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Abstract. The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence
of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids
are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a
charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to
be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study
the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the
Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on
the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly
important for the stability of the flow. For the DC case, the external pressure could either stabilize and
destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven
flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different
wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency
of the electric field increases, the one-dimensional solution of the problem becomes stable.

1 Introduction

In connection with the rapid development of biotechnol-
ogy, the problems of electrokinetics attracted much at-
tention. One of its applications is medical diagnostics in
laboratories on a chip. Electroosmotic flows are an im-
portant element in the laboratories on a chip for trans-
port and mixing of liquids. Nevertheless, when the liquid
is exposed to a constant high power electric field, vari-
ous undesirable effects occur, such as sample degradation,
electrolysis, bubble formation on electrodes. These effects
can be prevented by using an alternating electric field.
The two-layer system is used to drive non-conducting liq-
uids at microscale scales so that the electroosmotic and
pressure-driven flow of the electrolyte entrains a layer of
dielectric fluid. However, even with the use of such tech-
niques, the theoretical aspects of transport and mixing of
non-conducting liquids remain insufficiently studied.

Previous works on the AC electroosmotic flows in mi-
crochannels are based on the one-phase flow [1] or on the
microfilm flow with an unperturbed flat interface [2]. The
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main limitation of the use of the electroosmotic flows is
that the liquid must have a sufficiently high conductivity.
Despite the fact that the biological fluids, such as blood,
serum, etc., are conductors, their conductivity is not high
enough to be moved by the electric field. To solve this
practical problem, a two-layer system of immiscible liquids
is taken, where one liquid is a non-conducting one while
the other is an electrolyte. The non-conducting liquid is
entrained by the shear of the neighboring conducting liq-
uid [3]. Studies of the electrostatic effects at the interface
were presented in [4,5]. The stability of such flows with
the application of a constant field was investigated for a
special case, where air was used as a dielectric, in work [6],
and for a flow with an additional external pressure gradi-
ent in operation [7].

Investigations of the problem with AC electric field are
absent in the literature, so the main goal of the present
article is to fill in the theoretical gap and to help other re-
searchers with experimental investigations. Critical values
of the parameters can serve as a guide for the experiments.

2 Formulation of the problem

A flow of two thin liquid immiscible layers with a con-
stant viscosity and permittivity is considered. The flow is
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Fig. 1. Electroosmotic two-phase liquid-liquid flow subject to
an external tangential electric field.

enclosed between two infinite parallel plates, y = 0 and
y = H, see (fig. 1). The region 0 < y < h(x, t) contains
a symmetric, binary electrolyte with equal diffusivities of
cations and anions, while the region h(x, t) < y < H is
filled with a dielectric.

Tilded symbols (f̃) will be used for the dimensional
variables, in contrast to their untilded dimensionless coun-
terparts (f). The following characteristic quantities are
used as the basic values:

– h̃0 is the characteristic length, a thickness of the elec-
trolyte layer;

– h̃2
0/D̃ is the characteristic time, where D̃ is the ion

diffusivity in the electrolyte;
– μ̃e is dynamical viscosity of the electrolyte is taken as

a characteristic dynamical value;
– Φ̃0 = R̃T̃ /F̃ is the thermic potential is taken as the

characteristic one; here F̃ is Faraday’s constant; R̃ is
the universal gas constant; T̃ is the absolute tempera-
ture;

– C̃0 is the characteristic ion concentration.

