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Abstract Infectious diseases afflict human beings since ancient times. We can classify the
infectious disease in two principal types: the emerging diseases, that are caused by new
pathogens, and the re-emerging diseases, due to a new spread of a known pathogen. Both
types can then be subdivided in natural, accidental or intentional spreads. The risk associated
to infectious diseases strongly increased in the last decades, especially because of the glob-
alisation, which leads to a denser and more efficient link between nations, involving that a
local infectious may easily spread worldwide, such as the SARS-CoV-2 in 2019-2020. The
development of new methods to predict the spread of diseases is crucial. However, sometimes
the variables are too many that classical algorithms fail in the prediction. Aim of this work
is to investigate the use of an ensemble of recurrent neural networks for disease prediction,
using real flu’s data to train and develop an instrument with the capability to determine the
future flues. Two different types of study have been conducted. The first study investigates
the influence of the neural network architecture, and it has been performed using 12 seasons
to train the model and 3 seasons to test it. The second test aims to investigate the number of
seasons needed to have a good prediction for future ones. The results demonstrated that this
approach could ensure very high performances also with simple architectures. The ensemble
approach allows to have information about the uncertainty of the prediction, allowing also to
take countermeasures as a function of that value. In the future, the use of this approach may
be applied to many other types of disease.

1 Introduction

The infectious diseases have affected human beings since ancient times; historical traces
about the presence of epidemics caused by infectious diseases have been reported in a lot
of manuscripts of the past. An example of epidemics is the “plague of Athens” of 430 BC,
in which the 25-35% of the population died [1], while the most recent is the Spanish flu
in 1918 with a budget of tens of millions of deaths around the world [1], arriving to the
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SARS-CoV-2 pandemic. To understand the impact of infectious diseases on humans, it is
sufficient to consider that in 2004 the fifteen millions of fifty-seven millions of deaths around
the world (more than the 25%) were caused by the infectious diseases [1].

With the term “infectious diseases,” it is possible to identify all the pathologies caused
by the contact between humans and microorganisms, with a consequent interaction between
the microorganism and the host’s immunity system [2]. Between the etiological agents of
these types of diseases, we can find viruses, bacteria or fungi, that after the penetration in the
human organism can cause a state of disease [2].

Infectious diseases can be classified in emerging infectious diseases (EID) or re-emerging
infectious diseases. The EIDs are defined as every infectious disease that compares for the
first time in human, such as SARS [3]. The re-emerging infectious diseases are defined as
known diseases, that in the past had caused great problems for the public health, and that
return in the human population after a long period of absence, or have an explosive increment
in the number of cases in a short period [4]. There is also a third category, which is defined
as deliberately emerging diseases [4]. This category is referred to each spread phenomenon
of infectious diseases that have been originated from an accidental or voluntary dispersion
of natural or bio-engineered microorganisms [4].

EIDs are in a lot of cases classified as zoonoses [4]. This type of diseases is distinguished
by a microorganism’s passage from animal to human, and generally, in a lot of cases, the
human is a ‘dead-end’ point [4]. To understand the importance of this category, it is important
to note how between 1940 and 2004 was reported the emergence of 335 new cases [3].

For what concern the re-emerging infectious diseases the microorganisms at the base of this
category are generally characterised by their genetic variability, that gives to these etiological
agents a great potential. An example of this type of microorganism can be the influenza A,
with its segmented genome characterised by the antigenic shift and drift phenomena [4, 5].
The antigenic shift phenomena in the influenza viruses, point mutation, and drift phenomena,
recombination of segmented genomes of two different influenza’s viruses in the animal, create
evolutionary success conditions that allow the passage of the viruses between animals and
humans [4, 5]. It also involves the development of new types of virus, some with the capability
to escape the human immunity system which has been improved from the previous influenza’s
viruses [4, 5]. These mechanisms can lead in the future to new deadly pandemics, as in the
past 1918, 1957 etc. [4, 5].

Furthermore, different factors can influence the possibility of new emerging or re-emerging
diseases [6]. Many are the factors that influence the emergences and re-emergences, such
as ecological changes (as a combination of agriculture/economic development or climate
changes), demographic changes (as a consequence of economic development or changes
in the humans’ behaviour), economic development with the consequent globalisation trend
(with an increment of travels and goods transport), and technological and industrial devel-
opment [6]. Moreover, the mutation and evolutional capabilities of microorganisms involve
the increase of pharmaco-resistances [6], with a consequent increase of the risk associated
to human health.

