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Abstract. In present paper we recall the canonical Taylor-Green vortex problem solved by in-house imple-
mentation of the novel CABARET numerical scheme in weakly compressible formulation. The simulations
were carried out on the sequence of refined grids with 643, 1283, 2563 cells at various Reynolds numbers
corresponding to both laminar (Re = 100, 280) and turbulent (Re = 1600, 4000) vortex decay scenarios.
The features of the numerical method are discussed in terms of the kinetic energy dissipation rate and inte-
gral enstrophy curves, temporal evolution of the spanwise vorticity, energy spectra and spatial correlation
functions.

1 Introduction

Taylor-Green vortex (TGV) decay being the canonical
problem of the computational hydrodynamics is proved to
be a useful benchmark when testing sophisticated numer-
ical algorithms aimed for modeling of the vorticity evo-
lution, the turbulent transition and the subsequent decay
of turbulence. Generally, the evolution of TGV is accom-
panied by the vortex field complication when multiscale
vortex structures are formed and nonlinearly interact. In
the original formulation [1], the flow was analyzed using
asymptotic methods, however, the series expansion based
on time or Reynolds number [2] does not allow describing
the flows at the advanced evolution times t or high Re.
At present, the Taylor-Green problem is the object of ap-
plying a wide variety of numerical methods and models of
turbulence that are distinguished by their genericity, or-
der of accuracy, dispersion and dissipative characteristics.
For the flow under consideration the spectral methods are
the most competitive among others, as they utilize spe-
cialized basis functions with account for flow symmetries
that significantly improve the accuracy of results and the
calculation efficiency. It was Brachet et al. [3], which per-
formed the first numerical simulation of the inertial in-
terval of free turbulence using the trigonometric functions
expansion and the Galerkin method.

A rapid convergence of spectral techniques provides
the way to more accurate modelling of small scales. In
comparison with the finite-difference methods they require
at least 2 times less spectral resolution [4] in one direction
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or 8 times less degrees of freedom in three-dimensional
calculations, if the error reaches 5–10%. However, the
most computationally “expensive” procedure in this case
is the correct estimate of Navier-Stokes equations right-
hand side written as the sum of the pairwise products of
the coefficients of the spectral expansion. Direct compu-
tation of this convolution appears to be impossible due to
the strong nonlocality of the data access, which requires
additional techniques to implement them successfully for
massive parallel calculations [5].

Finite-difference RANS and LES methods can serve as
a competitive alternative for turbulence modeling: the for-
mer successfully work on an ensemble of similar flows [6],
for which well-calibrated models are developed, such as
attached boundary layers and flows without strong inho-
mogeneities. LES algorithms [7] employing the idea of ve-
locity splitting into a smooth averaged component (which
is the subject of calculation) and a strongly oscillating
component [5], directly model large-scale structures con-
taining the main part of turbulent kinetic energy. To sim-
ulate the effects of subgrid scales, additional algorithms
are used, minimizing the drawbacks of a subgrid model
itself. Relatively slow grid convergence of LES methods
achieved on very large and time-consuming grids [6] at
medium and high Reynolds numbers is considered as the
main drawback.

TGV flow modeling performed in the present paper
has been motivated by several remarkable properties of
the CABARET numerical scheme observed in one- and
two-dimensional formulations. In particular, CABARET
scheme

– has a compact computational stencil housed into one
space-time cell;

– is reversible on a substantial time interval;
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– possesses formally the second-order accuracy both at
nonuniform spatial grid and time step unless nonlinear
flux correction procedure is used;

– has a seamless flux correction algorithm based on di-
rect use of Riemann’s invariants;

– is universal and does not have any adjustable param-
eters;

– can be used to calculate both blast and ultra-weak
shock waves;

– complies with aeroacoustics, wherein the sound oscil-
lations are several orders of magnitude lower than hy-
drodynamic ones, while their scale [8], on the contrary,
is several orders greater. In this case high-accuracy
methods (such as DRP [9]) are the proved tool as
they use more sparse grids and are more accurate
than second-order schemes. However, high-order ap-
proximation techniques can yield incorrect solutions
on variable size cells meshes;

– is capable of simulating combustion and detonation
problems.

With weak (almost negligible) dissipative and good disper-
sion properties been proven when solving various one- and
two-dimensional problems, the CABARET was initially
considered as a Perfect LES algorithm. To our knowledge
nowadays there are no reported results on the joint imple-
mentation of the CABARET scheme and weak compress-
ibility [10] approach when modeling three-dimensional
turbulent flows. In this paper, we recall the Taylor-Green
vortex flow in order to investigate the scheme dissipa-
tive properties analyzing the integral and spectral flow
properties. Dealing with integral characteristics of homo-
geneous turbulence we show, at large, the successful use
of weak compressibility formulation and the existence of
an intrinsic numerical dissipation mechanism arising es-
pecially in the three-dimensional case, as well as the need
to reclassify this technique to the group of Implicit LES
algorithms [11].