Then the problem is described by eleven dimensionless
parameters, namely:

– E0 = Ẽ0 h̃0/Φ̃0 is the external electric field;
– Π = Π̃ h̃2

0/μ̃eD̃ is the pressure gradient;
– ω = ω̃h̃2

0/D̃ is the frequency of the external electric
field;

– ν = λ̃D/h̃0 is the Debye number;
– δ = ε̃d/ε̃e is the ratio of the electric permittivities of

the dielectric and electrolyte;
– μ = μ̃d/μ̃e is the ratio of the viscosities of the dielectric

and electrolyte;
– κ = ε̃eΦ̃

2
0/μ̃eD̃ is the coupling coefficient between the

hydrodynamics and the electrostatics;
– We = γ̃h̃0/ε̃eΦ̃

2
0 is the Weber number, where γ̃ is the

surface tension coefficient;
– q = q̃/σ̃s is the dimensionless immobile wall surface

charge;
– σ0 = σ̃0/σ̃s is the dimensionless mobile surface charge

on the interface for the one-dimensional solution;
– H = H̃/h̃0 is the ratio of the layers thickness of the

dielectric and the electrolyte.

Here λ̃D is the Debye length,

λ̃D =

(
ε̃eΦ̃0

F̃ C̃0

)1/2

=

(
ε̃eR̃T̃

F̃ 2C̃0

)1/2

,

and σ̃s is the characteristic surface charge,

σ̃s =
ε̃eΦ̃0

λ̃D

.

Note that, if for the one-dimensional steady-state case
σ is some constant, σ = σ0, for the two-dimensional case
the surface charge at the interface is a function of x and
t, σ = σ(x, t).

The typical parameter values are taken in all our cal-
culations: q = −3, σ = 1, ν = 0.1, κ = 0.2, We = 2× 104,
δ = 1.25 × 10−2, μ = 2, H = 4. The control parameters
E0, Π, and ω vary in the intervals, respectively, −200;
200, 0; 100, and 0; 10.

The electrolyte is described by the Nernst-Planck-
Poisson-Stokes equations, taken in a dimensionless form,
as follows:

∂C±

∂t
+ U · ∇C± = ±∇ ·

(
C±∇Φ

)
+ ∇2C±, (1)

ν2 ∇2Φ = C− − C+, (2)

−∇P + ∇2U =
κ

ν2
(C+ − C−)∇Φ, (3)

∇ · U = 0, (4)

where (1) is the ion transport equations, (2) is the Pois-
son equation for the electric potential, and (3), (4) are
the Stokes equations with the Coulomb force in the right-
hand side. Here C± are the concentration of the positive
and negative ions, U = (U, V ) is electroosmotic velocity,
Φ is the electrical potential, and P is pressure. All the
unknowns are taken in the electrolyte.

The dielectric liquid is electrically neutral, the poten-
tial ϕ is described by the Laplace equation, and hydro-
dynamics is described by the Stokes equation without the
Coulomb force,

∇2ϕ = 0, (5)
−∇p + μ∇2u = 0, (6)

∇ · u = 0. (7)

The boundary conditions (BCs) on the solid surfaces,
y = 0 and y = H, are

y = 0 : ν
∂Φ

∂y
= −q, (8)

C+ ∂Φ

∂y
+

∂C+

∂y
= 0, −C− ∂Φ

∂y
+

∂C−

∂y
= 0, (9)

V = 0, U = 0, (10)

y = H :
∂ϕ

∂y
= 0, u = v = 0. (11)
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At the interface the unknowns obey the following BCs:

y = h(x, t) : C+ ∂Φ

∂n
+

∂C+

∂n
=0, −C− ∂Φ

∂n
+

∂C−

∂n
=0,

(12)

Φ = ϕ, ν
∂Φ

∂n
= δν

∂ϕ

∂n
+ σ, (13)

∂σ

∂t
+

∂(Usσ)
∂x

= 0, (14)

P +
We

r
+ 2

∂U

∂x

1 − h2
x

1 + h2
x

+ 2
(

∂U

∂y
+

∂V

∂x

)
hx

1 + h2
x

−1
2

κ

{(
∂Φ

∂n

)2

−
(

∂Φ

∂s

)2
}

=

p + 2μ
∂u

∂x

1 − h2
x

1 + h2
x

+ 2μ

(
∂u

∂y
+

∂v

∂x

)
hx

1 + h2
x

−δ

2
κ

{(
∂ϕ

∂n

)2

−
(

∂ϕ

∂s

)2
}

, (15)

