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Abstract In early December 2019, some people in China were diagnosed with an unknown
pneumonia in Wuhan, in the Hubei province. The responsible of the outbreak was identi-
fied in a novel human-infecting coronavirus which differs both from severe acute respiratory
syndrome coronavirus and from Middle East respiratory syndrome coronavirus. The new
coronavirus, officially named severe acute respiratory syndrome coronavirus 2 by the Inter-
national Committee on Taxonomy of Viruses, has spread worldwide within few weeks. Only
two vaccines have been approved by regulatory agencies and some others are under devel-
opment. Moreover, effective treatments have not been yet identified or developed even if
some potential molecules are under investigation. In a pandemic outbreak, when treatments
are not available, the only method that contribute to reduce the virus spreading is the adop-
tion of social distancing measures, like quarantine and isolation. With the intention of better
managing emergencies like this, which are a great public health threat, it is important to
dispose of predictive epidemiological tools that can help to understand both the virus spread-
ing in terms of people infected, hospitalized, dead and recovered and the effectiveness of
containment measures.

Abbreviations

CDC US Centers for Disease Control and Prevention
COVID-19 Novel coronavirus diseases
E Exposed
EHF Ebola haemorrhagic fever
GIS Geographical information system
H Hospitalized
I Infectious without intervention
Ii Infectious with intervention
MERS Middle east respiratory syndrome
MERS-CoV Middle east respiratory syndrome coronavirus
PPE Personal protective equipment
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Q Quarantined
R Recovered
S Susceptible class
SARS Severe acute respiratory syndrome
SARS-CoV Severe acute respiratory syndrome coronavirus
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SEIR Susceptible-exposed-infected-recovered
SI Susceptible/infectious
SIR Susceptible-infected-recovered
STEM Spatiotemporal Epidemiological Modeler
WHO World Health Organization

1 Introduction

In early December 2019 some people in China were diagnosed with an unknown pneumonia
in Wuhan, in the Hubei province. The responsible of the outbreak was identified in a novel
human-infecting Coronavirus [1, 2] which differs both from severe acute respiratory syn-
drome coronavirus (SARS-CoV) and from Middle East respiratory syndrome coronavirus
(MERS-CoV) [3, 4]. The new Coronavirus, officially named severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses,
has spread worldwide within few weeks. The disease, known as coronavirus disease 2019
(COVID-19), has been supposed to be a zoonotic disease and the person-to-person trans-
mission mainly occurs by direct contact or through droplets spread by coughing or sneezing
from an infected individual [5]. It is probably associated with a large seafood and wet animal
market in Wuhan City, where live animals are routinely sold, and investigations are ongoing
to determine the origins of the infection [6].

The outbreak was declared a Public Health Emergency of International Concern by the
World Health Organization on 30th January 2020 and characterized as a pandemic on 11th

March. As of December 2020, there have been over 75 million cases and over 1.6 million
deaths worldwide since the start of the pandemic [7]. Only two vaccines have been currently
approved by regulatory agencies and some others are under development. Moreover, effective
treatments have not been yet identified or developed even if some potential molecules are
under investigation.

In order to better manage emergencies like this, which are a great public health threat, it
is important to implement epidemiological tools that can help to understand both the virus
spreading in terms of people infected, dead and recovered and the effectiveness of containment
measures.

Here, we use the Spatiotemporal Epidemiological Modeler (STEM release 4.0.1), a Java-
based software projected and developed under the umbrella of the Eclipse foundation [8]
to understand if this predictive epidemiological tool could be useful to the decision makers
in order to reduce the impact of the epidemic. The software has already been proved to
be reliable demonstrating to be well-suited to modelling previous Ebola haemorrhagic fever
(EHF) epidemics [9] and it has been tested on three real cases of outbreaks: Uganda (2000) [10,
11], Gabon (2001) [12], and Guinea (2014) [13–15]. Moreover, STEM has been previously
tested and applied to a hypothetical bioterrorist scenario in order to understand if this tool
is able to predict and reduce the impact of this kind of threat; additionally, to comprehend
how such tool can support decision makers and policymakers to reduce the spreading of a
possible outbreak due to a terrorist attack [16].
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2 Materials and methods

2.1 Spatiotemporal epidemiological modeler (STEM)

The STEM is an open-source software Java-based, developed under the umbrella of the
Eclipse foundation [8]. STEM allows users to create spatial and temporal models of emerg-
ing infectious diseases. It was designed to help developers, researchers and users to plug
in their choice of models. The user can implement a large number of existing compartment
models, e.g. Susceptible/Infectious (SI), Susceptible/Infectious/Recovered (SIR) and Suscep-
tible/Exposed/Infectious/Recovered (SEIR) models pre-coded with both deterministic and
stochastic engines, and a new model-building framework that allows users to rapidly extend
existing models or to create entirely new models. These models could aid in understanding,
and potentially preventing, the spread of a disease.