In the following sections we give the problem statement
(sect. 2), as well as brief comments about an algorithm im-
plementation (sect. 3), basic relationships for determining
the kinetic energy dissipation rate (sect. 4), a concise phe-
nomenological description of the flow evolution (sect. 5),
followed by the analysis of integral energy and enstrophy
curves (sect. 6). We also discuss spectral characteristics
(sect. 7) and spatial correlation functions (sect. 8). In this
section we also consider the possible existence of homoge-
neous or isotropic turbulence in the TGV turbulent decay
in terms of turbulent length scales and autocorrelation
function. The main results are summarised in the “Con-
clusion”.

2 Problem formulation

Let us consider a periodically extended cubic domain D
possessing the dimensions

x ∈ [−πL, πL], y ∈ [−πL, πL], z ∈ [−πL, πL],

where L is a characteristic length scale, with the corre-
sponding initial conditions of the TGV in the domain in-
terior:
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)
, p0 = 0, (1)

complemented in our case with an equation of state for a
weakly compressible fluid:

ρ = p/c2 + ρ0,

wherein c and ρ0 stand for sound speed and reference den-
sity. It is worth noting that the initial conditions for the
velocities are divergent as they satisfy the solenoidity re-
lation ∇ · V = 0. From the physical standpoint periodic
boundary conditions pose an unbounded region filled with
a system of identical vortices.

The Taylor-Green vortex is the simplest example of an
initially plane flow, in which self-excited vortex stretching
occurs with simultaneous three-dimensional velocity field
generation.

Further on, Reynolds number will be determined bas-
ing on the characteristic length scale

Re = U0ρ0L/μ0. (2)

The problem is solved for several Reynolds numbers

Re = 100, 280, 1600, 4000,

according to the choice made in [12].
Computational grids have an equal number of cells in

three orthogonal directions

nX × nY × nZ = 643 (1), 1282 (2), 2563 (3).

Grid (3) is considered [6] as a lower boundary of the
grid range necessary for the correct vortex structures
resolution when simulating the vortex decay numerically
(Re = 1600); therefore, in this study, we use it to elucidate
the question of grid convergence.

Let us estimate the number of grid cells for a good
resolution of the smallest scales of homogeneous isotropic
turbulence in the three-dimensional case (Re = 1600) as

N ≈ Re9/4 ≈ 16 × 106.

Contrary to model problems (such as TGV decay) [5],
for real flows the similar estimate yields for an aircraft
flow (Re ≈ 2 × 107) N ≈ 2 × 1016 and for commonly
encountered geophysical flows (Re ≈ 1020) N ≈ 1045, that
makes impossible a direct numerical simulation (DNS) of
these problems.
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In the series of calculations all characteristic pa-
rameters (U0, t0,M), except for the Reynolds number,
were kept constant. The three-dimensional implementa-
tion of the algorithm is a further development of the two-
dimensional version [13–16] of the weak compressibility
approximation. A decomposition of the computational do-
main by planes z = const was used when parallelizing the
algorithm for multiprocessor computers. The calculations
were performed on several computing machines at JIHT
of RAS, JSCC of RAS and MIPT DPC.

When performing calculations in the hybrid mode
(MPI with OpenMP) two additional flat layers of cells
are added at the z-axis boundaries of the main grid.

3 Numerical method

The CABARET (Compact Accurately Boundary Adjust-
ing high-Resolution Technique) scheme was rooted in pa-
pers by Goloviznin and Samarskii [17,18], which pro-
posed the three-layer implementation of this scheme for
the one-dimensional transport equation and showed that
the method is conditionally stable in the range of Courant
numbers CFL ∈ [0, 1] and exact for CFL = 0.5, 1. Later,
they revealed the formal similarity of the first variants
of the CABARET scheme to the results of Iserles [19] re-
lated to the generalization of the classical Leapfrog scheme
for hyperbolic equations. However, these schemes are
not equivalent to each other, since the Upwind Leapfrog
scheme neither is conservative, nor fits into one space-
time cell. Ever since the acronym “CABARET” has been
referring to as the double-layer divergent form of the
finite-difference approximation transport equations. The
balance-characteristic approach for the one-dimensional
transport equation [20] later extended to compressible
flows and supplemented with the nonlinear flux correc-
tion algorithm [21] was a further milestone. The use of
the characteristic form of transport equations determined
the exact localization of such solution features as shock
waves and contact surfaces [22].