−4
∂U

∂x

hx

1 + h2
x

+
(

∂U

∂y
+

∂V

∂x

)
1 − h2

x

1 + h2
x

+ κ

∂Φ

∂n

∂Φ

∂s
=

μ

(
−4

∂u

∂x

hx

1 + h2
x

+
(

∂u

∂y
+

∂v

∂x

)
1 − h2

x

1 + h2
x

)
+ δκ

∂ϕ

∂n

∂ϕ

∂s
,

(16)

V =
∂h

∂t
+ U

∂h

∂x
, U = u, V = v. (17)

The BCs (9), (12) means that the surface is imperme-
able to the cations and anions, the condition (13) means
that the electric potential is continuous on the surface,
while its normal to the surface derivative has a jump as-
sociated with the mobile surface charge, and eq. (14) is the
surface charge conservation equation. The dynamic BCs
for the normal and tangential stresses, (15) and (16), and
the kinematic conditions (17) complement the statement.

3 One-dimensional solution

The electrostatic problem (1), (2) can be solved indepen-
dently of the hydrodynamic problem. The electric poten-
tial can be represented as the following superposition:

Φ=Φt(t, x)+Φn(y), Φt(t, x)=E∞ x=E0x cos ωt.
(18)

The tangential field E ≡ dΦn/dy and the ion concentra-
tions C± obey the following system:

C+E +
dC+

dy
= 0, (19)

−C−E +
dC−

dy
= 0, (20)

ν2 dE

dy
+ C+ − C− = 0 (21)

with the BCs

y = 0 : E = −1
ν

q, (22)

y = 1 : E =
1
ν

σ. (23)

After solution of the electrostatic part of the prob-
lem, the hydrodynamic movement can be easily found.
The equations for the upper, dielectric liquid (6),(7) with
the pressure gradient dp/dx = −Π turn into

μ
d2u

dy2
= −Π, (24)

y = H : u = 0, (25)

y = 1 : μ
du

dy
=

dU

dy
− κEE∞, u = U. (26)

Upon integration of (24) and using the corresponding BCs,
we get

μ
du

dy
= A1−Π(y−H), μ u = A1(y−H)−Π

2
(y−H)2,

where A1 is the constant of integration,

A1 =
μu(1)

(1 − H)
+

Π

2
(1 − H).

Eventually, we get the effective BC for the electrolyte:

y = 1 :
dU

dy
− μ

1 − H
U = κEE∞ − Π

2
(1 − H). (27)

Equations (3), (4) with the BCs U(0) = 0 and (27)
become

dP

dy
= κ E

dE

dy
=

κ

2
dE2

dy
, (28)

d2U

dy2
− κ

dE

dy
E∞ = −Π. (29)

Upon first integration of (29),

dU

dy
= κE∞ E − Πy + const. (30)

For the second BC at y = 1, const = 0. Upon the second
integration, we get

U = κE∞

∫ y

0

E dy + C1y − Π
y

2
, (31)

where

C1 =
κ μ

∫ 1

0
E dyE∞ − Π

2 (μ − 1 − H2)
1 − H − μ

. (32)

The pressure is found from eq. (28), i.e.,

P = const(y) +
κ

2
E2 − Πx.
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Fig. 2. Velocity profiles for E0 = 100 for different values of Π:
(a) Π = 0, (b) Π = 10, (c) Π = 100 and different times: t = 0
(1), t = π

3ω
(2), t = 2π

3ω
(3), t = π

ω
(4).

The constant of integration can be found from the BC (15)
for the normal stresses. For the one-dimensional case it is

y = 1 : P − κ

2
E2 +

κ

2
(1 − δ)E2

∞ = p, (33)

or
const = −κ

2
(1 − δ)E2

∞.

