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Abstract. In the dynamics of a viscous fluid, the case of vanishing kinematic viscosity is actually equivalent
to the Reynolds number tending to infinity. Hence, in the limit of vanishing viscosity the fluid flow is
essentially turbulent. On the other hand, the Euler equation, which is conventionally adopted for the
description of the flow of an inviscid fluid, does not possess proper turbulent behaviour. This raises the
question of the existence of the passage to the limit of an inviscid fluid for real low-viscosity fluids. To
address this question, one should employ the theory of turbulent boundary layer near an inflexible boundary
(e.g., rigid wall). On the basis of this theory, one can see how the solutions to the Euler equation become
relevant for the description of the flow of low-viscosity fluids, and obtain the small parameter quantifying
accuracy of this description for real fluids.

1 Introduction

The flow of a viscous incompressible fluid is governed by
the Navier-Stokes equation,

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + ηΔv + ρg, (1)

and the continuity equation

∇ · v = 0. (2)

Here we adopt conventional notations: ρ is the fluid den-
sity, v is the flow velocity field, p is pressure, η is the
dynamic viscosity coefficient, g is the specific mass force
(if the only external mass force is the gravity, g is the
gravity acceleration). A self-contained mathematical de-
scription of the problem requires one to specify boundary
conditions, and the order of these conditions must be con-
sistent with the order of equations in the bulk. For the
case of rigid boundary, these conditions are typically the
no-slip conditions; for the case of nondeformable shear-
stress-free boundary, the velocity component orthogonal
to the boundary and the shear stress vanish, etc.

For the case of an inviscid fluid, the Navier-Stokes
equation turns into the Euler equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + ρg, (3)

� Contribution to the Topical Issue “Non-equilibrium pro-
cesses in multicomponent and multiphase media” edited by
Tatyana Lyubimova, Valentina Shevtsova, Fabrizio Croccolo.

a e-mail: Denis.Goldobin@gmail.com

As the order of eq. (3) with respect to spatial derivatives
is decreased compared to eq. (1), the order of the bound-
ary conditions, required for a self-contained mathematical
description, is decreased as well. In particular, the condi-
tion of no-slip of the flow along the boundary disappears;
the remaining boundary condition is the condition that
the boundary is impermeable.

However, the question of the existence of the limit-
ing case transition from the Navier-Stokes equation to the
Euler equation arises. Indeed, where kinematic viscosity
ν = η/ρ tends to zero, the Reynolds number Re = u∗L/ν
tends to infinity (here u∗ is the characteristic flow velocity
and L is the characteristic spatial scale of the system). As
the Reynolds number tends to infinity, a developed turbu-
lence sets up in the system. Thus, small viscosity for real
systems means generally the transition to essentially tur-
bulent flow regimes, while the real turbulence is inherent
to the Navier-Stokes equation, but not the Euler equation,
which describes the flow of inviscid fluids.

Generally, one can pose two distinct mathematical
problems: the limiting case transition to inviscid fluid for
i) laminar flow in Navier-Stokes equation and ii) turbu-
lent flow. For the first case, one has a widespread prob-
lem of a small coefficient for the highest-order derivative
in equations; for PDEs with such a small parameter the
formation of thin boundary layers in time or space is typ-
ical. Beyond these layers the equations for the vanishing
parameter are valid, and one has to address the prob-
lems of the characterization of the boundary layers and
the derivation of the effective boundary conditions for the
limiting equations in the bulk. These and associated prob-
lems (e.g., the one of the uniqueness of solution) have a
straightforward formulation and can be mathematically
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rigorously addressed. These problems for the limit of an
inviscid fluid have been extensively studied in the litera-
ture and significant advance has been made in proving the
existence of the limiting case and characterization of its
convergence for diverse situations (e.g., see [1–7] and de-
tailed review [8]). However, while for many physical pro-
cesses (molecular diffusion, heat conductance, etc.) it is
sufficient to consider the limiting case of the vanishing co-
efficient of the highest-order derivative for “laminar” pat-
terns, the Navier-Stokes equation can yield turbulence, for
which the results of the consideration for “laminar” cases
are not applicable. In particular, the effective turbulent
viscosity appears and its value in the bulk (away from the
boundaries) is not necessarily a small parameter. To the
author’s knowledge, the issue of the existence of the pas-
sage to the limit of an inviscid fluid for the turbulent case
did not receive an attention comparable to the laminar
case and remains unresolved.

