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Abstract. The linear stability of a steady convective flow of a ternary mixture placed between differently
heated vertical rigid plates is studied. The applied temperature gradient induces concentration gradients
due to the Soret effect. The analysis is done for the case when separation ratios of ternary mixture, i.e.,
Soret coefficients, have different signs but the net separation ratio is negative. The stability maps in terms
of the Grashof number and net separation ratio are obtained and discussed for monotonic and oscillatory
modes of instability. The previous results for long-wave instability of a binary mixture were recovered in
the limit when one of the Soret coefficients tends to zero. For finite-wavelength perturbations the previous
results were extended by discovering the oscillatory instability.

Introduction

Convection plays an important role in many natural and
technological processes such as ocean flows, distribution
of components in hydrocarbon reservoirs, the growth of
crystals, the solidification of metallic alloys and others.
Many natural gases and liquids consist of several com-
ponents. Due to the complex composition, transport pro-
cesses (thermal diffusion, molecular diffusion and thermal
conductivity) in such mixtures are much more complex
than in binary mixtures. Thermal diffusion (also thermod-
iffusion or the Soret effect) is a molecular transport of
substance caused by a thermal gradient. In binary mix-
tures, one can distinguish between the positive Soret ef-
fect, when the lighter (heavier) component is driven to-
wards the higher (lower) temperature region, and the neg-
ative Soret effect, when the situation is the opposite. The
reciprocal phenomenon to the Soret effect is the Dufour
effect, i.e. thermal transport due to a mass concentration
gradient.

In one of the first works on convection in binary mix-
tures [1] with the Soret and Dufour effects the case of a
plane horizontal layer subjected to a vertical temperature
gradient was studied numerically. It was found that in the
case of positive Soret effect there exists only monotonic
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instability for heating from below, and the convectionless
state instability threshold decreases in comparison with
the single-component fluid. In the case of negative Soret
effect and heating from below the oscillatory instability is
possible. In this case a lighter component is accumulated
in the upper part of the layer which increases the instabil-
ity threshold of the convectionless state. Monotonic insta-
bility arises in the case of negative Soret effect at heating
from above. In [2] a linear stability analysis was made for
the case of constant heat flux, long-wave and short-wave
instabilities were studied for positive Soret effect and heat-
ing from below.

The stability of steady plane-parallel convective flows
of binary mixture between two rigid vertical plates main-
tained at constant different temperatures was studied tak-
ing into account the Soret effect but neglecting the Du-
four effect in [3,4]. Three instability mechanisms were ob-
served. In [5] the stability of steady plane-parallel convec-
tive flows of binary mixture with the Soret effect between
two rigid vertical plates kept at constant different temper-
atures in the presence of a vertical temperature stratifica-
tion was studied by the Galerkin method. The calculations
were performed for two positive values of separation ra-
tio when the Prandtl number and Schmidt number range
from 0.01 to 10. A hydrodynamic instability mode takes
place for the parameter range covered in the calculations.
In [6], a similar problem was studied for a wider range
of parameters and thermosolutal instability modes were
found.
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The problem of the stability of convective flows in mix-
tures with three or more components is poorly studied
even in the absence of the Soret effect. An experimen-
tal study of the stability of a ternary gaseous mixture
in a vertical channel was carried out in [7]. The channel
connected two flasks. The upper flask was filled with a
mixture of light and heavy gases, the lower one by gas.
The density of the mixture in the upper flask was smaller
than the density of the gas in the lower flask. Convection
developed in the channel.

The phenomenon of diffusion barrier which arises in
mixtures with different properties of mutual diffusion of
components was investigated in [8]. The increase of pres-
sure in the lower flask under the action of baroeffect results
in the development of flow of the mixture from the lower
flask to the upper one with the velocity substantially ex-
ceeding the rate of diffusion of one of the components. As
a result, the distribution of concentrations in the chan-
nel becomes nonlinear and the density inversion appears
which leads to the development of the Rayleigh-Taylor in-
stability.

The stability of a convective flow of a binary mixture in
a vertical layer was studied in [9] taking into account ther-
modiffusion effect. At weak thermodiffusion a monotonic
instability occurs related to the development of vortices at
the boundary of counter flows. At positive Soret effect the
instability threshold is lowered due to the increase of the
base flow velocity. At negative Soret effect the increase of
the instability threshold was reported.