The STEM application has built-in Geographical Information System (GIS) data for
almost every country in the world. Data about country borders, populations, shared bor-
ders (neighbours), interstate highways, state highways, and airports can be implemented into
the code. This data come from various public sources.

STEM treats the world as a graph within a modular and hierarchical modelling structure.
From the bottom to the top, this structure has three basic levels: graphs, models, and scenarios.
We refer to STEM tutorial (https://wiki.eclipse.org/Tutorials_for_Developers) for in-depth
examination of all the software functions.

Interventions are used in STEM to control some aspect of a disease outbreak, down
to regional level if desired. Examples include initiating a vaccination program, isolating
infected individuals, implementing social distancing, evacuation of a region, shutting down
air transportation (for a county, state or a whole country), closing a road or preventing mixing
of infected individuals across borders.

STEM uses triggers, predicates and modifiers to implement interventions. A trigger con-
tains predicate which, when satisfied, invokes one or more modifiers that changes some aspect
of a running simulation [8].

2.2 COVID-19 proposed model

In the classical SEIR model, the population is divided in four groups named S (susceptible),
E (exposed), I (infectious) and R (recovered) [8, 17]. Thus, N � S + E + I + R refers to the
total number of people. The basic hypothesis of the SEIR model is that all the individuals
in the model will have the four roles as time goes on. The SEIR model has some limitations
for the real situations, but it provides a basic model for the research of different kinds of
epidemic.

Starting from the basic SEIR model, we proposed a new model specified by the following
equations:
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Table 1 Description of the model
variables

Variable Description

S Susceptible class

E Exposed

I Infectious without intervention

I i Infectious with intervention

R Recovered

Q Quarantined

H Hospitalized

Deaths Disease deaths

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt � − S(t)

N (β1I (t) + β2Ii(t)) + ρ1Q(t) − ρ2S(t) + αR(t)

dE(t)
dt � S(t)

N (β1I (t) + β2Ii(t)) − θ1E(t) − θ2E(t)

I (t)
dt � θ1E(t) − γ 1I (t)

I i(t)
dt � θ2E(t) − γ 2Ii(t) − ϕ Ii(t) + εQ(t)

R(t)
dt � γ 1I (t) + γ 2Ii(t) + ωH(t) − αR(t)

H(t)
dt � ϕ Ii(t) − ωH(t)

Q(t)
dt � ρ2(t) − εQ(t) − ρ1Q(t)

Deaths(t)
dt � δ1I (t) + δ2Ii(t) + δ3H(t) − αR(t)

(1)

where S, E, I, Ii, R, H, Q and Deaths are the system variables. The descriptions of these
variables are presented in Table 1.

The model parameters are illustrated in Table 2, while the relationship between different
variables is shown in Fig. 1. In this model, the infectious class is divided into two parts, I
and I i. Meanwhile, we consider the quarantined class (Q) and hospitalized class (H) in the
model according to the real situation.

As shown in Fig. 1, two main channels have been considered in the proposed model. The
first one goes to S + E + I + R, and the second channel goes to S + Q + I i + H + R. The
first case shows the natural process of the epidemic, and it is a typical SEIR model. The
second channel considers possible measures adopted by governments, including quarantine
and hospitalization. As a result, the designed model is an improved version of the SEIR model.
If there is no quarantine (ρ2 � 0), hospital treatment ω � 0 and the recovered compartment
is immune to the virus (α � 0), the model reduces to the classical SEIR model. However, the
pandemic has demonstrated that quarantine measures and hospital care were needed almost
all over the world. Meanwhile, there is no evidence that the recovered group is immune to
the COVID-19. Thus, it is necessary to consider these factors in the model. In this case, N
� S + E + I + I i + R + Q + H, as above, refers to the total number of population and it is in
accordance with Eq. (1). Obviously, N is not a constant and it varies over time.