Gas dynamic tests approved a remarkable efficiency
and accuracy when simulating acoustic and vortex flows.
In addition, it was shown that in the case of initial con-
ditions special approximation the scheme developed is
monotone [23] and strongly monotone [24] for Courant
numbers CFL ∈ (0, 0.5) and nonmonotone for CFL ∈
(0.5, 1). To eliminate the scheme nonmonotonicity a bi-
nary flux correction was proposed, that is performed in-
side a single spatial cell of a grid.

Nowadays the two-layer CABARET scheme is widely
used to simulate gas dynamics [25], acoustics [8,26],
chemically reacting [22,27] and incompressible fluid [28]
flows, in which equations are solved in “vorticity-stream
function” [29] or “velocity-pressure” formulation [30].
The monotonicity of this approach for one- and two-
dimensional problems was also studied in [31,32]. The
most complete collection of CABARET implementations
can be found in the monograph by Goloviznin et al. [33].

As indicated above, the CABARET scheme combines
the advantages of conservative and characteristic methods

in a monolithic approach, that leads to the use of a dou-
ble set of variables: the first set (“conservative variables”)
being average values of physical quantities within a single
computing cell [27] belongs to the cell centers, while the
second one (“flux variables”) corresponds to the centers of
the cells faces and is responsible for the data interchange
between the cells. Flux variables in boundary cells on a
new time layer are determined basing on the boundary
conditions. Points related to the cell centers are used to
solve equations written in a conservative form:
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The right-hand side of the inhomogeneous momentum
transport equations in (3) is also written in a divergent
form regardless the compressibility:
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Flux variables are used to solve equations in the char-
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where Ix,y,z
k are Riemann’s invariants, λx,y,z

k
—characteristic numbers and Gx,y,z

k — the right-hand
side terms of transport equations, originating from
characteristic form reduction procedure. Accounting for
the weak compressibility approximation these invariants
and their characteristic numbers in the three-dimensional
case are:
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Iz
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Invariants (6)–(8) are transferred in crosswise direc-
tions according to the values of the characteristic num-
bers (9) and determined by flux variables at the arbitrary
time step. The use of the weak compressibility approxi-
mation allows to avoid solving the Laplace equation for
pressure, and it not only changes the p = p(ρ) function,
but also the invariants form, and the algorithm at the ex-
trapolation stage.

It should be noted that, in effect, conservative variables
are ρ, ρu, ρv, ρw however, using the terms “conservative”
and “flux” variables we follow the originator’s terminol-
ogy encountered in published papers. Conservative and
flux variables are interrelated by interpolation only at the
initial step. At the subsequent steps they are calculated
independently and cannot be obtained directly from each
other.

The boundary conditions are set in terms of local Rie-
mann’s invariants. In case of periodic boundaries the val-
ues of the invariant I∞1 determined from the boundary
conditions and I2 delivering information from the domain
interior are used to calculate flux variables on the lower
and left boundaries while for upper and right borders the
pair I1, I∞2 is used. Flux variables include a few mesh sets
according to the dimensionality of space and are calcu-
lated independently.

To ensure a robust calculation via the explicit scheme,
the Courant number CFL = 0.15 corresponding to the
stability range was used.

A general description of the CABARET numerical
method consists of several stages which are: a predictor
stage (i), when intermediate conservative variables are cal-
culated via equations in a conservative form; an extrapo-
lation stage (ii), when flux variables on a temporary time
layer using linear extrapolation are obtained. Conservative
variables on the new time layer are calculated at the cor-
rector stage (iii) by virtue of conservative form equations.
As a detailed treatment of the algorithm is rather lengthy,
we address the interested reader to the papers [25,13].

4 Basic integral relations

Turbulent evolution of TGV is predominantly studied at
the benchmark Reynolds number Re = 1600, while the
grid convergence analysis is based on the integral kinetic
energy
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rather than on the direct error calculation for velocity and
vorticity fields.

For an incompressible fluid, the enstrophy is propor-
tional to the dissipation rate of the kinetic energy [34]:
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whereas for the compressible flow KEDR is determined by
the sum of two components determined by the deviatorial
part of the strain rate tensor:
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and by compressibility effects. To estimate the influence of
the latter on turbulence, we can calculate the dissipation
rate from pressure dilatation:

ε3 = − t0
U2

0

1
ρ0(2πL)3

∫∫∫

D

p∇ · V dxdy dz. (16)

The integration is performed by a trapezoidal method
which, due to the arrangement of points in the cell centers,
is reduced to a simple summation.