Thus,
P =

κ

2
E2 − κ

2
E2

∞(1 − δ) − Πx. (34)

In fig. 2 the velocity profile U(y) is presented for the
AC case for the different time moments, t; the electric
field, E0 = 100, and several values of the pressure gradient
Π are taken. If Π = 0, the mean flow is absent, so the
profiles are symmetrical about zero. We emphasize that
all the relations in sect. 3, by virtue of the parametric
dependence on time for the one-dimensional case, are valid
either for the DC or AC cases.

For the positive E∞, the pressure-driven and the elec-
troosmotic flows are counterdirected, while for E∞ nega-
tive they are codirected.
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Fig. 3. Marginal stability curves for the DC case and different
values of Π: Π = 0 (1), Π = 10 (2), Π = 100 (3).

4 Investigation of instability

In contrast to the one-dimensional flow, the DC and AC
cases for the stability problem are drastically different.
Let us superimpose small, sinusoidal perturbations with
a wave number α along the x-axis to the one-dimensional
solution,

f(t, x, y) = f0(t, y) + f̂(t, y) exp(iαx), (35)

where f represents all the unknowns in the electrolyte
and the dielectric. The substitution of the expansion (35)
into eqs. (1)–(17) leads to the system of equations with
respect to perturbations f̂ . The resulting cumbersome
system of ordinary differential equations is not given in
this short paper. For the DC electric field, the depen-
dences of perturbations on time could be found in the
form f̂(t, y) = f̂1(y) exp(λt). The one-dimensional flow is
stable, if for all wave numbers α Re(λ) < 0; if there are
wave numbers α, for which Re(λ) > 0, the flow is unsta-
ble. The neutral marginal curve separates the stable and
unstable cases.

For the AC electric field according to the Floquet the-
orem the perturbations can be sought in the form

f̂(t, y) =
∞∑

k=−∞
f̂k(y) exp[(λ + ikω)t], (36)

where now λ is the Floquet coefficient. As for the DC
case positive Re(λ) corresponds to the instability, while
negative Re(λ) to the stability of the system.

Two types of wave instability in the two-phase elec-
troosmotic flows were found in the papers [6,7]. Here we
concentrate on the most dangerous, either for the DC or
the AC fields, short wave instability.

In fig. 3 the marginal stability curves for the DC case
for several values of Π are presented. One can see that
the pressure gradient has a different influence for the cases
E∞ < 0 and E∞ > 0. In the case when the pressure-driven
flow and the electroosmotic flow are codirected (E∞ < 0)
the increasing of the pressure gradient leads to the system
destabilization and, on the contrary, when the pressure-
driven flow and the electroosmotic flow are the counterdi-
rected (E∞ > 0), the increasing of the pressure gradient
leads to the system stabilization.
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For the case of the AC electric field the influence of
the external pressure gradient is not monotonous and
for different wave numbers α it can either stabilize or
destabilize the system, see fig. 4; usually the persistence
of the external pressure gradient mostly destabilizes the
one-dimensional flow and the instability arises at smaller
values of E0. The increase of the electric field frequency
(fig. 5) leads to the stabilizing of the one-dimensional flow
for all values of the external pressure gradient.

5 Conclusion

The stability of the electroosmotic flow of conductive
(electrolyte) and non-conductive (dielectric) viscous liq-
uids under the influence of constant and alternating elec-
tric fields was investigated. The fluids are bounded by two

infinite parallel plates. The lower solid wall is a charged
surface, and the upper wall is isolated. The charge at the
lower boundary is assumed to be stationary, and the sur-
face charge at the free interface of the fluids is assumed to
be mobile. The problem was investigated using asymptotic
and numerical methods. For a sufficiently strong external
field, the one-dimensional solution becomes unstable.

The dependences of the critical values of the external
electric field intensity on the different values of external
pressure and electric field frequency were obtained theo-
retically. It was found out that for the case of AC electric
field the increase of the external pressure mostly leads to
the destabilization of the one-dimensional flow. For the
DC electric field the influence depends on the direction of
the electric field.
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