The answer to the question of the existence of this lim-
iting case transition requires the understanding of proper-
ties of turbulent currents in boundary layers near imper-
meable walls (rigid boundary or liquid-liquid interface).
On the basis of the theory of the turbulent boundary layer,
we briefly recall below, one can see how the solutions to
the Euler equation may represent real fluid flows at low
viscosity, and estimate the accuracy of the representation
of real flows by these solutions. The latter issue is a non-
trivial one, because the characteristic small parameter of
the system is determined by its physical parameters in a
nonobvious way.

2 Turbulent boundary layer

Since the consideration and derivations in the following
sections heavily rely on the theory of the turbulent bound-
ary layer [9,10], we revoke here not only its results but also
principal points. This will allow assessing the limits of ap-
plicability of the theory results for specific situations. A
detailed consideration can be found in [11,12].

Let us consider the flow of a viscous fluid in a half-
space near a flat rigid boundary. It is convenient to choose
the boundary as the (x, y)-plane with the x-axis oriented
along the average flow and the z-axis to be perpendicular
to it (see fig. 1). In a steady state (statistically stationary
state), such a flow requires a spatially uniform shear stress
σxz, which is related to the momentum flux towards the
boundary, and the average flow u(r) itself must be a shear
one; u(r) = {u(z), 0, 0}.

In the turbulent case, the macroscopic average current
is controlled by the effective turbulent viscosity. The tur-
bulent viscosity is related to irregular pulsations of the
velocity field which perform the momentum transport; for
the case we consider, they yield the shear stress σxz. The
uniform momentum flux performed by pulsations is deter-
mined by the intensity of these pulsations;

σxz ≡ ρv2
∗, (4)

where v∗ is the characteristic value of turbulent pulsations.
Notice, eq. (4) is not an expression for the relation between

x

z ( )u z

Fig. 1. Average flow in the turbulent boundary layer near a
flat rigid wall.

σxz and v∗, but serves as a definition of the introduced
parameter v∗. With this definition, one can consider the
problem in terms of the governing parameter v∗, in place
of the original governing parameter σxz.

For the process of transfer of the momentum by turbu-
lent pulsations, the only characteristic spatial scale which
can be discriminated in the system is the distance z from
the boundary. Hence, the turbulent viscosity can be de-
termined only by 3 physical parameters: z, v∗ and ρ. The
only combination of these parameters with the measure-
ment units of kinematic viscosity is a product v∗z; and, as
there in no dimensionless combinations of these parame-
ters, according to the Buckingham π theorem [13],

νt = κv∗z, (5)

where κ is a dimensionless geometric factor, which can be
determined empirically or from detailed numerical simu-
lation of turbulent currents. It is known from experiments
that κ ≈ 0.4.

With imposed momentum flux (4) and inhomogeneous
viscosity (5), one finds

νt
du

dz
= σxz. (6)

From (6) the velocity profile of the macroscopic average
flow can be obtained

u =
v∗
κ

ln
v∗z

ξ0ν
, (7)

where ξ0 is the dimensionless integration constant. Expres-
sion (7) is accurate at the spatial scale large compared to
the scale where the molecular viscosity is of the same or-
der of magnitude as the turbulent one, i.e., for z � l0,
where l0 = ν/v∗ is the thickness of the so-called viscous
sublayer. The shape of the profile u(z) for z ∼ l0 is known
from experiments, and it is such that the condition of no
slip along the boundary requires ξ0 ≈ 0.13.

The case of a flow along a nondeformable or weakly
deformable interface between two fluids is qualitatively
similar to the case of a flow along a rigid boundary, be-
cause the basic points used for derivation of eq. (5) hold
true. Although constants κ and ξ0 may be different com-
pared to the case of a rigid wall, laws (5) and (7) must
hold valid.
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Let us estimate the reference order of magnitude of
parameters of the turbulent boundary layer for sensi-
ble situations with water flows, where ν = 10−6 m2/s,
v∗ ∼ 0.01m/s, z ∼ 0.1m. The thickness of the viscous
sublayer, beyond which the average flow profile is accu-
rately described by (7), is l0 ∼ 10−4 m, the characteristic
value of the argument of logarithm in (7) in the bulk is
∼ 104 (which yields for the logarithm ln 104 ≈ 10), and
the characteristic average flow velocity (7) u ∼ 0.25m/s.
For the stream canal of a common river, v∗ ∼ 0.05m/s and
depth z ∼ 5m, one can estimate l0 ∼ 2 · 10−5 m, which
yields the logarithm argument ∼ 2.5·106 (ln 2.5·106 ≈ 15)
and the maximal stream speed in the canal u ∼ 2m/s.