The rates of the model proposed are described in details in the caption of Fig. 1.
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Table 2 Description of the model parameters

Parameters Description

α Temporary immunity rate

β1, β2 The contact and infection rate of transmission per contact from infected class

θ1, θ2 Transition rate of exposed individuals to the infected class

γ 1, γ 2 Recovery rate of symptomatic infected individuals to recovered

ε Rate of the quarantined class to the recovered class

ϕ Rate of infected people with symptoms that require hospitalization

ω Recovered rate of quarantined infected individuals

ρ1, ρ2 Transition rate of quarantined exposed between the quarantined infected class and the wider
community

δ1, δ2 Mortality rate of symptomatic infected individuals to deaths

δ3 Mortality rate of hospitalized class

Fig. 1 Proposed COVID-19 model. STEM screenshot of the “Generator model” function. The blue and red
boxes are the model variables (in minus character). The numbered orange squares are the rates from one
box to another, as follows: 1. The contact and infection rate of transmission per contact (S/N(β1I + β2Ii));
2. Transition rate of exposed individuals to the infected class (I) (θ1E); 3. Recovery rate of symptomatic
infected individuals (I) to recovered (γ 1I); 4. Disease induced death rate due to infectious class (I) (δ1I); 5.
Transition rate of exposed individuals to the infected class (Ii) (θ2E); 6. Recovery rate of symptomatic infected
individuals (I i) to recovered (γ 2Ii); 7. Disease induced death rate due to infectious class (I i) (δ2Ii); 8. and 9.
Transition rate of quarantined exposed between the quarantined infected class and the wider community (ρ1Q
and ρ2S); 10. Rate of the quarantined class to the recovered class (εQ); 11. Rate of infectious with symptoms
to hospitalized (ϕIi); 12. Recovered rate of quarantined infected individuals (ωH); 13. Disease induced death
rate due to hospitalized class (δ3H); 14. Temporary immunity rate (αR)

2.3 Parameters estimation

The actual COVID-19 data from Hubei province have been utilized to estimate the parameters
of the proposed SEIR model to fit the real situation. The COVID-19 data were taken from
the official website of the Wuhan Municipal Health Commission (http://wjw.wh.gov.cn/).
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Table 3 Model parameters of the model proposed

Parameter Value References

β1 1.0538×10–1 [18–24]

β2 1.0538×10–1

ρ1 2.8133×10–3

ρ2 1.2668×10–1

θ1 9.5000×10–4

θ2 3.5412×10–2

γ 1 8.5000×10–3

γ 2 1.0037×10–3

ε 9.4522×10–2

α 1.2048×10–4

ϕ 2.9100×10–1*, 9.7300×10–2**, 6.0000×10–2***

ω 1.0700×10–2 *, 4.1600×10–2 **, 6.5000×10–2***

δ1 4.0000×10–3

δ2 5.0350×10–3

δ3 5.0000×10–4

*Valid from 24 January to 8 February; **valid from 9 to 19 February; ***valid from 20 February to 11 April

In order to prevent and control the epidemic, Wuhan government announced to seal off the
city from the rest of the world on 23rd January 2020. Later on, other cities in Hubei province
adopted the same measure. The COVID-19 pandemic situation of Hubei was relatively stable
after 23rd January 2020, so we chose to evaluate the proposed model with the data between
January 24th and April 12th.

In the proposed SEIR model N is the total population of Hubei pre-loaded in STEM, and
E is calculated based on the number of confirmed patients. I is an estimated value based on
I i, and the other initial values are originated from the actual data [18]. The initial parameters
of the SEIR model were set as follows: N � 16×106, E � 5077, I � 7, I i � 730, H � 658,
R � 32, and Q � 4711.

The model parameters of the proposed model are calculated and estimated by the scientific
literature data [18–24], as shown in Table 3.

However, there is no accurate statistics of the rate of infected people with symptoms that
require hospitalization (ϕ) and the recovered rate of quarantined infected individuals (ω).
Here, the two parameters are estimated by the literature and the actual data of R and H.

3 Results

The model in Fig. 1 has been developed in STEM using its “Model generator” function and
once realized, the parameters in Table 3 have been loaded in the model. The initial values of
the model are reported in paragraph 2.3.