5 General flow description

TGV is a simple example of a flow allowing to keep track
of the mechanisms of turbulent decay, generation of small
vortices and an enhancement of dissipation due to vortex
tubes deformation. Depending on Re, various flow regimes
are observed, in particular, the decay of a single vortex at
Re = 100, 280 is laminar, and the formation of a random
vorticity field does not occur. Figure 1 shows an example
of such a decay at Re = 100, where the vorticity com-
ponent ωz is represented by two groups of level surfaces
marked with blue (ωz ≤ −0.2) and red colors (ωz ≥ 0.2).

For sufficiently large Reynolds numbers, the evolution
of the vortex has two stages [35]: at the first one, the effect
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Fig. 1. The vorticity field evolution in the case of laminar
vortex decay (Re = 100) in the range ωz ≤ −0.2 ∪ ωz ≥ 0.2
at different time instants: (a) t = 0, (b) t = 5, (c) t = 10,
(d) t = 15, (e) t = 20, (f) t = 25.

Fig. 2. The vorticity field in the case of turbulent decay of
TGV at the highest number Re = 4000 in the range ωz ≤
−0.7∪ωz ≥ 0.7 at different instants of time: (a) t = 0, (b) t = 3,
(c) t = 5, (d) t = 7, (e) t = 9, (f) t = 12.

of viscosity is negligibly small and small-scale structures
are regular and laminar. The laminar inviscid evolution at
t ≈ 3 (fig. 2(b)) leads to vortices roll-up at t ≈ 5 (fig. 2(c))
with subsequent topology changes at t ≈ 7 (fig. 2(d)). At
the second stage the energy dissipation plays a key role,
as well as the diffusion processes due to the existence of
viscosity. In addition, regions of active energy dissipation
are formed, that reaches its maximum at the late part
of the “viscous stage” (t ≈ 8.5). At t ≈ 9 (see fig. 2(e)),
the coherent structures are destroyed leading to the devel-
oped turbulent flow, which begins to decay at time t > 12
(see fig. 2(f)). It is believed that areas with strong vor-

ticity correspond to vortex tubes [35], while the domains
of strong energy dissipation are associated with sheet-like
structures.

As the eventual result of both laminar and turbulent
decay of the vortex is a resting medium, the TGV flow
should be treated in terms of spatial rather than tempo-
ral chaos [3], since a nontrivial attractor in the state space
does not exist at t → ∞. These considerations allow us
to justify the application of spatial averaging when cal-
culating correlation functions (sect. 8) for large Reynolds
numbers.

6 The analysis of integral energy and
enstrophy curves

As previously noted the major approach of assessing the
accuracy of TGV modeling is to compare the integral
curves of kinetic energy (10), its dissipation rate calcu-
lated via different fomulae (11)–(14), (16) and enstrophy
at various Reynolds numbers and grid resolution.

The KEDR curves obtained directly using (10), (11)
for different Reynolds numbers are shown in fig. 3. Besides
ε one can pay attention to the behavior of the relative error
εgrid concerned with grid convergence and determined by

εε,grid =
|εi,256 − εi,k|

εi,256
, (17)

where εi,256 and εi,k stand for the results obtained on the
finest grid 2563 and k3, k = 64, 128 correspondingly.

In case of laminar decay at Re = 100 while the grid is
refined, the maximum discrepancy between the results of
the CABARET scheme and the reference values [12] cor-
responds to the maximum of KEDR at t ≈ 5. The curves
obtained at grid (1) (red line in fig. 3(a)) and grid (3)
approximately coincide (black line in fig. 3(a)), while the
graph for grid (2), colored in blue, is somewhat lower,
completely coinciding with the reference values [4], and
Quasigasdynamic (QGD) approach [12] overestimates ε.

A similar behavior is observed at Re = 280 (fig. 3(b)),
where the discrepancy between the results of CABARET
calculation series is almost negligible, while the QGD ap-
proach yields 3% overestimate.

Turning to turbulent vortex decay (Re = 1600) shows
that for the most detailed grid in all sections of the curve
ε = ε(t) (fig. 3(c)) the results of the CABARET scheme
show a good agreement with a model solution [36], ob-
tained by the spectral method (the bright green curve).
For the largest Reynolds number Re = 4000, grid refine-
ment increases ε (see fig. 3(d)) in the turbulence develop-
ing region (due to better resolution of vortex formations)
and decreases it at the stage of turbulent decay as the
dissipation proceeds faster.

