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Abstract. The paper is devoted to the linear stability analysis within the solute analogue of the Horton-
Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous
approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier
fluid and solute). Solute transport in porous media is very often complicated by solute immobilization
on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within
the fractal model of the MIM approach. According to this model a solute in porous media immobilizes
within random time intervals and the distribution of such random variable does not have a finite mean
value, which has a good agreement with some experiments. The solute concentration difference between
the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux:
constant and time-modulated. For the constant flux the system of equations that determines the frequency
of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the
critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a
wide range of parameters of the system. We have found that taking immobilization into account leads to an
increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external
filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown
that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number
and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential
equation with Caputo fractional derivatives has been obtained for the description of the behavior near
the convection instability threshold. This equation is analyzed numerically by the Floquet method; the
parametric excitation of convection is observed.

1 Introduction

The investigation of the passive transport of a solute
through a porous media is of interest not only for the
numerous practical applications, but also from the the-
oretical point of view because of its deviation from the
linear Fick’s law [1]. As has been demonstrated in ex-
periments (for example, [2,3]), due to the rather complex
spatial structure of porous media, the diffusion process is
slower than predicted by Fick’s law. Many studies have
been devoted to the non-Fickian effect on processes in
porous media (see, for example, [4–6]). Frequently the de-
celeration is usually explained by the adsorption of the
solute particle by the porous matrix, in other words, par-
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ticles can stick to the solid matrix and do not move for a
sufficient time. Such behaviour is called the immobiliza-
tion and is often modelled by the MIM (mobile/immobile
media) approach [7]. According to this approach the solute
concentration can be divided into two phases: mobile and
immobile, which are connected with each other through
the kinetic law.

The MIM approach was first suggested in [8] with the
linear kinetics law for the concentrations of immobile and
mobile solutes. Although this model predicts the retar-
dation of the diffusion process, it gives a poor fit to the
experimental data. The improvement of this model was
suggested in [9] and developed in [7] by the introducing of
the first-order kinetics model. The developed model ade-
quately describes the diffusion of solutes at low concen-
trations (lower than the concentration of saturation of a
solid porous matrix). A model of this type is often called
the linear sorption model or standard MIM model. The
results obtained by this model have good agreement with
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some experiments [10,11], but do not explain the problem
of the localized concentration peak dissolution. For this
problem at large times the standard MIM model predicts
an exponential decline of concentration with respect to
time, meanwhile, experimental studies demonstrated that
it should be the power law. To describe the corresponding
behaviour at large time the fractional mobile/immobile
model (fMIM) was developed [12]. According to this model
a solute in porous media immobilizes within random time
intervals and the distribution of such random variable does
not have a mean value. The kinetic law is the linear re-
lation between the influx to the immobile phase and the
fractional Caputo derivative of mobile phase concentration
with respect to time. In paper [13] it was demonstrated
that this model gives a right behaviour at long time for
low solute concentrations. At high concentration the au-
thor of [14] has developed the non-linear fractional MIM
model which describes a long-time limit.

The present work is devoted to the study of solutal
convection in a horizontal layer of a porous medium un-
der an imposed horizontal filtration flux. The problem in
a similar configuration, without immobilization and exter-
nal filtration flux, was considered in [15]. It was obtained
that the convective regime has a form of a set of convec-
tive cells, with a width equal to the layer thickness. The
convection under an external horizontal flux was studied
in [16]. It was shown that the influence of a steady ex-
ternal flux leads to the excitation of an oscillatory mode
with the same wavelength of critical perturbations and the
same critical value of the Rayleigh-Darcy number, which
was obtained without external flux. The effect of the im-
mobilization of the solute particles on the convection was
investigated in [17] using the standard MIM model [7]. It
was numerically obtained that due to immobilization the
critical values of the parameters become dependent on the
external flux intensity. In the present paper the immobi-
lization was considered in the framework of the fractal
linear model of the mobile/immobile medium (fMIM) ap-
proach.