The study has been divided in two main parts. In the first one, the proposed model has been
calibrated and adjusted with real data taking into account two different stages of COVID-19
epidemic. In the second one, the model has been used to evaluate STEM capabilities and
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Fig. 2 Outbreak stage simulation and comparison graph. The legend is on the right and the errors considered
are standard errors. A STEM simulation due to the application of the model proposed in the outbreak stage:
in green the recovered people and in grey the hospitalized people. Time: days. B The graph reported the
comparison between the STEM simulations and the real data taking into the account the H and R classes
(colour legend on the right). Date: days of month

characteristics to reduce the impact of an outbreak and consequently to help decision makers
and health care workers for contrasting emergency like COVID-19.

Starting with the first part of the study, according to the references [18–20], the COVID-19
epidemic situation in Hubei is divided into two stages: the outbreak stage (the first 19 days)
and the inhibition stage (the 20th day to 11 April 2020). Therefore, the parameters in Table 3
have been fitted in the model in Fig. 1 and the results of the simulations are shown in Fig. 2
and 3. In particular, in Fig. 2A it is possible to see the STEM simulation for outbreak stage
in the first 20 days in Hubei province, and in Fig. 2B a graph where there is a comparison
between the simulation data and the real data for this stage.
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Fig. 3 Outbreak and inhibition stages STEM simulation and comparison graph. The legend is on the right and
the errors considered are standard errors. A STEM simulation due to the application of the model proposed in
the outbreak and inhibition stages together: in green the recovered people and in grey the hospitalized people.
Time: days. B The graph reported the comparison between the STEM simulations and the real data taking into
the account the H and R classes (colour legend on the right). Date: days of month

In Fig. 3A, it is possible to see the STEM simulation for inhibition stage in Hubei province,
while in Fig. 3B a graph, as already done for the outbreak stage, where it has been compared
the simulation data and the real data.

In the second part of this study, once calibrated the proposed model with real data, it has
been taken into the consideration the application of the proposed model in STEM with the
addition of others countermeasures or preventive actions not specifically medicals: social
distancing and wearing Personal Protective Equipment (PPE). Social distancing, also called
“physical distancing,” means keeping a safe space between yourself and other people who are
not from your household [25]. For wearing PPE means wear face mask, as medical/surgical
face masks or N95 respirators.
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These countermeasures have been applied 15 days after the beginning of the outbreak in
Hubei province (24 January 2020). For the application of these no-medical countermeasures
(social distancing and wearing masks) the model parameters have been recalculated and
arranged in STEM as a trigger. The choice of what type of parameters takes into the account
and its recalculation is based on the references. It has been assumed that the application of
these additional preventive actions should reduce the transmission rates (β1, β2) of 40% [20,
26–28].

The aim is to understand and study what would have been the impact of further counter-
measures in the same scenario considered for standardizing the model. Outcomes are reported
in Fig. 4. Particularly, Fig. 4a reports the STEM graph as a result of the simulation obtained
with the application of the calibrated model with real data; Fig. 4b shows the STEM simula-
tion graph obtained considering the preventive actions discussed above. Figure 4c displays
the comparison of the data from Fig. 4a, b. In these last simulations, also the infected classes
(I, Ii) and deaths class (Deaths) have been analysed.

4 Discussion

As the intention of the authors, the approach here developed should be the same that STEM
end users could apply in an emergency situation as COVID-19 in order to help decision makers
and stakeholders to reduce the impact of infectious disease in the population affected.

The first step has been to elaborate a specific model for COVID-19 taking into account
the available scientific literatures data (Fig. 1). Then, the model has been developed using a
STEM function called “Model generator”. Once ready, the proposed model has been loaded
in a STEM scenario in order to evaluate and calibrate the model with real data. The COVID-
19 epidemic situation in Hubei has been divided into two stages: the outbreak phase (the
first 19 days) and the inhibition phase (from the 20th day to the end—11 April 2020). As
reported in Table 3, the parameters of the system are mainly chosen by two means including
the references. For instance, the contact and infection rate parameters are defined according
to references [18–24]. In the outbreak stage, according to the actual data of R and H, the ϕ

and the ω are estimated to ϕ � 2.91×10–1, ω � 1.07×10–2, respectively. After the outbreak
stage, due to the continuous assistance from other provinces and other countries, the epidemic
in Hubei began to enter the inhibition stage and the estimated ϕ and ω changed to ϕ � 9.73×
10–2, ω � 4.16×10–2 until 19 February and ϕ � 6×10–2, ω � 6.5×10–2 until 11 April
2020, respectively [18, 19].