The close agreement of curves ε = ε(t) at Re = 1600
and Re = 4000 is probably due to approaching to a “limit-
ing” dissipative process independent of the Reynolds num-
ber [37].

The previous analysis should be extended by consid-
ering the set of integral enstrophy curves ζ = ζ(t) (see
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Fig. 3. The dissipation rate calculated directly on the sequence of refined grids for different Reynolds numbers compared with
the results of [12,4]: (a) Re = 100; (b) Re = 280; (c) Re = 1600; (d) Re = 4000.

fig. 4), which allow to make important conclusions about
the quality of the numerical method employed.

The law ζ = ζ(t) is analyzed more rarely, however,
it shows the necessity of a more detailed grid resolution
within the laminar decay, as ε1 depends on the quality of
vortex structures modeling.

In the case of laminar decay the maximum relative er-
ror calculated in a similar way as (17) falls in the region of
the maximum dissipation rate. The rapid decline of kinetic
energy at the peak of dissipation is due to the excitation
of inviscid instability and coincides with the peak of en-
strophy [6].

Proceeding to Re = 1600 and comparing the results at
the finest grid to simulation [38] performed on 5123 cells
(see fig. 4(b)) it is easy to verify that grid (3) is still in-
sufficient. In fact, the gain in the accuracy increase due
to simple mesh refinement appears to be more significant
compared to searching through more and more sophisti-
cated numerical methods. A similar situation is observed
at Re = 4000, however, the loss of solution accuracy al-
ready takes place on the finest grid, since the main peak
of enstrophy is not so clear (compare fig. 4(b) and (c)).
Figure 4(d) presents a summary plot characterizing the
enstrophy enhancement during the transition to the de-
veloped turbulent regime; the maximum relative multipli-
cation ζmax/ζ0 is shown in table 1 (grid (3)).

The difference between KEDR ε computed directly
and determined from enstrophy ζ data using the rela-
tion (13), which is valid for an incompressible fluid at any
time of the flow development [34] (see the set of curves
in fig. 5) allows to make decisive conclusions about the
characteristics of the numerical method.

Table 1. The maximum growth of the integral enstrophy re-
duced by the initial values.

Re 100 280 1600 4000

ζmax/ζ0 1.73 4.46 21.57 34.16

On coarse grids KEDR obtained from enstrophy ε1 is
substantially lower than the results of direct calculation.
Thus, the dissipative mechanism due to the expansion of
the vortex tubes does not correspond to the energy loss
processes in simulation being a consequence of the addi-
tional numerical dissipation. The modeling approach, in
which the dissipation existing in numerical schemes pro-
vides an opportunity to neglect subgrid models of small-
scale dissipation, was called implicit LES (ILES). When
the turbulence is attenuated (10 < t < 25), a coarser
grid leads to an increased dissipation of the kinetic en-
ergy [34]. Calculating the components ε associated with
the strain rate tensor ε2 (fig. 6) and pressure dilatation ε3

(fig. 7(a)) shows that the main contribution is made by
viscous dissipation, and the role of ε3 is negligibly small,
especially when mesh is refined, which provides additional
justification for the applicability of the weak compressibil-
ity approximation.

At the end of this section let us consider the asymptotic
behavior of E = E(t) at the decay stage of turbulent flow,
shown in fig. 7(b) for various grids (Re = 1600). The expo-
nent “−1.2” for the time dependence of energy is treated
as a characteristic value of decaying turbulence [39]. The
law E ∝ t−1.2 is valid only for a fairly narrow time inter-
val of about t ∼ 8–10, which is usually attributed to the
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ζ

t
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ζ

t
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ζ

t
(c)

ζ
t

(d)

Fig. 4. A time variation of integral enstrophy: the convergence of results on a sequence of refined grids for different Reynolds
numbers: (a) Re = 100; (b) Re = 1600; (c) Re = 4000; (d) a summary graph for various Reynolds numbers (2563 grid).

ε 1

t

Fig. 5. The dissipation rate calculated on the basis of the
enstrophy integral ζ = ζ(t) marked in the legend as “ε(ζ)”;
the green curve shows the directly computed ε.

peak of kinetic energy dissipation. Immediately after this
the decline actually falls to E ∝ t−2. The transition to
the exponent “−2” is probably related to the saturation
of energy-containing scales, which reflects the fact that
the existence of vortices larger than the periodic region is
impossible [40].

