
https://doi.org/10.1016/0375-9474(80)90623-5Nucl
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32. X. Roca-Maza, X. Viñas, M. Centelles, B.K. Agrawal,
G. Colo’, N. Paar, J. Piekarewicz, D. Vretenar, Phys.
Rev. C 92, 064304 (2015). https://doi.org/10.1103/
PhysRevC.92.064304. arXiv:1510.01874 [nucl-th]

33. S. Teukolsky, S. Shapiro, (Wiley, 1983)
34. D. Kobyakov, C.J. Pethick, Phys. Rev. Lett. 112,

112504 (2014). https://doi.org/10.1103/PhysRevLett.
112.112504. arXiv:1309.1891 [nucl-th]

123

http://dx.doi.org/https://doi.org/10.1016/0003-4916(69)90202-4
http://dx.doi.org/https://doi.org/10.1016/0375-9474(80)90623-5Nucl
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.052501Phys.Rev
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.052501Phys.Rev
http://dx.doi.org/https://doi.org/10.1016/0370-1573(80)90001-0
http://dx.doi.org/https://doi.org/10.1016/0370-1573(80)90001-0
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.70.014307
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.70.014307
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.99.162503
http://arxiv.org/abs/0709.0567
http://dx.doi.org/https://doi.org/10.1016/j.nuclphysa.2007.01.046
http://arxiv.org/abs/nucl-ex/0608007
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.81.034309
http://arxiv.org/abs/1002.0896
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2012.10.056
http://arxiv.org/abs/1209.0681
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.82.024322
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.82.024322
http://arxiv.org/abs/1005.1741
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.109.092501
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.109.092501
http://arxiv.org/abs/1204.0399
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.88.034319
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.014304
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.014304
http://arxiv.org/abs/1506.06461
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2018.04.001
http://dx.doi.org/https://doi.org/10.1016/j.ppnp.2018.04.001
http://arxiv.org/abs/1804.06256
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.85.024301
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.85.024301
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.77.061304
http://arxiv.org/abs/0802.3658
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.87.034301
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.87.034301
http://arxiv.org/abs/1212.4377
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.64.027302
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.102.122502
http://arxiv.org/abs/0806.2886
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.80.024316
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.80.024316
http://arxiv.org/abs/0906.0932
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.112502
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.81.041301
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.81.041301
http://arxiv.org/abs/1003.3580
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.97.052701
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.97.052701
http://arxiv.org/abs/nucl-ex/0607016
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.109.262501
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.109.262501
http://arxiv.org/abs/1212.0292
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.87.051306
http://arxiv.org/abs/1305.5336
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.081102
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.108.081102
http://arxiv.org/abs/1110.4142
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.024302
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.024302
http://arxiv.org/abs/1507.05384
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.90.011304
http://arxiv.org/abs/1403.7574
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.86.5647
http://arxiv.org/abs/astro-ph/0010227
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.83.045810
http://arxiv.org/abs/1102.1283
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.064304
http://dx.doi.org/https://doi.org/10.1103/PhysRevC.92.064304
http://arxiv.org/abs/1510.01874
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.112.112504
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.112.112504
http://arxiv.org/abs/1309.1891


Eur. Phys. J. Spec. Top. (2021) 230:517–542 539

35. C.P. Lorenz, D.G. Ravenhall, C.J. Pethick, Phys.
Rev. Lett. 70, 379 (1993). https://doi.org/10.1103/
PhysRevLett.70.379

36. D.K. Berry, M.E. Caplan, C.J. Horowitz, G.
Huber, A.S. Schneider, Phys. Rev. C 94, 055801
(2016). https://doi.org/10.1103/PhysRevC.94.055801.
arXiv:1509.00410 [nucl-th]

37. K. Madhuri, D.N. Basu, T.R. Routray, S.P. Pattnaik,
Eur. Phys. J. A 53, 151 (2017). https://doi.org/10.
1140/epja/i2017-12338-x. arXiv:1611.02872 [nucl-th]

38. A.Guerra Chaves, T. Hinderer, J. Phys. G G46,
123002 (2019). https://doi.org/10.1088/1361-6471/
ab45be. arXiv:1912.01461 [nucl-th]

39. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170,
299 (1971). https://doi.org/10.1086/151216

40. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298,
1592 (2002). https://doi.org/10.1126/science.1078070.
arXiv:nucl-th/0208016

41. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006).
https://doi.org/10.1016/j.ppnp.2005.07.004.
arXiv:nucl-th/0507017