3 Solutions to the Euler equation

The solution to the Euler equation (3) with the constrain
of the continuity equation (2) can be sought in the poten-
tial form:

v = −∇ϕ, (8)

where ϕ is the potential of the velocity field. Hence, eq. (2)
yields

Δϕ = 0, (9)

and the Euler equation (3) determines the pressure field
in the fluid; p = ρ(ϕt − (∇ϕ)2/2 − U(r)), where U(r) is
the potential of the mass force field, g = −∇U(r). The
condition of impermeability of a nondeformable boundary
in terms of the velocity potential provides the boundary
conditions for eq. (9): ∂ϕ/∂n = 0.

Noteworthy, due to the harmonicity property (9), the
potential flow (8) satisfies also the Navier-Stokes equa-
tion (1). However, in the general case the boundary con-
ditions for a viscous fluid cannot be satisfied with a poten-
tial flow; they have a higher order than the order which
can be consistent with eq. (9).

4 Low-viscosity flow

4.1 Equations and boundary conditions for average
macroscopic flow

The average over turbulent pulsations fluid flow u(r, t)
obeys the following equations with effective turbulent vis-
cosity (see, e.g., [11]):

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · σ̂t + ρg, (10)

where the effective turbulent viscosity stress tensor

σ̂t(r, t) = ρ νt(r, t)
(
∇u + (∇u)T

)
. (11)

Here p differs from the molecular pressure and contains a
turbulent contribution; the superscript T indicates trans-
posing. Strictly speaking, turbulent viscosity is not a
scalar, but a tensor of a higher rank. However, for our

treatment it is sufficient to use the approximation of scalar
νt.

The turbulent viscosity property of primary impor-
tance for our consideration is that this viscosity tends to
zero as one approaches a nondeformable boundary. This
property is well seen in eq. (5). The persistence of this
property for a broad range of situations can be substan-
tiated as follows. By virtue of the fact that for realistic
flows of water, for instance, the thickness of the viscous
sublayer can be estimated as l0 ∼ 10−6–10−4 m, there is
a wide enough range of scales l which are large compared
to the viscous sublayer thickness, but small compared to
the system scale L ∼ 0.1–10m: l0 � l � L. At the dis-
tance of the order of magnitude of l from the boundary of
the flow domain, one can assume a spatially constant shear
stress, neglect the boundary curvature and inhomogeneity
of the average flow along the boundary, and the current
to be statistically stationary at this spatial scale. These
assumptions correspond to the basic points adopted for
the construction of the turbulent boundary layer theory
in sect. 2 and, therefore, make results (5) and (7) rele-
vant at the scales we consider here. Hence, for l0 � L
the turbulent viscosity tends to zero as one approaches a
nondeformable boundary.

The turbulent viscosity coefficient can also vanish at
the free interface between two liquids which possesses a
nonzero surface tension. The sufficient condition for this
vanishing is the smallness of l0 against the background of
the interface curvature radius r0: l0 � r0. In this case, one
can choose a scale l such that l0 � l � r0; at this scale,
the interface is practically inflexible, i.e., the result (5) is
valid, meaning a vanishing turbulent viscosity at the inter-
face. The value of r0 for typical problems can be assessed
from a comparison between the gravity force and the sur-
face tension force: ρr3

0g ∼ τr0, where τ is the surface ten-
sion coefficient. Hence, r0 ∼

√
τ/(ρg). For water, one finds

r0 ∼ 3mm and, for instance, with l0 ∼ 10−5–10−4 m there
is a wide range of possible values of l satisfying the condi-
tion l0 � l � r0. The existence of this range means that
the turbulent viscosity vanishes at such an interface.

4.2 Solution to equations with turbulent viscosity

With the turbulent viscosity vanishing at the boundary,
one can seek the solution to eq. (10) in a potential form, as
the problem is free from the no-slip boundary condition.
For

u = −∇φ (12)
the divergence of the turbulent viscosity stress tensor (11)
reads

∇ · σ̂t = −2ρ∇νt(r, t) · ∇∇φ − 2ρ νt(r, t)∇Δφ.

Due to the harmonicity of the potential flow,

∇ · σ̂t = −2ρ∇νt(r, t) · ∇∇φ.

