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Abstract X-ray phase contrast tomography (XPCT) can produce high contrast isotropic images of biological samples in only a few
minutes thanks to the unique properties of the synchrotron X-ray beam. XPCT of brain tissue provides an exquisite contrast of white
matter, which could be exploited for 3D directional analysis. In this article, we present the first XPCT-based pipeline to perform
white matter tractography on rodent brains. We observed the disorganization of white matter in the vicinity of focal demyelinating
lesions in the corpus callosum. The ability to obtain an isotropic, high-resolution tractogram is an important landmark which could
drive further interest of the neuroscience community toward XPCT.

1 Introduction

White matter is a structure of the brain found in its deeper tissues implied in multiple physiological and cognitive processes. It is
composed of bundles of axons, or nerve fibers. Axons are normally surrounded by myelin, a sheath of protein that helps conduct
nerve impulses and protect the nerve fibers.

The study of white matter is of major importance as it can be altered or damaged by numerous brain diseases, ranging from stroke
[1] to Alzheimer’s [2] disease. As it is a complex 3-dimensional (3D) structure with fiber tracts presenting various orientations
in space, the right tools are required to study it properly. However, the only customary ways currently at disposal to do so are
diffusion-based magnetic resonance imaging (MRI) with specific acquisition methods (DTI [3], DSI [4], q-ball [5], etc.) and brain
clearing coupled with light-sheet microscopy [6].

MRI-based techniques are broadly used thanks to their accessibility and ability to retrieve indirect information about fiber
orientation as well as quantitative metrics which can act as biomarkers of axonal and myelin damage, both in vivo and ex vivo [7].
However, the modality shows a certain number of limits [8]. In vivo scans are bonded to low anisotropic resolution (typically 100µm
in a plane) due to biological and ethical constraints. Ex vivo scans can however reach higher and isotropic resolution (around 50 µm)
at the cost of acquisition times potentially reaching more than 20 h for a single scan and the use of contrast agents or medium that
can be problematic for the later use of other imaging modalities. Furthermore, the signal detected via diffusion MRI only conveys
indirect and not specific information about myelinated fibers as it can be influenced by other tissues and microstructures such as
non-neuronal cells, extracellular matrix, intracellular components [9]. Hence, it makes it difficult to assign specific pathological
phenomenon outside of the major white matter pathways (corpus callosum, internal capsule, etc.) [10].

On the other hand, light-sheet microscopy after brain clearing allows an extremely fine resolution at the cost of a tedious chemical
treatment of the sample over the course of several weeks. The removal of lipids inside the sample also makes it impossible to image
later with another modality.

XPCT on the contrary can deliver 3D images of whole rodent brains with an isotropic resolution down to a few micrometers
within a dozen minutes per sample after minimal chemical treatment to enhance the contrast. As the contrast comes from the various
interfaces between different matters in the sample, it creates a strong distinction between structures that would otherwise appear very
faintly with the use of absorption contrast (see Sect. 2.2). Especially, this technique makes the myelin appear in a strong hyper-signal
when the sample has been dehydrated in more than 70% ethanol. Dehydration being the only chemical treatment applied to the
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Table 1 Scan parameters for the
different XPCT acquisitions

Species Mouse Rat

Beamline ID19 ANATOMIX

Voxel size (isotropic) [µm] 7.5 5.5

Exposure time [s] 0.15 0.035

Number of projections 2000 (180◦) 3600 (360◦)

Peak energy [keV] 19 24

Sample-to-detector distance [m] 1 1.10

sample, the process is quick and reversible without damaging the sample; this way, further analysis can be performed with other
imaging techniques.

From this observation, we set the goal to exploit this technique to perform a fiber tractography, similarly to what is done with
MRI-based techniques since multiple decades and what has been achieved more recently with brain clearing [6].

Fiber tractography (FT) is a 3D reconstruction technique used to assess white matter tracts by simulating streamlines using image
data. It consists in propagating a streamline from a seed by following the trajectory dictated by imaging data until a stopping criterion
is met, it being usually an angle threshold assuming a turn too sharp makes the fiber become unrealistic, or a border of the white
matter. If the algorithms are in themselves modality agnostic, only needing a map of local fiber orientation and a mask of white
matter, FT was until recently exclusive to diffusion MRI because of the ease to obtain these two informations.

However, it has been shown that it is possible to retrieve fiber orientation information and a segmentation of the white matter
from XPCT images [11]. In this article, we thus present a proof-of-concept tool to generate a tractography based on XPCT.