The mechanism of instability in the series of systems
with fractional derivatives was investigated in [18,19]. The
analysis of pattern formation and stability in the frac-
tional diffusion-reaction system was presented in [20,21].
The authors found new oscillatory-type instabilities and
investigated their spatial spectrum.

The paper is organized in the following way. Sec-
tion 2 is devoted to the problem statement, where gov-
erning equations and boundary conditions are described.
In sect. 3 the case of the steady filtration flux is investi-
gated analytically using the Laplace-Fourier transforma-
tion method. The case of time-dependent filtration flux is
considered numerically in sect. 4. Section 5 provides some
conclusions.

2 Problem statement

Let us consider the flow of a mixture through the hori-
zontal layer of a porous medium (the problem configura-
tion is sketched in fig. 1). The mixture consists of solid

Fig. 1. Sketch of the problem configuration.

nanoparticles and ambient fluid; the solid nanoparticles
are considered as a solute within the continuous approach.
The flow inside the layer is induced by an external hori-
zontal filtration with velocity V. The effect of solute im-
mobilization, when the solute particles can stick to the
solid matrix of the porous medium and do not move for a
some sufficient time, is taken into account. We model the
immobilization process using the MIM (mobile/immobile
media) approach. According to [7] the total solute concen-
tration is assumed to have two phases: the mobile phase
(with volume concentration C) and the immobile phase
(with volume concentration Q). Solute concentrations at
the upper and lower boundaries of the layer are consid-
ered to be constant. The solute is heavier than the carrier
fluid, which can lead to a solutal convection.

It is convenient to write the equations of the solutal
convection in porous media within the framework of the
Bousinesq approximation [1]:

η

κ
φV = −∇p + ρβcgCγ,

∇ · V = 0,

∂tC + ∂tQ = D∇2C − V · ∇C.

(1)

We use following notation ∂t for the time derivative, V
for two-dimensional flow velocity, γ for a unit vector along
gravity, g is the gravity acceleration, p for a deviation of
the pressure from the hydrostatic one. Here ρ and η are
the density and dynamic viscosity of the ambient liquid
and D, φ, κ are the effective diffusivity, porosity and per-
meability of porous media.

This system represents the Darcy law with the buoy-
ancy force [1], the incompressibility condition and the
advective-diffusion equation with additional influx into
the immobile phase (∂tQ). To close the system of equa-
tions one needs to add the kinetic equation, which deter-
mines the dependence of the solute influx (∂tQ) on the
solute concentrations in both phases, or it also can be
interpreted as phase transition kinetics. We used the frac-
tional MIM model with the following kinetic equation [12]:

Q =
λ

Γ (1 − α)

∫ t

0

C(r, t′)
(t − t′)α

dt′, (2)
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where λ is the mobility parameter and α is the exponent
of the Levy stable law. The mobility parameter character-
izes the portion of the immobile concentration in the total
concentration. The exponent of the Levy stable law varies
from 0 to 1 and describes the relaxation of the system
to the dynamical equilibrium state between mobile and
immobile phases. For α = 0 the relaxation time is infi-
nite, the process of mobilization is blocked and equilibrium
cannot be reached; whereas in the opposite case α = 1
corresponds to the instantaneous relaxation (Q = λC).
Meanwhile from the theoretical point of view the range
is 0 < α < 1, in practical application for usual porous
materials α > 0.5.

In order to obtain a dimensionless equation system the
following scales have been chosen: l2/D as the scale for
time, l for length, C0 = C+ − C− for concentration, D/l
for velocity and Dηφ/κ for pressure. In dimensionless form
the governing equation system eqs. (1), (2) reads

V = −∇p + RpCγ,

∇ · V = 0,

∂tC + ∂tQ = ∇2C − V · ∇C,

Q =
λ

Γ (1 − α)

∫ t

0

C(r, t′)
(t − t′)α

dt′,

(3)

with boundary conditions

y = 0: C = 0, Vy = 0,

y = 1: C = 1, Vy = 0,

x = ±∞: Vx = Pef(t).
(4)

The boundary value problem, eqs. (3), (4) is charac-
terized by two governing parameters: the Rayleigh-Darcy
number and the Péclet number

Rp =
βcC0glκρ

φηD
, Pe =

V l

D
.