Long-wave instability of steady convective flows of
ternary mixtures between two vertical rigid plates kept at
constant different temperatures was studied in [10]. It was
shown analytically (by expansion into series of small wave
number) that there exist monotonic and oscillatory long-
wave instability modes. The onset and nonlinear regimes
of the Soret-induced convection of ternary mixtures in a
square cavity at different levels of gravity were studied
in [11,12].

In the present paper the instability mechanisms of a
steady plane-parallel convective flow of a ternary mixture
between two vertical rigid plates kept at constant differ-
ent temperatures are studied numerically with respect to
finite-wavelength perturbations.

Problem formulation: governing equations

Let us consider a ternary mixture of non-reacting compo-
nents between two infinite vertical rigid plates separated
by the distance 2h, i.e. −h ≤ x ≤ h where x is the hor-
izontal coordinate in the direction perpendicular to the
layer boundaries. The layer boundaries are perfectly con-
ductive, they are maintained at constant different temper-
atures T = ∓θ. The mass flux through the boundaries is
absent.

We assume that the mixture density is a linear function
of temperature and concentrations of components C1,2:

ρ = ρ0(1 − βT − β1C1 − β2C2).

Here ρ0 is the density of a mixture at the mean values of
temperature and concentrations; T and C1, C2 are small
deviations of temperature and concentrations from the
mean values; β is the thermal expansion coefficient, β1,
β2 > 0 are the solutal expansion coefficients.

We apply the Boussinesq approximation. The Dufour
effect is not taken into account. The governing equations
for a ternary mixture in Boussinesq approximation have
the form:

∂�v

∂t
+ (�v∇)�v = − 1

ρ0
∇p + νΔ�v − �g(βT + �I · B �C ), (1)

∂T

∂t
+ (�v∇)T = χΔT, (2)

∂ �C

∂t
+ (�v∇)�C = DΔ�C + �DT ΔT, (3)

∇ · �v = 0. (4)

Here �v and p are the velocity and pressure, ν is the kine-
matic viscosity, χ is the thermal diffusivity coefficient, �g

is the gravitational acceleration, �I = (1, 1) is the vector,
the dimension of which equals the number of independent
components, B =

( β1 0
0 β2

)
is the diagonal matrix of solu-

tal expansion coefficients, �C = (C1, C2) is the vector of
concentrations, D =

(
D11 D12
D21 D22

)
is the matrix of the molec-

ular diffusion coefficients, and �DT is the vector of ther-
modiffusion coefficients related to the vector of the Soret
coefficients �ST by the relation �ST = D−1 �DT .

At the layer boundaries x = ±h the no-slip conditions
are imposed

�v = 0, (5)

the constant different temperatures are maintained

T = ∓θ (6)

and the mass flux through the boundaries is absent:

D
∂ �C

∂x
+ �DT

∂T

∂x
= 0. (7)

Additionally, the presence of rigid walls at the top and
bottom implies that the flow rate through every cross-
section of constant x must be zero:

∫ h

−h

vzdx = 0. (8)

To simplify eqs. (1)–(4) it is convenient to exclude
the coefficients of cross-diffusion (i.e., D12, D21). It was
suggested in [13] to transform the matrix of molecular
diffusion coefficients to diagonal form by means of the
transformation D̃ = V −1DV , where D̃ is the diagonal
matrix formed by the eigenvalues of the matrix D, V
is the matrix, whose columns represent the eigenvectors
�si = (si1, si2) of the matrix D, i = 1, 2. Here an addi-
tional matrix is introduced

Q = diag{q1, q2}, qi = β−1
i

2∑

j=1

βjsij (9)
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and concentrations and thermodiffusion coefficients are re-
placed according to the formulas

�C = V Q−1 �̃C, �DT = V Q−1 �̃DT . (10)

It is assumed that the transformation is reversible and
qi �= 0, thus detQ �= 0. Applying the transformation to
the equations and boundary conditions, we obtain

∂�v

∂t
+ (�v∇)�v = − 1

ρ0
∇p + νΔ�v − �g(βT + �I · BC̃), (11)

∂T

∂t
+ (�v∇)T = χΔT, (12)

∂ �̃C

∂t
+ (�v∇)�̃C = D̃Δ�̃C + �̃DT ΔT, (13)

∇ · �v = 0, (14)

x = ±h : �v = 0, T = ∓θ, D̃
∂ �̃C

∂x
+ �̃DT

∂T

∂x
= 0,

(15)
∫ h

−h

vzdx = 0. (16)

As the result of transformation the number of param-
eters is reduced; this simplifies the problem.