Employing the results for the turbulent boundary layer
provided in sect. 2, one can compare the order of magni-
tude of terms ρ(u ·∇)u and ∇· σ̂t in eq. (10) for potential
flow (12).
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Indeed, according to (5),

|∇νt(r, t)| ∼ κ v∗.

Hence,
∇ · σ̂t ∼ −ρκ v∗∇∇φ ∼ ρκv∗∇u.

The advective term (for a potential flow)

ρ(u · ∇)u ∼ ρu∇u.

The ratio of the characteristic values of these two terms is

|∇ · σ̂t|
|ρ(u · ∇)u| ∼

κv∗
u

,

which is a small value at low viscosity, as we will show
below in the text. Thus, in eq. (10) the term which makes
it different from the Euler equation turns out to be small
compared to the other terms.

The ratio v∗/u is expected to be small at low viscosity;
nonetheless, its characteristic value is yet to be defined.
For an ideal fluid flow, which approximately corresponds
to eq. (10) at low viscosity, the characteristic flow velocity
near the boundary is of the same order of magnitude as
the one in the bulk. Simultaneously, next to the boundary
the logarithmic profile (7) occurs, which can be employed
for the assessment of the ratio

|∇ · σ̂t|
|ρ(u · ∇)u| ∼

κv∗
u

∼ κ
2

ln v∗L
ξ0ν

. (13)

In the limit of arbitrary small viscosity the logarithm
argument tends to infinity and, therefore, ratio (13) tends
to zero. This fact, indeed, allows one to neglect the term
∇·σ̂t against the background of ρ(u·∇)u when considering
a potential flow (12). Moreover, with the turbulent mecha-
nism of eddy viscosity a potential flow becomes compatible
with the physically natural boundary conditions (in con-
tradistinction to the case of homogeneous viscosity, where
a potential flow is admitted by the Navier-Stokes equation,
but is generally incompatible with boundary conditions).

Thus, with a given geometry of the flow domain, the
Euler equation with the boundary conditions for an in-
viscid fluid turns out to correspond to the average over
turbulent pulsations flow of a fluid of arbitrary small vis-
cosity. In this sense, one can speak of the existence of
the passage to the limit of an inviscid fluid, and the Eu-
ler equation can be correctly employed for this limiting
case.

4.3 Small parameter characterising the accuracy of the
Euler equation

The small parameter quantifying the accuracy of the Euler
equation for low-viscosity flows is remarkable. According
to (13), this parameter is

ε =
κ

2

ln v∗L
ξ0ν

. (14)

The parameter ε is logarithmically small with respect to
viscosity ν and the thickness of the viscous sublayer. Let
us make two reference estimates for water flows (ν =
10−6 m2/s):

1) v∗ ∼ 0.01m/s, L ∼ 0.1m (typical for desktop instal-
lations). The logarithm argument is ∼ 104 and the
parameter ε ≈ 0.02.

2) v∗ ∼ 0.05m/s, L ∼ 5m (stream canal of a common
river). The logarithm argument is ∼ 2 · 106 and the
parameter ε ≈ 0.01.

One can see that parameter ε is quite small for these cases.
The smallness of the parameter ε is logarithmically weak
with respect to the ratio of the viscous sublayer thickness
to the geometric size of the system; for the above esti-
mates the decrease of (l0/L) by a factor 200 resulted in
the decrease of the parameter ε merely by a factor 2.

4.4 Mathematical description of low-viscosity
multiphase flows

Let us summarise what should be the equations and
boundary conditions for flows of multiphase systems with
a free interface at low viscosity.

In sect. 4.1, it has been shown that for an interface with
nonzero surface tension the turbulent viscosity should van-
ish at the interface if ν/v∗ �

√
τ/(ρg). Hence, at inter-

faces in multiphase systems the normal components of the
current velocity in contacting phases should be matched,
while tangential components can be arbitrary —the mu-
tual slipping of flows is possible.

Within each phase the flow must be potential and
smooth. There is an important point to be emphasised
here: the Euler equation formally admits discontinuities
of the velocity field and, in particular, mutual slipping of
flows. However, the presence of nonzero turbulent viscos-
ity in the bulk of each phase makes the flow discontinuities
in the bulk impossible. The Euler equation is valid for the
mathematical description of the macroscopic average flow
as long as this flow is a potential one and its potential is
smooth within the given phase.