In this scenario, preparedness and efficient countermeasures play a key role for the pre-
vention and control of future infectious diseases. The dynamic and factors in the spread of
infectious diseases have studied since XIX century, an example of this can be the study of
influenza’s virus spread through mathematic model starting from real data to obtain a forecast
of new epidemy [4]. Thus, the possibility to obtain new computational instruments with the
capabilities to forecast the diffusion of an infectious disease results as fundamental for the
public-health’s decisionmaker [7].
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Aim of this study is to investigate the possibility and the capabilities of recurrent neural
networks as an instrument for the trend prediction of epidemic curves, organising them in
ensembles of neural networks in the way to also obtain uncertainty values for each forecast.

The main idea and innovation of this work are based on the use of the ensembles. Recurrent
or Time-Delay Neural Networks (TDNN) are supervised machine learning tools. They are
strongly influenced by the quality of the training set. If we try to predict something which is
strongly different from the training set (and which follows different physics or are affected
by new external variables), the tool will return a piece of wrong information. But in a real
application, we have usually no idea about it, and thus we do not know if the prediction is
reliable or not. An interesting approach would be the use of ensembles. In fact, neural networks
with the same architecture and trained with the same data should predict similar results in
a “predictable” region, while they should have more casual data in the “unpredictable” or
“different” region. Therefore, by a TDNN ensemble, one may calculate the average and the
standard deviation of the prediction. The average prediction is the most probable value, while
the standard deviation returns the uncertainty of the prediction, giving a more robust data to
use for decision making, etc.

In order to study the capability of the ensemble to predict epidemics and pandemics, in this
work the same case (influenza) has been analysed with different architectures of the TDNN,
different ensemble sizes, and different training set sizes.

The use of neural networks is of great interest in science and it could have a hugely
important role in predicting the evolution of an epidemic or pandemic [8, 9]. Recurrent neural
networks are supervised machine learning tools which aim at predicting the future data (time
series) by knowing the past of the physical system considered. Machine learning tools have
found applications in all research and science fields, such as image analysis (medicine [10,
11], physics [12, 13], facial recognition [14, 15], etc.), time-series prediction (financial series
[16, 17], plasma disruptions [18, 19]), and also statistical analysis and causality detection
[20]. More specifically, there are also several applications of artificial neural networks in
medicine, such as ECG analysis and prediction [21, 22], medical image analysis (cancer
detection [23, 24], etc.), and medical decision making [25, 26].

The etiological agent of influenza, the disease case study, is part of the Orthomyxoviridae
family [5]. This family of viruses is composed by different animal pathogenic viruses among
which it is possible to find the only human pathogenic virus: the flu’s virus (divided in type
A, B and C) [5].

These types of viruses are distinguished by the segmented RNA genome with negative
polarity; indeed, these viruses have the necessity of RNA-polymerase RNA-dependent for
their replication [5]. So this peculiarity combined with the segmentation of genome increases
the possibility of mutation with the possibility to obtain a new type of influenza’s viruses [5].
The great potential in terms of variability that distinguished these viruses is the base of two
principal mechanisms, known as antigenic shift and drift [5]. The problem linked with these
mechanisms is the consequent possibility to obtain from the variability of the development
of a new virus with the capability to escape from the human immunity system, although there
is the presence of antibodies for previous influenza’s virus [5].

If to this evolutionary success phenomena, we add the transmission mechanism, through
aerosol particles, the flu virus has the potentiality to be endemic around the world [4, 5]. Itis
important to note how the influenza viruses are characterised by a seasonal epidemic trend that
gives a great contribution to the worldwide mortality rate, especially in the population aged
over 65 years [5, 27]. In particular, as reported by the Italian Ministry of Health, the influenza
virus affects with an average of 8% the Italian population, and its seasonal epidemics are
associated with a high level of morbidity and mortality [28].
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For what concern the diagnosis of Influenza Like-IlIness (ILI) since the season 2014-2015
the protocol to diagnose the influenza syndrome or ILI is the same of the adopted in the rest of
Europe by ECDC[29]. For the diagnosis of ILI must be present one or more of the following
symptoms with rapid or sudden onset:

1. General symptoms [29]:

Fever,

General discomfort or exhaustion,
Headache,

Muscle pain,

Cough.