Let us write the governing equations (11)–(14)
and boundary conditions (15), (16) in dimensionless
form introducing the following scales: length (h), time
(h2/ν), velocity (gβθh2/ν), temperature (θ), concentra-
tion (βθ/β1,2). To simplify the notations, the “tilde” will
be dropped:

∂�v

∂t
+ Gr(�v∇)�v = −∇p + Δ�v + (T + C1 + C2)�γ, (17)

∂T

∂t
+ Gr(�v∇)T = Pr−1ΔT, (18)

∂C1,2

∂t
+ Gr(�v∇)C1,2 = Sc−1

1,2(ΔC1,2 − ε1,2ΔT ), (19)

∇ · �v = 0. (20)

At x = ±1:

�v = 0, (21)
T = 0, (22)

C ′
1,2 − ε1,2T

′ = 0. (23)

Additionally
∫ 1

−1

vzdx = 0. (24)

Here ε1,2 = −α1,2β1,2/βD1,2 are the dimensionless sepa-
ration ratios, α1,2 are the thermodiffusion coefficients of
first and second solutes, D1,2 are the molecular diffusion
coefficients (elements of the diagonal matrix D11 = D1,
D22 = D2), �γ is the unit vector directed vertically up-
ward. For positive Soret effect α1,2 < 0, ε1,2 > 0, for
negative Soret effect α1,2 > 0, ε1,2 < 0.

The problem contains the following dimensionless pa-
rameters: the Grashof number Gr, the Prandtl number Pr,
the Schmidt numbers Sc1,2:

Gr =
gβ1θh

3

ν2
, Pr =

ν

χ
, Sc1,2 =

ν

D1,2
.

The problem under consideration has the solution
which corresponds to the plane-parallel steady flow in ver-
tical direction with cubic velocity profile and linear distri-
butions of temperature and concentrations of solutes. This
basic state in dimensionless form is given by

v0 =
1 + ε

6
(x3 − x), T0 = −x,

C01 = −ε1x, C02 = −ε2x. (25)

Here ε = ε1 + ε2 is the net separation ratio.

Stability problem

To study the linear stability of the base flow we represent
all the fields as sums of basic state and small perturba-
tions:

�v = �v0 + �v′, T = T0 + T ′,

p = p0 + p′, C = C0 + C ′.

The mathematical model in the current study is lim-
ited to two-dimensional perturbations depending only on
x and z coordinates and time. In this case it is convenient
to introduce the stream function by the relations

vx = −∂ψ

∂z
, vz =

∂ψ

∂x
.

The linearized equations for perturbations in terms of
stream function, temperature and concentrations have the
form

∂

∂t
Δψ + v0Gr

∂

∂z
Δψ − v′′

0Gr
∂ψ

∂z
=

ΔΔψ +
∂T

∂x
+

∂

∂x
(C1 + C2), (26)

∂T

∂t
+ v0Gr

∂T

∂z
− Gr

∂T0

∂x

∂ψ

∂z
=

1
Pr

ΔT, (27)

∂C1,2

∂t
+ v0Gr

∂C1,2

∂z
− Gr

∂C01,2

∂x

∂ψ

∂z
=

1
Sc1,2

Δ(C1,2 − ε1,2T ). (28)

The boundary conditions are rewritten as

∂ψ

∂x
= 0,

∂ψ

∂z
= 0, (29)

T = 0, (30)
C ′

1,2 − ε1,2T
′ = 0. (31)
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We consider the perturbations in the form of normal
modes:

ψ(x, z) = ϕ(x)e−λt+ikz,

T (x, z) = ϑ(x)e−λt+ikz,

C1,2(x, z) = ξ1,2(x)e−λt+ikz.

The problem of the linear stability of the base solu-
tion (25) to the plane normal mode perturbations has the
form

−λΔϕ+v0ikGrΔϕ−v′′
0 ikGrϕ=ΔΔϕ+(ϑ′+ξ′1+ξ′2), (32)

−λϑ + v0ikGrϑ − T ′
0ikGrϕ =

1
Pr

Δϑ, (33)

−λξ1,2 + v0ikGrξ1,2 −C ′
01,2ikGrϕ =

1
Sc1,2

Δ(ξ1,2 − ε1,2ϑ),

(34)

x = ±1 : ϕ = 0, ϕ′ = 0, (35)
ϑ = 0, (36)
ξ′1,2 − ε1,2ϑ

′ = 0. (37)

Here λ = λr + iω is the complex growth rate of pertur-
bations, k is the wave number, the prime denotes differ-
entiation with respect to the x coordinate, and Δ is the
two-dimensional Laplace operator.