7 Fourier spectra

Contrary to spectral numerical methods, which can use
several thousand expansion terms in one direction reach-
ing very high accuracy, the finite-difference methods are
limited to a much smaller value. The usual methods in
this case are linear or logarithmic averaging over spheri-
cal shells. In this case, the substantial difference between

ζ

t

Fig. 6. The dissipation rate calculated on the basis of the
strain rate tensor denoted in the legend as “SR”; the blue curve
shows the results of direct calculation.

the values of even and odd wave numbers k plays a role,
which, possibly, is a consequence of the series truncation
of the spectral expansion and the special symmetry of the
vortex [3]. Such averaging leads to underestimated ampli-
tude values. In addition, the procedure of simple summa-
tion of harmonics with different amplitudes is performed
without any sustainable argumentation.

As a result, in order to obtain sufficiently detailed spec-
tra, it is necessary to reduce the thickness of the spher-
ical shells being used for averaging. So we have to uti-
lize very thin spherical shells yielding “shaky” spectra. To
overcome this drawback a special averaging procedure was
employed [41]. Additionally, Intel MKL library was used
to implement a three-dimensional Fourier transform.

The obtained Fourier spectra of the developed tur-
bulent flow (see fig. 8) correspond to the maximum of
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t
(a)

E

t
(b)

Fig. 7. (a) The dissipation rate ε3 due to the pressure dilata-
tion; (b) the time dependence of kinetic energy E calculated
on a sequence of grids, the magenta line indicates the slope of
the asymptotics t−1.2 and the green one asymptotics t−2.

dissipation rate at t ≈ 8.5. A comparison of energy spec-
tra from ref. [12] with the results obtained using the
CABARET scheme is shown in fig. 8(a). CABARET
spectra seem to yield a better approximation to “−5/3”
asymptotics, but, on the other hand, a slight steepening of
spectral tails confirms an assumption of numerical dissipa-
tion. According to time evolution of spectra (see fig. 8(b))
when the flow develops 5 < t < 10, the spectral curves
approach the asymptotics “−5/3”.

At the decay stage t > 10, the negative slope of the
spectra is amplified, although the roll-off should affect only
the spectrum tail, that is not observed due to insufficient
spectral resolution. Conversely, in the case under consid-
eration, steepening covers almost the entire wave number
interval. At Re = 4000, the mesh refinement (fig. 8(c))
slightly extends the interval of “−5/3” asymptotics.

8 Correlation functions

Certain sections of the kinetic energy spectrum corre-
sponding to the “−5/3” asymptotics for isotropic turbu-
lence can be misleading with respect to its general char-
acteristics. In particular, we can calculate a longitudinal
autocorrelation function Qii(r) = 〈U(x, y, z)U(x+r, y, z)〉
and a third-order velocity correlation function (or tensor)
Siii(r) = 〈U(x, y, z)2U(x + r, y, z)〉, which in the case of
isotropic turbulence take the form Qii(r) = 〈u2〉f(r) and
Siii(r) = 〈u2〉3/2

K(r), where 〈u2〉 = Qii(0) is the mean

Fig. 8. (a) Flow energy spectra at time t = 8.5, (Re =
1600, 2563) compared to QGD approach [12]; (b) time evolu-
tion of energy spectra (Re = 4000, 2563); (c) similar spectra at
t = 8.5, Re = 4000, 2563.

square of the turbulent fluctuations, f(r) is the “classi-
cal” longitudinal velocity correlation function, K(r) is the
longitudinal triple correlation function (in the notations of
Davidson [42]). The function f(r) is positive, while K(r)
is negative, but they both tend to zero at infinite distance
of the correlation points from each other.

Using K(r), one can find the spectral kinetic energy
transfer

T (k) =
k

π

∫ ∞

0

1
r

∂

∂r

1
r

∂

∂r

[
r4u3K(r)

]
sin(kr)dr (18)

and flux

ΠE(k) = −
∫ k

0

T (k′)dk′ (19)

functions involved in a spectral analog of the Karman-
Howarth equation.
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(a)

(b)

Fig. 9. The autocorrelation function Qii(r) (a) and third-order
velocity correlation function Siii(r) (b) at the instant of the
maximum dissipation rate t = 8.5 (black lines), as well as the
decay stages of turbulence at t = 24.5 (red lines). Solid curves
show results on grid 1283 and dashed ones those on the grid
2563.

The calculation of the distance r between points was
carried out regardless of the spatial periodicity, that is,
the existence of the nearest point image.

Considering results of [43] and our own calculations of
Qii(r) and Siii(r), shown in fig. 9, at the instant of the
KEDR maximum t ≈ 8.5 and also at the end of the calcu-
lation t ≈ 24.5, one can inspect a decisive influence of peri-
odic initial conditions on the shape of the autocorrelation
function. It approaches the starting value as the distance
between the correlation points increases to the domain
size. According to the autocorrelation curves correlation
and periodicity are preserved in the whole computational
domain, that differs significantly from the properties of
isotropic turbulence.