The problem (eqs. (3), (4)) admits the uniform solution
defined by C = y and V = (Pef(t), 0). Our interest is on
the linear analysis of the perturbations of this solution. To
find perturbations let us consider c = C − y, v = (u,w) =
(Vx − Pef(t), Vy) and introduce the stream function ψ as
u = −∂yψ and w = ∂xψ. Thus, neglecting the non-linear
terms in eq. (3), it can be derived that

∇2ψ = −Rp∂xc,

∂tc + ∂tq + Pef(t)∂xc + ∂xψ = ∇2c,

q =
λ

Γ (1 − α)

∫ t

0

c(r, t′)
(t − t′)α

dt′,

(5)

with boundary conditions

c, q, ψ|y=0,1 = 0. (6)

In order to find the solution of eqs. (5), (6) it is
convenient to apply the Laplace-Fourier transformation
method [22]. If L[F ](r, s) =

∫ ∞
0

F (r, t) exp{−st}dt is the
Laplace transform of some function F (r, t) varying in time

and F̂ (k, t) =
∫∫∫ ∞

−∞ F (r, t) exp{−ik ·k}dk is the Fourier
transform of F (r, t) varying in space, then in the Laplace-
Fourier space the system eq. (5) can be rewritten as a
single equation for the Laplace-Fourier transform of per-
turbation of mobile concentration c:

L [ĉ] (k, s) (s + λsα) − ĉ (k, 0) =
−L [ĉ] (k, s)

(
k2 − k2

xRpk−2
)

−ikxPeL [f(t)ĉ (k, t)] , (7)

where k is a wave vector and kx its x-component, k2 =
k2

x + π2n2. To solve this equation the external filtration
flux f(t) has to be specified.

3 Stationary flux

Let us start by considering the time-independent external
filtration flux (f(t) = 1). The solution of eq. (7) in the
Laplace-Fourier space is

L [ĉ] (k, s) =

ĉ (k, 0)
(
s + λsα + k2 + ikxPe − k2

xRpk−2
)−1

. (8)

The inverse Laplace-Fourier transformation of eq. (8)
gives the system of equations, which defines the frequency
of critical perturbations and the critical value of the
Rayleigh-Darcy number, which, for the critical oscillatory
perturbation with s = −iω, reads

ω − λ Im
(
i3α

)
ωα − kxPe = 0,

Rp =
(π2n2 + k2

x)2

k2
x

+
(π2n2 + k2

x)
k2

x

λ Re
(
i3α

)
ωα.

(9)

To check that our solution is consistent, let us consider
some limiting cases. It is natural that without immobiliza-
tion (λ = 0) eq. (9) gives

ω = kxPe,

Rp =
(π2n2 + k2

x)2

k2
x

,
(10)

which matches the well-known solution, when the external
flux has no influence on the convection threshold [16]. It
should be noted that the critical value of the Rayleigh-
Darcy number is the same, if the external flux is absent
(Pe = 0). In this case the oscillatory convection does not
occur: ω = 0.

Another limiting case for which the convection thresh-
old does not change is α = 1. Indeed, substituting it
into eq. (9) gives the same value of the critical Rayleigh-
Darcy number, but the value of the frequency will de-
crease, namely

ω =
kxPe

1 + λ
.

Indeed, this limiting case corresponds to the linear
relation between immobile and mobile concentrations;
Q = λC. Thus the advective diffusion equation (3) is
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Fig. 2. Dependences of the critical Rayleigh-Darcy number (left panel), the critical wave number (middle panel) and the
frequency of critical perturbation oscillation (right panel) on the Péclet number for α = 0.8 (solid line) and α = 0.9 (dashed
line); λ = 2.

transformed to the ordinary diffusion equation with ad-
ditional factor for the time derivative 1 + λ.