The problem (32)–(37) was solved by the differential
sweep method applied for the first time to the hydrody-
namic stability problem in [14].

Numerical results

A numerical study was performed for fixed values of
Prandtl and Schmidt numbers Pr = 10, Sc1 = 1390,
Sc2 = 2244, while separation ratios ε1, ε2 were varied.

First, we consider the stability of a binary mixture
by assuming that ε1 = 0 (ε = ε2). Figure 1 presents
the stability map for this case comparing different types
of instability. In all the figures the notation Grm corre-
sponds to the minimal critical value of the Gr(k). It fol-
lows that in this case, at small negative net separation
ratios (−0.14 < ε < 0) the crisis of stationary plane-
parallel flow is caused by the hydrodynamic instability
mode (curve 4, right branch) which has a non-viscous na-
ture, and is related to the presence of the inflection point
in the velocity profile. The calculations showed that this
monotonic finite-wavelength instability mode develops in
the form of immovable vortices at the boundary of up-
stream and downstream flows. At ε = 0 the concentration
gradient is absent and the mixture behaves as a single-
component fluid, the right curve 4 intersects the Gr axis
at ≈ 492. With the increase of |ε| the base flow velocity
changes as (1 + ε) which results in the stability growth
at −1 < ε < 0 up to absolute stabilization at ε = −1.
There is the second branch of the hydrodynamic instabil-
ity mode at ε < −1 (curve 4, left branch) but in the range
of ε under consideration it is not the most dangerous.

Fig. 1. Stability map for Pr = 10, Sc1 = 1390, Sc2 = 2244,
ε1 = 0; 1 —long-wave monotonic thermosolutal instability
mode, 2 —finite-wavelength monotonic thermosolutal instabil-
ity mode, 3 —finite-wavelength oscillatory thermosolutal in-
stability mode, 4 —finite-wavelength monotonic hydrodynamic
instability mode, 5 —concentrational waves.

With the increase of |ε|, an instability mode related to
the growing oscillatory perturbations becomes the most
dangerous (line 5 in fig. 1). There are two waves propagat-
ing in upward and downward directions with phase veloc-
ities close to the maximal velocities of the base flow. The
nature of these waves depends on Prandtl and Schmidt
number values (see [3]), they can be thermal, solutal or
mixed. For the Prandtl and Schmidt number values un-
der consideration, typical for liquid mixtures, these waves
have the solutal nature. The solutal wave remains the most
dangerous instability mode at −0.5 < ε < −0.14.

At ε = −0.5 the monotonic thermosolutal instability
mode becomes the most dangerous (curve 1 in fig. 1). The
critical Grashof number for this mode is small enough, i.e.
strong destabilization of the base flow takes place. The ap-
pearance of a thermosolutal instability mechanism at neg-
ative Soret effect is related to the presence of horizontal
temperature and concentration gradients directed oppo-
site to each other and to the difference in relaxation time
scales of thermal and solutal perturbations [3,9]. In this
case, if a liquid element is displaced in horizontal direc-
tion, its density becomes different from the density of the
surrounding liquid. This leads to the appearance of buoy-
ancy force which causes the motion of the liquid element
in vertical direction and can result in the development of
instability. The base flow crisis for this mode is caused by
the development of long-wave perturbations. This is re-
lated to the absence of mass flux through the boundaries,
because of that solutal perturbations developing near the
boundaries have a large scale in longitudinal direction.

The global minima of neutral curves for thermosolu-
tal perturbations remain located at k = 0, i.e. long-wave
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Fig. 2. Transition from the long-wave to finite-wavelength
thermosolutal monotonic instability mode: Pr = 10, Sc1 =
1390, Sc2 = 2244, ε1 = 0, ε = −0.95, −0.97, −0.975, −0.98,
−0.99 (curves 1–5, respectively).

perturbations remain the most dangerous, in a wide range
of net separation ration ε < −0.5. However, at ε <
−0.98 the global minima of neutral curves for this in-
stability mode correspond to non-zeroth k, i.e. the finite-
wavelength perturbations become the most dangerous (see
fig. 2 that illustrates the transition from the long-wave to
finite-wavelength thermosolutal perturbations). The de-
pendence of the critical Grashof which corresponds to the
global (finite-wavelength) minimum on the net separation
ratio is shown in fig. 1 by the curve 2. The points at the
curve 1 located above the branching curve 2 from curve 1
show only the values of the Grashof number which corre-
spond to the neutral monotonic perturbations with k = 0.
These perturbations are not the most dangerous anymore.