2 Materials and methods

2.1 Animals

All experimental procedures involving animals and their care were carried out in accordance with European regulations for animal
use (EEC Council Directive 2010/63/EU, OJ L 276, Oct. 20, 2010). The study was approved by our local review board “Comité
d’éthique pour l’Expérimentation Animale Neurosciences Lyon” (CELYNE—CNREEA Number: C2EA 42, APAFIS#7457-
2016110414498389, 5892-2016063014207327, 187-2015011615386357). Mice and rats were housed in a temperature- and
humidity-controlled environment (21 ± 3 ◦C), with 12:12 h light–dark cycle, with free access to standard chow and tap water.
We used a pathological model of focal demyelination induced by stereotaxic, unilateral injection of lysophosphatidylcholine (LPC)
in the corpus callosum, which has been previously described for the mouse in [11] and for the rat in [12].

2.2 Sample treatment

All animals were euthanized by intracardiac perfusion with phosphate-buffered saline (PBS) followed by formaldehyde 4%, and
their brains were harvested. They were then fixed in formaldehyde 4% and then dehydrated in successive ethanol baths of increasing
concentrations (30–50–70–96%). The total time for the preparation of a single sample was about 1 h, and multiple samples can be
prepared simultaneously. Finally, the mouse samples were conditioned in 1 cm diameter plastic tubes filled with ethanol 96% and
scanned in the same tubes and 2 cm diameter plastic tubes for rat samples.

2.3 Image acquisition

Imaging sessions were carried out at the ID19 beamline of the ESRF, the European Synchrotron (ESRF, Grenoble, France) for
mouse brains. Rat brains were imaged at the ANATOMIX beamline at the SOLEIL facility (Saint-Aubin, France).

Phase-contrast imaging was performed thanks to the propagation-based technique, which exploits free-space propagation to
detect interference fringes. The experiments were carried out with a “pink” incident X-ray beam generated by the undulator,
allowing energies ranging from 19 to 35 keV. The scan parameters are listed in Table 1.

2.4 Image reconstruction and preprocessing

The images were reconstructed using Paganin algorithm implemented through the PyHST2 software [13] with a δ/β ratio of 1000
and exported as a volume in.raw format, then processed to get rid of ring artifacts with a licensed software developed by NOVITOM
(Grenoble, France, 2022; https://www.novitom.com/en/). Brains were segmented from the background with the Thermo Scientific
Amira Software version 2022.2 (Thermo Fisher Scientific; thermofisher.com), with a semi-manual threshold-based method, and
finally exported as a.raw file.
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2.5 Workstation

All computation tasks were performed on a Windows workstation with an Intel dual-core 2.30 GHz CPU, 512Go RAM and an
NVIDIA Quadro p6000 GPU.

2.6 Language, libraries and softwares

The fiber orientation script is written in Python 3.9.7. It runs in a virtual environment with the numpy [14], scipy [15], numba
[16] and nibabel [17] libraries. The napari library [18] can be used to easily open and visualize intermediate images saved in.npy
format. White matter segmentation was performed with the IPSDK Explorer 3.2 (Reactiv’IP; Grenoble, France, 2022; https://www.
reactivip.com/). Fiber tractography is performed using the Diffusion Toolkit software and visualization with TrackVis [19].

3 Results

3.1 Pipeline

For the tractography algorithm to work, it needs two files containing information derived from imaging data: one for the fiber
orientation (vectorial map) and another for the tractography boundaries and seeds (white matter mask). We designed a pipeline that
can generate these two files from the reconstructed and preprocessed XPCT images (Fig. 1).

3.1.1 Fiber orientation

First, denoising of the preprocessed image is performed by convolution with a Gaussian kernel. The standard deviation of the
denoising kernel must be carefully chosen so as not to make the smaller structures disappear while still smoothing the gray-level
values within the fiber bundles. The value is to be fine-tuned manually according to the pixel size and the size of the structures in the
sample. The impact of this parameter can clearly be observed in Fig. 2: omitting the denoising process leads to little to no coherent
orientation retrieval outside the smallest tube-like structures (for example the striatum), whereas as value too large fails to assess
those same structures while favoring the larger white matter tracts (such as the corpus callosum). Here, we settled on 1.2 for the
mice and 2.0 for the rats.

We then compute the first order image intensity gradient of the denoised image for each voxel along the 3 spatial axes. This way,
we can construct the gradient orientation matrix for each voxel by tensor product of the gradient vector by itself [11].

Diagonalization of the matrix reveals a new orthogonal base of space in which the eigenvector �v1 associated with the largest
eigenvalue λ1 indicates the direction of the largest intensity variation [20]. In XPCT, the change in contrast is the result of an
interface between two mediums. Following this idea, we can assume that �v1 must correspond to the eigenvector normal to the
interface. However, there are significant variations in the local morphology of the white matter in the sample: the fiber bundles we
want to study are not always perfect tube-like structures and vary in radius. To assess the local fiber orientation, we must thus use a
combination of the two remaining eigenvectors �v2 and �v3 (associated, respectively, with λ2 and λ3, given λ2 > λ3) instead of only
considering �v3 as the local orientation vector.