Changing the maximum distance r between correlation
points when calculating Qii(r) and Siii(r) as r = 4λτ , 6λτ ,
8λτ , πL, 2πL does not influence the functions behaviour.
The autocorrelation curve obtained on the finest grid 2563

is even sharper because single-point rms pulsations are
stronger, and the anticorrelation in the center of the region
is greater. This effect is also observed at the turbulence
decay stage.

Thus, the results obtained differ from the actual prop-
erties of isotropic turbulence where the autocorrelation
function Qii(r) → 0, if r → ∞, so the turbulence ob-
served in the Taylor-Green vortex decay is essentially
nonisotropic.

Fig. 10. Temporal dependence of the Taylor microscale re-
duced to domain size, calculated on the grid 2563.

These considerations can be explained when estimat-
ing the characteristic scales of turbulence, employing the
scale relations for the ideal isotropic case, such as the con-
nection between the Taylor microscale λτ and the integral
scale l. Consequently, we obtain:

λτ/l ∼
√

15
Re

=

√
15

1600
≈ 0.096. (20)

Thus, the scales differ by almost an order of magni-
tude. Under the same assumption, we calculate the Taylor
microscale by the formula

λτ
2 =

15ν〈u2〉
ε

, 〈u2〉 = E/3. (21)

This quantity reduced by domain size is presented in
fig. 10 for Re = 1600 and Re = 4000, its values should
be considered from the instant of maximum dissipation
rate t ≥ 9 when a developed turbulent flow is generated.
The λτ = λτ (t) dependence for Re = 1600 shows that
λ̂τ = λτ/2πL ∼ 0.07 at the stage of turbulence decay
which is in general agreement with the dimensionless (20).

Following the observations of Davidson [42] one notes
that in order to obtain satisfactory spectral characteristics
in the range of small and medium wave numbers, it is
necessary to require 2πL > 20l → 40l. In this case we
obtain

λτ/l ∼ 0.096, (22)
λτ/(2πL) ∼ 0.07, (23)

that yields

l/(2πL) ∼ 0.07
0.096

∼ 0.7. (24)

Thus, the presented results cannot correspond to the
theory of isotropic turbulence as the integral scale l is
comparable to the size of computational domain, probably
because of the nature of the problem formulated.

To confirm the coherence between the areas of strong
vorticity and rarefaction we calculate the spatial corre-
lation function for the pressure p variables and squared
vorticity ω2 = ω2

x + ω2
y + ω2

z :

Rpe
〈pω2〉√

〈p2〉
√
〈(ω2)2〉

, (25)
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where

〈pω2〉 =
t20

c2ρ0(2πL)3

∫∫∫

D

p
(
ω2

)2
dxdy dz, (26)

〈p2〉 =
1

c4ρ0(2πL)3

∫∫∫

D

p2 dxdy dz, (27)

〈(
ω2

)2
〉

=
t40

(2πL)3

∫∫∫

D

(ω2)2 dxdy dz. (28)

In addition, one can also examine the correlation between
instantaneous spatial deviations of p′, (ω2)′:

p = p̄ + p′, (29)

p̄ =
1

(2πL)3

∫∫∫

D

pdxdy dz, (30)

ω2 = ω2 +
(
ω2

)′
, (31)

ω2 =
1

(2πL)3

∫∫∫

D

ω2 dxdy dz, (32)

Rp′e′
〈p′ (ω2)′〉

√
〈(p − p̄)2〉

√
〈(ω2 − ω2)2〉

, (33)

where

〈p′ (ω2)′〉 =
t20

c2ρ0(2πL)3

∫∫∫

D

p′
(
ω2 − ω2

)
dxdy dz,

(34)

〈p2′〉 =
1

c4ρ0(2πL)3

∫∫∫

D

(p − p̄)2 dxdy dz, (35)

〈(
ω2

)2
〉

=
t40

(2πL)3

∫∫∫

D

(
ω2 − ω2

)2

dxdy dz. (36)

The resultant curve Rpe = Rpe(t) even obtained on
coarse grids (1) and (2) allows to catch the main features
of the flow (see fig. 11):

– the values of Rpe are negative in the entire time inter-
val, so that the areas of strong vorticity correspond to
rarefaction;