The calculations carried out at ε < −1 have also
shown the appearance of an oscillatory finite-wavelength
thermosolutal instability mode (curve 3 in fig. 1) soon
after the branching of the monotonic finite-wavelength
thermosolutal instability mode (curve 2 in fig. 1) from
the long-wave monotonic thermosolutal instability mode
(curve 1 in fig. 1). It occurs at ε ≈ −1.01 as illustrated
by dashed and solid curves 1 in fig. 3. As a result, the
crisis of the base flow at ε < −1.01 is attributed to the
development of oscillatory finite-wavelength thermosolu-
tal perturbations. A comparison of the neutral curves 1–4
in fig. 3 shows that the instability threshold to the oscil-
latory finite-wavelength thermosolutal perturbations in-
creases with the decrease of ε. The neutral curves of the
monotonic finite-wavelength thermosolutal instability for
ε < −1.01 are not shown in fig. 3, as one can see from fig. 1,
the minima of these neutral curves are located higher than
those of oscillatory finite-wavelength thermosolutal neu-
tral curves. It is worth mentioning that the oscillatory

Fig. 3. Branching oscillatory finite-wavelength thermosolutal
instability mode from the monotonic finite-wavelength ther-
mosolutal instability mode: ε1 = 0, Pr = 10, Sc1 = 1390,
Sc2 = 2244, ε = −1.01, −1.2, −1.4, −1.5 (curves 1–4, respec-
tively).

Fig. 4. Stability map for Pr = 10, Sc1 = 1390, Sc2 = 2244,
ε1 = 1: 1 —long-wave monotonic thermosolutal instability
mode, 2 —finite-wavelength monotonic thermosolutal instabil-
ity mode, 3 —finite-wavelength oscillatory thermosolutal insta-
bility mode, 4 —long-wave thermosolutal oscillatory instability
mode, 5 —finite-wavelength oscillatory thermosolutal instabil-
ity mode.

finite-wavelength thermosolutal instability mode was not
found in [9].

The stability map for the ternary mixture with ε1 = 1
is shown in fig. 4. As one can see, the instability thresholds
to all perturbations are lower than for ε1 = 0 (the insta-
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Fig. 5. Stability map for Pr = 10, Sc1 = 1390, Sc2 = 2244,
ε1 = 1.5: 1 —long-wave monotonic thermosolutal instability
mode, 2, 3, 4 —finite-wavelength oscillatory thermosolutal in-
stability modes, 5 —long-wave oscillatory thermosolutal insta-
bility mode.

bility boundary to concentrational waves depends only on
the net separation ratio, its location is the same as for
ε1 = 0 and is not shown in fig. 4). Moreover, the mono-
tonic long-wave thermosolutal instability becomes possible
at ε > −0.5 (curve 1). An additional domain of instabil-
ity to oscillatory finite-wavelength thermosolutal pertur-
bations appears at −0.363 < ε < −0.232.

At ε1 = 1 there exists the oscillatory long-wave ther-
mosolutal instability mode found in [13] (curve 4). This
mode does not exist in a binary mixture when ε1 = 0 and
in a ternary mixture at ε1 = 1 it exists in a rather narrow
range of net separation ratio values. The existence of the
oscillatory long-wave mode is related to the mass flux van-
ishing at the rigid boundaries for two solutes, because of
that solutal perturbations of two types developing near the
layer boundaries have large scale in longitudinal direction.

In fig. 5 the stability map is plotted for ε1 = 1.5.
From a comparison of figs. 4 and 5, at ε1 = 1.5 it fol-
lows that the size of the additional domain of the oscilla-
tory finite-wavelength thermosoloutal instability (curve 3
in fig. 4) becomes larger and its boundary splits into three
parts. Two of them join the boundary of the domain of the
monotonic long-wave thermosolutal instability (the corre-
sponding neutral curves branch from the neutral curve of
the long-wave mode). The third part (curve 2) is shifted
to the positive values of net separation ratio. The split-
ting of the curve 3 is related to the appearance of two
minima at neutral curves and their competition which is
illustrated by fig. 6. At the splitting point the jumps of the
wave number and frequency occur which is shown in fig. 8
(curve 2). A long-wave monotonic thermosolutal instabil-

Fig. 6. Neutral curves of the oscillatory finite-wavelength
thermosolutal instability mode for Pr = 10, Sc1 = 1390,
Sc2 = 2244, ε1 = 1.5; ε = −0.399, −0.38, −0.35, −0.34, −0.32,
curves 1–5, respectively.

ity mode exists at even larger values of the parameter ε
than at ε1 = 1.