2. Respiratory symptoms [29]:

e Sore throat,
e Wheezing.

About the prevention, the first instrument is the vaccination for the fragile population
to prevent fatal outcome [5]. Belong to this category: people over the age of 50, adults and
children affected by changes in the cardiovascular and pulmonary system, adults and children
with chronic metabolic changes (e.g. diabetes etc.), women in the second and third trimester
of pregnancy, persons professionally exposed to the contagion [5].

Unfortunately, the unpredictability and great variability of flu viruses and the possibility
to have a new virus every year create hard conditions for the prevention programs [5, 27]. In
this scenario, the possibility to have computational instruments to forecast the epidemic trend
and its variations can be useful in combination with the first prevention protocols that remain:
vaccinations. In particular, the possibility to obtain not only a forecast of the epidemic curve
but also its uncertainty values give the possibility to the decisionmaker to create efficient
plans for the prevention and control.

2 Method and material
2.1 Database

To use the recurrent neural networks as an instrument to forecast the future possible seasonal
flu’s epidemic curve, it is mandatory to create a database of previous seasonal influenzas’
epidemic curves. Indeed, to obtain a recurrent neural network with the forecasting capability,
it must be trained with a large database of previous data about the phenomenon that you want
to forecast.

The database used in this work is public and composed by the seasonal flu’s dataset, that is
collected and available thanks to the Italian National sentinel influenza surveillance system
(InfluNet), that started its work with the seasonal flu between 1999 and 2000 [27, 30]. The
Italian National sentinel surveillance system, InfluNet, collects the data about the diffusion
of seasonal influenza through the community of family doctors and paediatric doctors, who
are indicated to report all cases of diagnosis of ILI to InfluNet network [29]. The operative
protocol establishes that the number of medical doctors that takes part to the surveillance
must be in the number to ensure a minimum quantity of population under observation, that
must be equal or major than the 4% [29].
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Furthermore, the protocol through this surveillance system work establishes that the diag-
nosed ILI cases must have the same symptoms indicated from the ECDC in the way to have
a single meter of reference in all Europe [29].

The year period under surveillance is the period identified with the maximum diffusion of
seasonal influenza that starts in the 42nd week of the year and finishes around the 17th week
of the next year (as it is possible to see in Table 1), with a few exceptions in the database [29,
30].

In this work, it was decided to use as database all the files publicly available [30], with the
seasonal epidemic curves shown in Table 1, from the season 2003/2004 to season 2017/2018,
for a total of 15 seasons.

2.2 Recurrent neural network ensemble used in this study

The neural network used are time-delay neural networks, which have a simple feed-forward
architecture. In the specific case, the neural networks had two hidden layers and one output
layer. The output layer has only one neuron (being one the output). The two hidden layers
can have a free number of neurons. In the specific case, two different architectures have been
used. The first one has only two neurons per layers, while the second one has 4 neurons
in the first layer and 2 in the second. More complex networks have also been investigated,
but as the reader will see, even so-simple architectures ensured the highest performances.
Two inputs have been used, the weeks (being seasonal) and the past cases of influenza. Two
different combinations of time delays have been tested, 5 and 10 (a time delay corresponds
to one week, which is also the time step). Figure 1 shows the two architectures of the neural
networks. In particular, in Fig. 1 the value k represents the time delay values used by the
neural network, while the value t-p represents the first time slice of the dataset.

These neural networks are the core of the ensemble. The ensemble is compounded by many
neural networks which are trained and predict independently. The size of the ensemble, i.e. the
number of neural networks, can freely be changed. The cases analysed are resumed in Table
2. The outputs of the ensemble are the mean and the standard deviation of the prediction,
calculated, respectively, as the average and the standard deviation of the prediction of each
neural network.

Figure 2 shows the experimental scheme of this work. At first, the dataset is divided in
training set and test set. The first N weeks are used to train, the remaining to test the ensemble.
The training set is also divided in other three subsets: train (70%), validation (15%), and test
(15%) [31]. This process is used to avoid that each neural network does not overfit the data.

Once the ensemble is trained, it is tested on the test set.