We assume the weight of each eigenvector depends on the local morphology of the structures, described by comparison of the
eigenvalues (Fig. 3). In the case of small tube-like structures, �v3 will be an accurate approximation of the local fiber orientation.
However, the more plate-like structure becomes, the more the accuracy of the approximation declines.

Fig. 1 Schematic representation
of the processing steps of
tractography pipeline
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Fig. 2 Comparison of preprocessed data and color-coded orientation maps of a mouse brain obtained with the described fiber orientation algorithm superposed
with the preprocessed image to highlight major white matter tracts. XYZ coordinates of the orientation vector are attributed, respectively, each channel of the
RGB color space. A is coronal plane, B is axial plane, and C is sagittal plane. It can clearly be seen that without noise filtering, little to no correct orientation
can be retrieved from the image, especially in larger fiber tracts like the corpus callosum (pointed with the arrowhead); with a standard deviation too high,
the orientation becomes unrealistic around smaller fiber tracts, like for example in the striatum (circled). It should be noted that the sample was acquired by
stitching two overlaping scans with a vertical translation in order to image the whole brain, which explains the jump in contrast visible on rows B and C;
however, it does not have a significant impact on the output

Fig. 3 Comparison of eigenvalues
provides local 3D morphological
information about the structure of
interest. λ1, λ2 and λ3 are the
eigenvalues corresponding to the
eigenvectors v1, v2 and v3,
obtained by diagonalization of the
orientation matrix

This way, we use Eq. (1) to define fiber orientation for each voxel taking into account the local morphology. We call �FO the
vector defining the fiber orientation of the voxel, λ2 and λ3 the smallest eigenvalues, �v2 and �v3 the eigenvectors associated with λ2

and λ3.

�FO � λ3

λ2 + λ3
�v2 +

λ2

λ2 + λ3
�v3 (1)

The fiber orientation map is finally converted into a NIfTI file constituting a valid input for the Diffusion ToolKit software.

3.1.2 White matter segmentation

In diffusion MRI, white matter segmentation is derived from orientation data by applying an arbitrary threshold to the fractional
anisotropy (FA) map. In XPCT images, white matter is clearly visible and distinguishable from the other tissues [11]. Thus, we do
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Fig. 4 Views of the corpus
callosum of an LPC-injected
mouse. A is the contralateral
hemisphere, B is the ipsi-lateral
hemisphere. 1 is preprocessed
image; 2 is the binary mask
generated with the random forest
algorithm. The focal
demyelination is circled on the
ipsi-lateral hemisphere; the
segmentation technique allows to
accurately assess the
demyelination

not have to resort to orientation data to identify it, which reduces the potential bias that would be caused by following strictly the
traditional pipeline on different data.

We performed white matter segmentation via machine learning, using the random forest algorithm. The model was manually
trained using the framework provided by the IPSDK Explorer software.

We used a multi-class strategy based on the size and morphology of the different structures of the white matter to optimize the
accuracy of the model.

The model used 9 different types of features, both filters and morphology operations, with radius ranging from 1 to 5 pixels with
a 3D structural element. The more decisive is variance, Gaussian filtering and morphological closing with the highest radius. The
number of trees was set to 50.

Finally, all the classes are merged into one to create a binary mask of white matter (Fig. 4), and the volume is converted into
a nifti file constituting a valid input for the Diffusion ToolKit software. This method succeeds in taking into account the area of
demyelination by excluding it from the final mask while still providing an accurate delineation of the healthy white matter.

3.1.3 Tractography

The Diffusion Toolkit software was used to perform the fiber tractography with as inputs the two files described in Sects. 3.1.1 and
3.2.2. It uses a deterministic algorithm, and spline filtering at the end of the tractography to smoothen the generated fibers.

As the resolution of XPCT images is about 20 times higher, fibers are less likely to take sharp turns from one voxel to another. It
allows for the reduction in the angular threshold compared to MRI. Here, we used a threshold of 30 degrees.

The output file is a.trk file which we can open and handle with the TrackVis software, from the same suite.
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Fig. 5 Comparison of tractograms of the corpus callosum for the contra-lateral (left) and ipsi-lateral (right) hemispheres. The color of the segments indicates
the local orientation of the tracts as a combination of 3 channels: red are tracts along the axis normal to the saggital plane; blue, to the transverse plane;
green, to the coronal plane. The focal demyelination is circled in yellow-dotted line on the preprocessed image (center) and on the tractograms, and the areas
where tractography was performed are framed in blue. A Mouse brain; B rat brain

Fig. 6 Region of interest for fiber crossing in a mouse brain. A Preprocessed image; B maximum intensity projection (MIP) over 50 slices (325 µm) of the
highlighted region of A. It represents the corpus callosum (cc), the ventral hippocampal commissure (vhc) and the fornix (fx). C generated tractography of
the highlighted region

3.2 Tractograms

3.2.1 Assessing focal demyelination

We can assess pathological cases with the presented tractography pipeline, as shown in Fig. 5 for the case of local demyelination
which is a model of multiple sclerosis.