In the general case the dependence of critical pertur-
bations parameters on the problem parameters is inves-
tigated. The critical value of Rayleigh-Darcy number is
defined as the minimal possible value (Rpmin) the corre-
sponding values of the horizontal wave number (kmin) and
the frequency of critical perturbations (ωmin) are obtained
from eqs. (9).

The dependences of critical parameters on the Péclet
number are presented in fig. 2. It is seen that the increase
of the external flow intensity leads to the growth of all the
parameters but the growth of the wave number is very
tiny. This result corresponds to the findings of [17]. Also
in the case of α = 0.8 the effect is greater than for α = 0.9
because the immobilization dynamics is more intensive for
α = 0.8. We remember here that in the case α = 1 we find
an instateneous relaxation without any dynamics, but the
mechanism of stabilisation is a dynamical transition of
concentration between mobile and immobile phases.

Figure 3 shows the dependences of the critical param-
eters on the mobility parameter (λ). The most interesting
effect is observed for moderate values of λ. The small val-
ues corresponds to the weak immobilization and the ob-
tained results are consistent to the findings of [16]. In the
case of great λ values (λ > 16) the most part of the solute
is kept in the immobile phase and the dynamics of phase
transition slows down. Due to this fact, the critical value
of the Rayleigh-Darcy number increases but also turns to
the constant value, for λ > 16 all other parameters turn to
the values which correspond to the steady state [15] (case
without external flow). The same effects are obtained from
the analysis of α variation (see fig. 4). The immobilization
dynamics is the most intensive for α = 0.5 and as α is
increasing, the effect of immobilization decays.

4 Non-stationary flux

Let us consider the time-dependent external filtration flux
as a harmonic function with an amplitude A and a fre-

quency Ω: f = A cos Ωt. In this case eq. (7) in the Laplace-
Fourier space has the form

L [ĉ] (k, s) (s + λsα) − ĉ (k, 0) =
−L [ĉ] (k, s)

(
k2 − k2

xRpk−2
)

−ikxPeAL [cos Ωtĉ (k, t)] . (11)

Equation (7) contains only the multiplication of amlitude
A and Péclet number Pe, so we will assume that A = 1
and Pe plays the role of external flux amlitude. Despite
the fact that a full solution of this system can be found
only numerically, we provided an analytic investigation for
the case of weak flux, when ε = kxPe � 1. Hence we take
ε as a small parameter and seek the solution in the form
of expansions with respect to ε

hj = h
(0)
j + εh

(1)
j + ε2h

(2)
j + . . . ,

where the symbol hj denotes the field functions c, q and β,
where β = kx

2Rpk−2 − k2. The value β = 0 corresponds
to the critical form of perturbations in the case without
immobilization (see eq. (10)).

In the first order with respect to ε we obtain the con-
centration of the mobile phase as

L
[
ĉ(1)

]
(k, s) =

− ĉ(k, 0)
(s + λsα)

(
β(1)

(s + λsα)
+

i

2
G (k, s)

)
, (12)

where

G =
1

s + iΩ + λ(s + iΩ)α
+

1
s − iΩ + λ(s − iΩ)α

.

It can be seen from eq. (12), that the term, which is
proportional to β(1), corresponds to a pole of second or-
der. Hence the inverse Laplace transformation of eq. (12)
leads us to calculate the residue for the pole of second or-
der which is proportional to the linear function of time.
As a result this term will increase with time. But physi-
cally there is no reasons for such growth, thus we should
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state that β(1) = 0 (see [23]). In order to obtain the per-
turbation of the critical Rayleigh-Darcy number we have
to consider the second order with respect to ε.

Indeed in the second order the solution of eq. (11) reads

L
[
ĉ(2)

]
(k, s)=

ĉ(k, 0)
s + λsα

(
− G

4(s + λsα)
+

β(2)

s + λsα
+. . .

)
.

from which the second oder for β series can be obtained
as

β(2) =
1
4

2λ(Ω)α cos(απ/2)
Ω2 + λ2Ω2α + 2λ(Ω)α cos(απ/2)

.