2.3 Structure of study

For the first part of the study, it is investigated the capabilities and the quality of results
in the forecasting of epidemic curves. Six ensembles, with two different delay values, are
used to forecast the last three seasons of influenza. As shown in Table 3, 12 of the 15
seasons, since season 2003/2004 to season 2014/2015, were used for the training of the
ensemble. Successively, the last 3 seasons, since 2015/2016 to 2017/2018, are used as a term
of comparison with the forecasting epidemic curves and its uncertainty values.

In the second part of the study, the aim was to investigate the importance of the size of
the training set to ensure high prediction performances analysing the forecasts resulted in
comparison with the real data. The ensemble used it the best obtained from the previous study.
As shown in Table 4, the study was been conducted progressively decreasing the number of
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Fig. 1 Recurrent Neural Networks Architecture. The figure shows the two architectures used. In the first figure
(top), the net with two hidden layers is showed, with two neurons on both hidden layers. In the second figure
(bottom), the second architecture with two hidden layers is showed, with four neurons on the first layer and
two neurons on the second layer. In particular, in figure the value k represents the time delay values used by
the neural network, while the value r—p represents the first time slice of the dataset

Table 2 Parameters of nets used Number of nets 5 10 15
in this work per ensembles
Architectures of 4-2 2-2
nets
Delay values 5 10

seasons used for the training while the number of seasons predicted increases. The study is
conducted starting with 13 seasons for training and 1 for prediction arriving at 1 season used
for the training and 13 seasons forecasted.

3 Results

3.1 Results of the first study: ensemble’s capability of prediction, parametric study
for prediction of data’s last three years

The predictions’ results obtained are analysed through the use of R? values [32]. In this way,
it is possible to have a quantification of correspondence between the predictions and the real
data.
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Fig. 2 Experimental scheme. The figure shows the steps to train the ensemble and then test it. The data are
partitioned in two main datasets: training and test. The training dataset is then subdivided in three sub-datasets
for the training of each neural network in the ensemble. The test set is used to test it

In Table 5, all average values of R” for each ensemble tested are reported. The best result
in terms of R? is obtained by the prediction of ensemble 5x_4-2_D10, with a determination
coefficient equal to 98.26% for the three seasons predicted (Table 5). While the worse results
are obtained by the ensembles of the same net but with a delay value equal to 5, Table 5.

From Figs. 3, 4, 5 and 6, the 3 seasonal predicted epidemics curves are plotted. The line
in black always represents the real data while the coloured lines represent the predicted data
and uncertainty of each ensemble (red for ensembles of 5 nets, orange for ensembles of 10
nets and blue for the ensemble of 15 nets).

Figure 3 shows the prediction plots obtained by the ensembles of 2-2 net (Fig. 1) with a
delay value equal to 5. It is possible to see as the predicted data are close to the real data, in
particular, there is a little overestimation in the second season, while in the third season it is
possible to see a little underestimation of the epidemic curves in all ensembles. The ensembles
of 10 nets (Fig. 3) are characterised by appreciable differences between the predicted and
real data in the third season. However, it can be observed that when there is a large error, the
ensemble returns also a large uncertainty, and the predicted data are within the confidence
interval (2 standard deviation).

Figure 4 reports the prediction plots obtained by the ensemble of nets with two neurons for
each hidden layers (Fig. 1) and delay value equal to 10. In these cases, the predicted and real
data are very close for each season, as demonstrated by Fig. 4 and by the R? results in Table
5. Also in this case, the third season is affected by larger error and prediction uncertainties.
However, also in this case the real data are within the predicted values (considering the
uncertainty), involving that the prediction is capable to return reliable results.

In Fig. 5, the prediction plots of the ensembles obtained by the neural network with four
neurons in the first layer and two neurons in the second layer (Fig. 1) are reported, and delay
value is equal to 5. In these tests, it is possible to see, in the first plot (top in Fig. 5), that
the ensemble of five nets has a forecast distant in some point from the real data, especially
in the peak zones of second and third seasons. This inaccurate trend is also confirmed by
the R? value of this ensemble equal to 73.43% (reported in Table 5), that is a lower value of
correspondence between the forecasting and real data. In the specific case, this value is the
lowest value of R? obtained in this work.
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Table 4 Database subdivision used to perform the second study