Besides the multiphase systems with nonzero surface
tension, there are systems where interfaces do not possess
surface tension. An example of such a system is in the
case of contact between two mutually soluble liquids. In
this case the mutual dissolution is operated by molecu-
lar diffusion and phases can remain well separated at time
scales which are large compared to the hydrodynamic time
scale. This conclusion holds valid for the system of two
volumes of the same liquid but with different concentra-
tion of solute or fine suspension. An external force field
(e.g., gravity) can drive such a multiphase system to a
stratified state, where the interface will possess certain ef-
fective resilience to deformation; being distorted, it will
tend to restore a flat horizontal shape. The effective in-
terface resilience can hinder the penetration of vortex mo-
tions through the interface and diminish the efficiency of
the turbulent eddy transport of the average momentum.
As a result, one should expect a decrease of the turbulent
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Table 1. Reference scale (15) of perturbations of an interface
with zero surface tension.

v∗ = 0.01 m/s v∗ = 0.05 m/s

Δρ/ρ = 0.2 5 · 10−5 m 10−3 m

Δρ/ρ = 5 · 10−4 0.02 m 0.5 m

viscosity at this interface. One can estimate the reference
length scale l∗ of the interface deformations due to tur-
bulent pulsations; ρv2

∗/2 ∼ Δρgl∗, where ρ is the char-
acteristic density of liquids, Δρ is the density difference
between two liquids. Whence,

l∗ ∼ ρ v2
∗

Δρg
. (15)

At the scales which are large compared to l∗, the basic
points of sect. 2, leading to expression (5), are relevant,
although the value of the multiplier κ specific to this case
should be determined empirically, not from a generalised
analysis, and can differ from 0.4. At these scales, it is
natural to expect the turbulent viscosity to practically
vanish near the interface.

In table 1, the values of l∗ are provided for the cases
of desktop installations and stream canals of common
rivers for a pair of mutually soluble heterogeneous liquids
(Δρ/ρ ∼ 0.2) and for the confluence of two fresh-water
rivers with different natural water hardness (Δρ/ρ ∼
5 · 10−4). As an example of the latter, the confluence of
the rivers Chusovaya and Sylva near the Ural Mountains,
for which the detailed measurements on water properties
and a persistent stratified state are available [14], can be
mentioned. Here Δρ/ρ ∼ 3 · 10−4 and during the winter
period, when two rivers are covered by ice sheet, a strat-
ified state with a two-layer flow is observed downstream
from the confluence site and even upstream from it; the
waters of the River Chusovaya overlay the water of the
River Sylva.

Note, for the interface of the mixing layer, our analy-
sis and conclusions are not applicable. Such an interface
possesses neither surface tension nor any kind of effective
resilience; therefore, there is no mechanism for a signifi-
cant decrease of the turbulent viscosity and thus a per-
sistent existence of the potential discontinuity cannot be
expected.

5 Conclusion

The passage to the limit of an inviscid fluid for the Navier-
Stokes equation exists and it leads to the Euler equation.
In this limit, the fluid flow is turbulent, and the passage
is essentially related to the properties of the turbulent
boundary layer; specifically, the property of the effective
turbulent viscosity, which is nonuniform in space, to
vanish at the rigid boundaries and the liquid-liquid inter-

faces. With turbulent viscosity vanishing at the bound-
ary, one can adopt for the macroscopic average flow the
same boundary conditions as for an ideal fluid; the no-slip
boundary condition does not appear. Such boundary con-
ditions can be satisfied with a potential flow, which allows
one to seek for the solution in a potential form. Simul-
taneously, the relative contribution of the term related
to turbulent viscosity into the equation for the macro-
scopic average flow turns out to be logarithmically small
with respect to the ratio of the viscous sublayer thick-
ness l0 to the geometric size of the system L; this contri-
bution is quantified by a small dimensionless parameter
ε = κ

2/ ln[L/(ξ0l0)], where for a rigid boundary κ = 0.4
and ξ0 = 0.13 (for a free interface, geometric coefficients
κ and ξ0 may be different). Thus, in the limit l0/L → 0,
the potential of the macroscopic average flow obeys the
same equation to which the potential solutions to the Eu-
ler equation obey.

In this sense, one can speak of the existence of the pas-
sage to the Euler equation in the limit of arbitrary small
viscosity; the solution to the Euler equation represents a
macroscopic fluid flow averaged over turbulent pulsations.

The author is grateful to P. Frick for useful comments and
discussion and acknowledges financial support by the Russian
Science Foundation (Grant No. 14-21-00090).
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