In this way, the corresponding correction to the critical
Rayleigh-Darcy number is

Rp =
(π2n2 + k2

x)2

k2
x

+ Rp∗ =

(π2n2 + k2
x)2

k2
x

+
(
π2n2 + k2

x

)2 Pe2

4

× λΩα cos(πα/2)
Ω2 + λ2Ω2α + λΩα cos(πα/2)

. (13)

The result of the tabulation of the expression of the
correction to the critical Rayleigh-Darcy number is pre-
sented in fig. 5. It is shown that the correction decreases

 0

 0.4

 0.8

 1.2

 0  1  2  3  4

Rp
*

Ω

Fig. 5. Dependence of the correction to the critical Rayleigh-
Darcy number (Rp∗ from eq. (13)) on the external frequency
Ω for A = 2, α = 0.8 and λ = 2.

dramatically with the increasing of the external flux fre-
quency value Ω. it should be noted that the correction
(eq. (13)) vanishes in the case without immobilization
(λ = 0) or either when α = 1, these results have a good
agreement with the results obtained in [24] and with the
findings of sect. 3.
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The solution of eq. (11) under moderate time-
dependent filtration flux was found numerically using the
finite difference method. The expression for immobile con-
centration was modelled by the Riemann-Liouville frac-
tional derivative according to [13]. The expected critical
values of the parameters were obtained by the Floquet
method [23]. The dependence of the critical values of pa-
rameters Rp = Rpmin and kx = kmin on the Péclet num-
ber for different external flux frequency is plotted in fig. 6.
It can be seen that when Ω is small, the critical Rayleigh-
Darcy number value differs insignificantly from the value
obtained for the steady flux case. With increasing external
filtration frequency, the oscillations of Rp became signif-
icant, thus one can observe the parametric excitation of
convection. A strong dependence of the critical wave num-
ber on the external flux parameters (i.e., Péclet number
and frequency Ω) allow to control the structure of convec-
tive cells.

In fig. 7 the dependences of critical parameters on fre-
quency and immobilization parameters are presented. The
observed effect is the same as previosly discussed: the in-
creasing of frequency leads to the growth of variation in
critical parameters. The effect of immobilization parame-
ters is described in the standard way —the intensification
of immobilization (increasing of λ and decreasing of α in
the interval 0.5 < α < 1) leads to the growth of variation
of critical parameters.

5 Conclusion

We have considered the linear stability problem for so-
lutial convection. The investigation was carried out for a
horizontal layer of a porous medium at a given vertical
concentration gradient with imposed external horizontal
filtration flux. The effect of solute immobilization when
the solute particles can stick to the solid matrix of the
porous medium is taken into account using fractal linear
mobile/immobile media model. The solute concentration
difference between the layer’s boundaries is maintained
constant. The investigation is limited within two cases:
steady and unsteady external filtration flux.

The system of equations that determines the fre-
quency of neutral oscillations and the critical value of the
Rayleigh-Darcy number is derived. Neutral curves of the
critical parameters on the governing parameters are cal-
culated. Stability maps are obtained numerically in a wide
range of parameters of the system. It was found that tak-
ing immobilization into account leads to an increase of the
critical value of the Rayleigh-Darcy number with growth
of the intensity of the external filtration flux.

The case of weak time-dependent external flux is in-
vestigated analytically. The results show that at low flow
velocity the modulation makes additional positive contri-
bution to the critical value of the Rayleigh-Darcy number.
As a result, the formula, which determines the threshold
value, consists of two positive terms: the first is the main
critical value without external flow, and the second is re-
lated to the effect of the external flow modulation. Thus
the introduction of modulation leads to stabilization.

The case of moderate values of time-dependent exter-
nal flux is studied by numerical methods. The parametri-
cal excitation of convection is observed and the possibility
of controll for convective flow structure by the variation
of external flux parameters is shown.

The work was supported by the Russian Science Foundation
(grant 14-21-0090).
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