– Rpe is a strongly nonmonotonic function: there is a loss
of field coupling during the laminar decay of TGV at
0 < t < 2.5, while the anticorrelation increases with
vortex roll-up and reaches its minimum at t ≈ 5. Fur-
ther, it retains its value in the range (−0.6 ± 0.05) at
5 < t < 11, when a fully turbulent flow develops. An
increase in Rpe implying the “rupture” of the correla-
tion at t ≈ 7 may occur due to structure changes of the
vorticity field. With further decay of turbulence |Rpe|
decreases, so the correlation becomes weaker, that can
be caused by both physical and numerical dissipation
and also by insufficient grid resolution;

– the same curve for a larger Reynolds number shows a
similar dependence. A complete set of curves Rpe =
Rpe(t) on the sequence of refined grids for Re = 4000
is shown in fig. 11(b);

– a mesh refinement generally damps the correlation de-
pendence;

R
p
e

t
(a)

R
p
e

t
(b)

Fig. 11. Cross-correlation function of pressure and squared
vorticity Rpe = Rpe(t): (a) Re = 1600; (b) Re = 4000.

– computing of correlation based on the spatial fluctua-
tions (“pulsations”), i.e. a deviation from the spatial
mean, shows that anticorrelation Rpe > Rp′e′ increases
for coarse grids, nevertheless both approaches yield
nearly identical curves for the most detailed grid (3)
(solid and dashed blue curves in fig. 11(a)).

The additional flow analysis can be performed using
skewness and flatness factors:

Sn(r) = (−1)n 〈[U(x + r, y, z) − U(x, y, z)]n〉
〈[U(x + r, y, z) − U(x, y, z)]2〉1/2n

,

(37)

Sn(0) = (−1)n 〈(∂U(x, y, z)/∂x)n〉
〈(∂U(x, y, z)/∂x)〉1/2n

,

where 〈 〉 in (37) means spatial averaging over the peri-
odic domain. Inspecting these functions depicted in fig. 12
along with the results of Brachet et al. [3] one can see that
the main contribution is made by the regions in the vicin-
ity of r = 0. As the spatial derivative is approximated by
finite differences, it follows that Sn(0) = Sn(2δx).

The analysis of the grid convergence of the structure
function S3 (see fig. 13) shows that an adequate behavior
compared to reference values can be obtained only for the
finest grid. Structure functions of various order at r = 0
are listed in table 2 along with the reference values [3]
indicated in parentheses. It is worth noting that the ac-
curacy of the calculation for the last structure function
decreases significantly.
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S

n

r

Fig. 12. The dependence of structure functions on the cor-
relation length r; comparison of the obtained data with the
reference ones.

S
3

r

Fig. 13. The structure function S3 versus correlation length
r on various grids with Reynolds number Re = 1600.

Table 2. Structure functions Sn of various orders at r = 0.

S3 S4 S5 S6

0.58(0.65) 12.66(10) 23.26(23.1) 459.2(273)

9 Conclusion

The Taylor-Green vortex problem turns out to be a useful
benchmark allowing to verify the quality of the numeri-
cal method when modeling complicated vortex flows ac-
companied by the formation of multiscale structures and
their nonlinear interaction. The finite-difference explicit
second-order accuracy CABARET method is considered
in comparison with other numerical approaches such as
QGD, spectral and Galerkin methods, which obviously
have a superiority when modeling flows in periodic do-
mains. CABARET scheme possessing a considerable ver-
satility, provides a viable alternative to the mentioned ap-
proaches in terms of vortex structures resolution both at
laminar and turbulent decay and integral parameters cal-
culation. Unfortunately, the numerical dissipation mecha-
nism does not exactly conform to the real physical process,
as on coarse meshes the values of kinetic energy dissipation
rate ε1 obtained from enstrophy are substantially lower
than the results of direct differencing. Thus, the method
used in the present study should be referred to the group of

ILES methods expecting that its dissipative properties en-
able to omit the subgrid models for underresolved scales.
As concerns the vortex structure resolution, the transi-
tion to smaller grids can be more efficient as compared
to the use of sophisticated high-order accuracy numerical
methods.

Considering turbulent decay, one can recognize the in-
fluence of periodic boundary conditions being artificial
from the physical point of view, as they determine the
law of decrease of turbulent kinetic energy at long evolu-
tion times, whereas according to classical concepts such a
turbulent flow should forget its initial state. The flow en-
ergy spectrum at the instant of the maximum dissipation
rate approaches “−5/3” asymptotics, while an appreciable
damping of the high-frequency spectral range takes place.
As the Taylor-Green vortex possesses a spatially chaotic
vorticity field, it can be treated in terms of spatial cor-
relation functions that allows to investigate the general
anticorrelation between domains of strong vorticity and
rarefaction.
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