The estimated and actual trajectories in the two stages are shown in Figs. 2 and 3. In the
first stage, although there are some errors between the estimated and the actual numbers, the
estimated values well match with the real situation (Fig. 2b). The accuracy is also satisfied
in the second stage (Fig. 3b) which shows that the real data are almost the same than the
estimated values, and the trend is basically overlapped. It has been decided to focus the
analysis on estimation of R and H for two reasons mainly: first, they are the more available
and genuine data and second, these classes are important to take into consideration when
decision makers and stakeholders have to control and set specific countermeasures against
an epidemic.

In the second part of the work, once calibrated the proposed model with real data, the
intention was to consider the application of the proposed model in STEM with the addition
of others countermeasures not specifically medicals, as social distancing (at least 1 m of
distance between 2 people) and wearing personal protective equipment (mask). As already
underlined above, these countermeasures have been applied 15 days after the beginning of
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Fig. 4 Application of additional countermeasures. The legend is on the right and the errors considered are
standard errors. A STEM simulation with the model proposed: H (grey line), R (green line), Deaths (light blue
line), I and I i (red line). Time: days. B STEM simulation considering additional non-medical countermeasures
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taking into the account the H and R classes. Date: days of month
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the outbreak in Hubei province. In Fig. 5, the effects of a possible application of preventive
countermeasures to contrast the epidemic are shown. In this case, other classes of population
as Deaths and Infected people (I , I i) have been taken into account.

As evident, in all considered classes there is a clear reduction of the number of people
involved and affected. Specifically, it is possible to estimate the following percentages of
reduction: 46% for R class, 50% for H class, 55% for Deaths class and 83% for both infected
classes (I and I i).

This work demonstrates how an end user, as an epidemiologist or a public health expert,
can use a tool such STEM to evaluate the impact of different strategies in order evaluate
the efficacy of some countermeasures before their application. Once a reference model is
developed based on available data, it is straightforward to integrate the reference model
into the future subject to a range of plausible assumptions. With the application of same
interventions, the base model predicts a reduction of more than 50% of people involved in
COVID-19 epidemic.

There are several challenges to tackle modelling the effect of specific countermeasures
on COVID-19 transmission for a spatially local region such as Hubei province. First of all,
the specified COVID-19 model itself is not a perfect representation of the world, as with all
models. Secondly, there are challenges in defining the initial condition for our simulation.
There is a weakness in the assumption that, for instance, it is slightly impossible determine
how many people are infected in reality and consequently how many are exposed.

We demonstrated the usefulness of using an open source tool, as STEM, both to model
infectious disease spread and to measure the impact of alternative intervention strategies
such as improved no medical countermeasures, as PPE and social distancing. The model
used is available to any researcher to use freely, allowing transparency of analysis for peer
refinement and critique. As George E. P. Box observed: “essentially, all models are wrong,
but some are useful” [29].

Modelling can advise the development of public health policy, but given the uncertainties
associated with public health data, it is essential that the assumptions built into such models
and the models themselves be fully transparent. Perhaps the greatest strength of STEM is not
the use of advanced software technology but the transparency that comes with open source.
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5 Conclusions

The proposed model has been built using the STEM function “Model generator” and then
evaluated in accordance with the reference literature. This model has revealed itself as suit-
able for the dynamics of the epidemic of COVID-19. Thus, once loaded in STEM function
“Scenario designer”, it has been tested and calibrated using two different stages of the epi-
demic: outbreak stage (no countermeasures), inhibition stage (quarantine and medical treat-
ment/hospitalization). Successively, the fixed model has been applied in a specific scenario
in order to study and evaluate the outcomes if both additional no-medical countermeasures
were taken and when social distancing and wearing PPE were applied. The STEM simu-
lations analysed the effects of epidemic behaviour change alone and in combination with
specific control measures. The provided information can suggest to decision makers, with
a credible level of accuracy, how the outbreak would spread and develop in space and time
in different phases. As a result, this tool could help to develop (and test) control strategies
based on computer simulations.
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