The impact of the injection of LPC is clearly visible in the ipsi-lateral hemisphere: the sudden drop of fiber density can be assessed
in the corpus callosum, whereas in the contralateral hemisphere, the integrity of the white matter is not visibly altered.

3.2.2 Fiber crossing

A major challenge concerning fiber tractography is to assess regions where multiple tracts of fibers cross each other (fiber crossings).
Figure 6 shows how the tractography pipeline deals with fiber crossing in the fornix, a region subjected to fiber crossing issues [21].

The tractogram shows fibers going in different directions coherently with what the maximum intensity projection (MIP) suggests
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and allows to distinguish the two planes of fibers constituting the fiber crossing between the fornix and the ventral hippocambal
commissure from each other. However, the simulated fibers are not as well defined as in the MIP.

4 Discussion

Multi-scale imaging tends to become more and more of a standard in biomedical research [22]: the different modalities do not
compete but rather complete each other as they all convey useful but unique information. This is why we described a proof-of-
concept pipeline to compute high-resolution fiber tractography from XPCT data. As we showed, fiber tractography algorithms are
not modality-specific and can be used to process data acquired from other modalities. More than a new gold-standard for studying
white matter tracts, we provide a framework in which every component is modular and subject to change and upgrade.

However, several issues can be addressed in the presented results. First of all, the generated fibers tend to be too short compared to
what could be expected based on MRI tractography [21], which can be seen in Fig. 5. The pipeline also fails to tackle the narrowest
fiber tracts for which the tractography becomes more imprecise as it can be seen in Fig. 6. These issues are most likely caused by
the limits of the algorithms and methods used for both orientation retrieval and white matter segmentation. Retrieving orientation
data from greyscale images (especially fiber orientation) is still an ongoing challenge, not only in neuroscience or biology but also
in material science [23]. Updating the pipeline with more accurate algorithms will help resolve the issue concerning the coherence
of the simulated fibers. This will allow to make the most of the tractogram format, by using for example fixel-based analysis [24]. In
the same way, other strategies can be imagined to obtain a more robust segmentation of white matter, whether automatic or manual,
with or without using machine learning or artificial intelligence.

From a more practical standpoint, there are also some restrictions originating from software involved in the pipeline. For
convenience reasons, we used licensed software to perform the preprocessing of the data, but free alternatives exist for both
eliminating ring artifacts [25] and segmentation of the brain [26], so that preprocessing the image won’t be a limiting factor for the
use of the pipeline. Open-source alternatives also exist for segmenting the white matter. The Diffusion Toolkit software has a size
limit for the input files it takes of around 5 Gb. This currently restricts the pipeline to a local usage, but performing a tractography
at the scale of the entire brain is theoretically possible.

XPCT is a modality allowing isotropic 3D data of unstained white matter at the micrometer scale, which makes it particularly
relevant for usage in neuroscience. This way, a broad spectrum of applications could be tackled as a consequent number of brain
pathologies impact the white matter to different extents: multiple sclerosis, stroke [1], Alzheimer’s disease [2], etc. The simple and
reversible dehydration of the sample also allows an effective “transpathological” approach [27]: the same samples can be imaged
with different modalities prior and after the XPCT acquisitions, and particularly diffusion MRI which is among the most popular
modalities to study white matter from a structural standpoint thanks to its easy access to fiber tractography. Because staining of the
sample isn’t needed, other structures are accessible with the same dataset, such as for example the vascular network [28]. Finally,
important progress is also being made on the beamline installations, permitting routine scans of samples always increasing in size
and thus no longer restricting XPCT usage in neuroscience to rodent models or small samples [29].

As for now, no reference method was used to assess the accuracy of the aforementioned pipeline as it is still a proof of concept
and needs to be refined to be used in practical cases. However, several reference methods, such as histology [30], contrast-enhanced
CT [31], and high-resolution diffusion-weighted imaging [32], could be used in future as ground truth to validate this tool.

5 Conclusion

In this work, we developed an image processing pipeline to perform white matter fiber tractography from synchrotron-radiation
XPCT images. We described the modular framework we developed to achieve that goal as well as the different tools and algorithms
we used to compute fiber orientation and white matter segmentation. This allowed us to perform fiber tractography of various regions
of both mouse and rat brains. This way, we assessed the relevance of this technique to solve fiber crossings and evaluate the impact
of focal demyelination in a pathological model. We found out the current pipeline opens promising possibilities, but more accurate
algorithms could enhance the quality of the tractography and allow its usage in a broader range of pathological cases.
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