NF° Seasons 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 | 14 | 15
2003-{2004- |2005-|2006-|2007-{2008-|2009- [2010- |2011- [2012-|2013-|2014-|2015-|2016-|2017-
42 | 42 | 42 | 42 | 42 | 42 | 43 | 42 | 42 | 42 | 42 | 42 | 42 | 42 | 42
2004-|2005- | 2006- |2007- {2008-2009-{2010-|2011-|2012-|2013-2014-|2015- | 2016-|2017- | 2018-
17 | 16 | 17 | 17 | 17 | 42 | 15 | 17 | 17 | 17 | 17 | 17 | 16 | 17 | 17

Seasons | Start
(year-wee
k) End

Casel

Casel0
Casell
Casel2

Table 5 Average resulting values  Ngtg’ R2 values (%) Nets’ R2 values (%)

of R2 for each one of ensembles ensembles ensembles

tested
5x_4-2_D5 73.43 5x_2-2_D5 97.58
10x_4-2_D5 96.46 10x_2-2_D5 97.91
15x_4-2_D5 96.00 15x_2-2_D5 98.19
5x_4-2_D10 98.26 5x_2-2_D10 97.68
10x_4-2_D10 97.79 10x_2-2_D10 98.15
15x_4-2_D10 95.89 15x_2-2_D10 97.47

For what concern the ensembles of 10 nets and 15 nets the forecasts are closer to the real
data with little differences in peak’s zones of the epidemic curve (Fig. 5). In this case, the
forecasts’ uncertainty values obtained are high always in correspondence of peak’s zones of
the epidemic curve (Fig. 5).

Finally, in Fig. 6, the forecasts’ data obtained by the three ensembles, based on the neural
network with four neurons in the first layer and two in the second one (Fig. 1) are plotted,
with a delay value equal to 10. In this case, the forecasts’ data are very close to the real data,
especially in the ensemble of 5 nets (the plot in the top of Fig. 6), that is the nets” ensemble
with the best result in terms of trend and especially in terms of R? value in comparison with
the other ensembles (Table 5). In the ensembles’ forecasts (Fig. 6), it is also possible to see a
low underestimation in correspondence of the third season’s peak, that is more appreciable
observing the ensemble of 15 nets that obtained, for this reason, a low R? value, 95.89%
(Table 5).
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Fig. 3 In the figure, it is shown the three seasonal epidemic curves predicted by the three ensembles based
on the net named 2-2 with a delay value equal to 5, with the relative measure of uncertainty. In each plot, it
is shown with the predictions also the comparison with the real data (black line). In the first plot (top), it is
shown the prediction of the ensemble of five nets (red line). In the second plot (in middle), it is shown the
prediction of the ensemble of ten nets (orange line). While in the third (bottom) plot, it is shown the prediction
of the ensemble of fifteen nets (blue line)
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Fig. 4 In the figure, it is shown the three seasonal epidemic curves predicted by the three ensembles based
on the net named 2-2 with a delay value equal to 10, with the relative measure of uncertainty. In each plot,
it is shown with the predictions also the comparison with the real data (black line). In the first plot (top), it
is shown the prediction of the ensemble of five nets (red line). In the second plot (in middle), it is shown the
prediction of the ensemble of ten nets (orange line). While in the third (bottom) plot, it is shown the prediction
of the ensemble of fifteen nets (blue line)

3.2 Results of the second study: quality of Ensemble’s prediction, and correlation
with the data’s quantity in the training session

In the second part of the study, the idea is to investigate the correlation between the quantity
of data used for the training phase, and the forecasts’ quality obtained analysed through the
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Fig. 5 In the figure, it is shown that the three seasonal epidemic curves predicted by the three ensembles based
on the net named 4-2 with a delay value equal to 5, with the relative measure of uncertainty. In each plot, it
is shown with the predictions also the comparison with the real data (black line). In the first plot (top), it is
shown the prediction of the ensemble of five nets (red line). In the second plot (in middle), it is shown the
prediction of the ensemble of ten nets (orange line). While in the third (bottom) plot, it is shown the prediction
of the ensemble of fifteen nets (blue line)
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Fig. 6 In the figure, it is shown the three seasonal epidemic curves predicted by the three ensembles based
on the net named 4-2 with a delay value equal to 10, with the relative measure of uncertainty. In each plot,
it is shown with the predictions also the comparison with the real data (black line). In the first plot (top), it
is shown the prediction of the ensemble of five nets (red line). In the second plot (in middle), it is shown the
prediction of the ensemble of ten nets (orange line). While in the third (bottom) plot, it is shown the prediction
of the ensemble of fifteen nets (blue line)