Curve 5 in fig. 5 shows the boundary of the long-wave
oscillatory thermosolutal instability mode. As one can see,
at ε1 = 1.5 this mode exists in a wider range of net separa-
tion ratio than at ε1 = 1 but in most part of its existence
range it is less dangerous than the finite-wavelength oscil-
latory thermosolutal instability mode.

The neutral curves of the long-wave monotonic and os-
cillatory thermosolutal instability modes for ε = −0.425
are presented in fig. 7(a). The oscillation frequency is pos-
itive, it grows with the increase of Gr (fig. 7(b)).

In fig. 8(a) the dependence of the wave number of the
most dangerous perturbations km on the net separation
ratio ε is plotted for three boundaries of the oscillatory
finite-wavelength thermosolutal instability found at ε1 =
1.5 (curves 2, 3, 4 in fig. 5). For two boundaries (curves
1 and 3 in fig. 8(a)) the wavelength decreases with the
increase of the net separation ratio and for the boundary
with a break (curve 2 in fig. 8(a)) the behaviour is more
complex.

The frequency of the most dangerous perturbations
(fig. 8(b)) grows with the increase of net separation ratio.
Each change of the instability mode is accompanied by a
frequency skip.

Conclusions

The stability of a stationary plane-parallel convective flow
of a ternary mixture in a vertical layer is studied. Stability
maps in the parameter space in terms of the net separation
ratio and Grashof number are obtained for the Schmidt
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Fig. 7. Neutral curves for monotonic (curve 1) and oscillatory
(curve 2) thermosolutal instability modes (a) and the depen-
dence of the perturbation frequency on the Grashof number
(b) for Pr = 10, Sc1 = 1390, Sc2 = 2244, ε1 = 1.5, ε = −0.425.

and Prandtl number values typical for liquid mixtures.
The results of the stability analysis are presented for a
ternary mixture when two corresponding separation ra-
tios have different signs and for a binary mixture assuming
that one of the values of the separation ratios is equal to
zero. Taking into account the multi-parametric nature of
the problem, the positive separation ratio is kept constant
while the net separation ratio is changed. It is found that
depending on the net separation ratio value the base flow
crisis can be related to different instability mechanisms.
At small values of |ε| the finite-wavelength monotonic in-
stability mode of hydrodynamic nature is responsible for
the base flow crisis. With the increase of |ε| the oscilla-
tory finite-wavelength growing perturbations having the
nature of the solutal waves propagating in opposite direc-
tions become the most dangerous. At even higher |ε| the

Fig. 8. Dependence of the wave number (a) and frequency
(b) of the most dangerous perturbations on the net separation
ratio ε: Pr = 10, Sc1 = 1390, Sc2 = 2244, ε1 = 1.5; 1, 2, 3
—finite-wavelength oscillatory thermosolutal instability modes
(they correspond to curves 4, 3 and 2, respectively, in fig. 5).

long-wave monotonic instability mode of thermosolutal
nature (caused by thermodiffusion effect) is the most dan-
gerous. With a further growth of |ε| the finite-wavelength
thermosolutal instability mode branches from the long-
wave thermosolutal instability mode (the minima of neu-
tral curves at k = 0 stop to be the global minima) and
dominates.

A new oscillatory thermosolutal instability mode is
discovered at the net separation ratio values ε < −1. It
branches from the finite-wavelength monotonic thermoso-
lutal instability mode.

All mentioned-above instability modes also exist in bi-
nary mixtures. The results obtained in the present work
allow to observe the contribution of the second solute.
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It is known that in the presence of two factors pro-
voking the long-wave instability, the oscillatory long-wave
instability arises [15,16]. In the problem under consider-
ation these factors are the mass flux vanishing at rigid
boundaries for two solutes. Indeed, the oscillatory long-
wave thermosolutal instability mode for ternary fluids was
found in [10]. The calculations carried out in the present
work have shown that this mode exists in a narrow range
of ε close to −0.5 and it remains more dangerous than
the finite-wavelength oscillatory thermosolutal instability
mode (the global minima of neutral curves correspond to
k = 0) in a rather narrow range of its existence.
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