42. A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely,
EPJ Web Conf. 66, 07005 (2014). https://doi.org/10.
1051/epjconf/20146607005

43. B.P. Abbott (LIGO Scientific, Virgo) et al., Phys.
Rev. Lett. 119, 161101 (2017). https://doi.org/10.
1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-
qc]

44. T. Malik, N. Alam, M. Fortin, C. Providência, B.K.
Agrawal, T.K. Jha, B. Kumar, S.K. Patra, Phys.
Rev. C 98, 035804 (2018a). https://doi.org/10.1103/
PhysRevC.98.035804. arXiv:1805.11963 [nucl-th]

45. T. Malik, B.K. Agrawal, J.N. De, S.K. Samaddar, C.
Providência, C. Mondal, T.K. Jha, Phys. Rev. C 99,
052801 (2019). https://doi.org/10.1103/PhysRevC.99.
052801. arXiv:1901.04371 [nucl-th]

46. M.B. Tsang, W.G. Lynch, P. Danielewicz, C.Y. Tsang,
Phys. Lett. B 795, 533 (2019). https://doi.org/10.
1016/j.physletb.2019.06.059. arXiv:1906.02180 [nucl-
ex]

47. A. Ekström, (2019). arXiv:1912.02227 [nucl-th]
48. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

https://doi.org/10.1103/PhysRevC.63.024001.
arXiv:nucl-th/0006014

49. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001
(2003). https://doi.org/10.1103/PhysRevC.68.041001.
arXiv:nucl-th/0304018

50. U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999).
https://doi.org/10.1016/S0146-6410(99)00097-6.
arXiv:nucl-th/9902015

51. E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Rev.
Mod. Phys. 81, 1773 (2009). https://doi.org/10.1103/
RevModPhys.81.1773. arXiv:0811.1338 [nucl-th]

52. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1
(2011). https://doi.org/10.1016/j.physrep.2011.02.001.
arXiv:1105.2919 [nucl-th]

53. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009). https://
doi.org/10.1016/j.ppnp.2008.12.001. arXiv:0804.3501
[nucl-th]

54. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl.
Phys. 69, 131 (2013). https://doi.org/10.1016/j.ppnp.
2012.10.003

55. A. Carbone, A. Cipollone, C. Barbieri, A. Rios, A.
Polls, Phys. Rev. C 88, 054326 (2013). https://doi.org/
10.1103/PhysRevC.88.054326. arXiv:1310.3688 [nucl-
th]

56. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J.
Dean, Rep. Prog. Phys. 77, 096302 (2014). https://doi.
org/10.1088/0034-4885/77/9/096302. arXiv:1312.7872
[nucl-th]

57. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K.
Tsukiyama, Phys. Rep. 621, 165 (2016). https://doi.
org/10.1016/j.physrep.2015.12.007. arXiv:1512.06956
[nucl-th]

58. T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf,
G. Hagen, J.D. Holt, G.R. Jansen, T. Papen-
brock, R. Roth, A. Schwenk, Phys. Rev. Lett. 120,
152503 (2018). https://doi.org/10.1103/PhysRevLett.
120.152503. arXiv:1709.02786 [nucl-th]

59. J.D. Holt, S.R. Stroberg, A. Schwenk, J. Simonis,
(2019). arXiv:1905.10475 [nucl-th]

60. F. Sammarruca, L. Coraggio, J.W. Holt, N. Itaco, R.
Machleidt, L.E. Marcucci, Phys. Rev. C 91, 054311
(2015). https://doi.org/10.1103/PhysRevC.91.054311.
arXiv:1411.0136 [nucl-th]

61. G. Salvioni, J. Dobaczewski, C. Barbieri, G. Carlsson,
A. Idini, A. Pastore, (2020). arXiv:2002.01903 [nucl-th]

62. L.-W. Chen, B.-J. Cai, C.M. Ko, B.-A. Li, C. Shen, J.
Xu, Phys. Rev. C 80, 014322 (2009). https://doi.org/
10.1103/PhysRevC.80.014322. arXiv:0905.4323 [nucl-
th]

63. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lat-
timer, Phys. Rev. C 89, 065802 (2014). https://doi.
org/10.1103/PhysRevC.89.065802. arXiv:1402.6348
[astro-ph.SR]

64. I. Vidana, I. Bombaci, Phys. Rev. C 66, 045801
(2002). https://doi.org/10.1103/PhysRevC.66.045801.
arXiv:nucl-th/0203061

65. C. Gonzalez-Boquera, M. Centelles, X. Viñas, A. Rios,
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