R? term. To perform this study, the best ensemble of neural networks obtained by the first
study has been used. For this reason, the choice was obviously the ensemble of nets with the
architecture of four neurons for the first layer and two for the second layer (Fig. 1), with a
delay value equal to 10. Also in this case, the analysis has been performed varying the size
of the ensemble, i.e. the number of neural networks.

The study is based on varying the training and test set sizes. Having a total of 15 seasons,
14 different tries have been performed. The first had 1 season for the training and 14 for the
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Fig. 7 In the figure, the plot shows the average results of nets’ ensemble 4-2 with delay 10. In the figure are
plotted RZ (Y-axis) for each case of the second part of the study in relation with the increment of the number of
seasons predicted (X-axis) that means a decrement in the number of seasons used for the training, validation,
and test phase

test, while the last had 14 seasons for the training and 1 for the test. These values are plotted
in Fig. 7 for each ensemble. In black, it is plotted the R? values about the ensemble of 5 nets,
in red the R? values about the ensemble composed by 10 nets and in green the R? values of
the ensemble of 15 nets.

The figure shows the plotted R? values. All the R? show a similar trend, which strongly
decreases when the training set is decreased. This trend indicates that there is a correlation
between the forecasts’ quality and the number of data used to build the database to train the
neural network, as it is expected. Indeed, decrementing the number of data used to train the
neural network, the inaccuracy of the forecast grows.

It is also interesting to observe the effect of the ensemble sizes. When only 5 neural
networks are used (black line), the R? oscillates, involving that the prediction using only 5
networks is too low and the prediction accuracy is poor. Contrariwise, the ensembles with
10 and 15 return much more stable and good results.

4 Conclusions

In this work, the possibility to use neural network ensembles for infectious disease prediction
has been investigated, by performing two studies aiming at characterising the applicability
of this tool.

For what concerns the results of the first study, it is possible to conclude that the ensembles
based on the TDNNs have the capabilities to forecast epidemic curves of influenza Indeed,
analysing the R? values for each tested ensemble, it is possible to see as in a lot of these cases
the values of linear correspondence are major than the 95%, meaning that the forecasted
average epidemic curves are very close to the real data (which have not been used in the
training phase of ensembles).
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The differences between the various architectures did not show significant differences and
the main conclusions are:

1. Increasing the number of neural networks increases the prediction accuracy and standard
deviation (since they are calculated with larger statistics).

2. Alarge number of time delays may increase the prediction accuracy. Through the second
study of this work, it is possible to conclude how the correlation between the quantity
of data in the database used for the training phase is strongly connected to the quality
of prediction obtained by an ensemble. Indeed, observing the studies of three different
ensembles (in Fig. 7), it is possible to see how the quality of prediction decreases with
the reduction of used database size. Increasing the number of TDNN in the ensemble
involves a better statistic, involving more stable and reliable results.

Finally, it is possible to conclude that the use of an ensemble of TDNNs can be an
instrument to predict the future epidemic curves with good results. Furthermore, the used
ensemble structure of TDNN also gives the possibility to obtain an uncertainty measure of
the predicted epidemic curve, with the possibility to adapt the future measure of prevention,
response, and control.

It is important to note that in this work a very simple neural network has been used. This is
due to the small number of input variables (past cases and weeks). In more advanced analysis,
where it could be important to take into account much more pieces of information (vaccina-
tion, countermeasures taken by government, etc.), much more complex neural network may
help in predicting more complex epidemics, or to increase the prediction performances of
standard ones.

In conclusions, this work demonstrated that neural network ensemble may be used to pre-
dict epidemics or pandemics with great accuracy, giving also a great additional information:
the uncertainty. This value is meaningful and truly important for decision making, since it
gives the reliability of the predicted values. A predicted value with an uncertainty equal to
2% of the predicted values involves that the prediction will be reliable and accurate, while a
value higher than 50% means a poor accurate and reliable prediction.

In the future, more complex epidemics with many more input variables will be tested.
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