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Abstract. We consider active flow and dynamics of topological defects in an active nematic interfacial
layer confined between immissible viscous fluid layers. The velocity of defects is determined by asymptotic
matching of solutions in the defect core and the far field. Self-propulsion of positive defects along the
direction of their “comet tails” is identified as the principal deterministic component of defect dynamics,
while topological and hydrodynamic interactions among mobile defects is responsible for quasi-random
jitter.

1 Introduction

Soft active matter has emerged during the last decade as
a new paradigm in the field of non-equilibrium condensed-
matter physics [1,2]. Living realisations, from animal
flocks [3] to bacterial colonies [4,5] or cytoskeletal com-
ponents [6–8], as well as non-living replicas, composed
of either externally driven [9–11] or autonomously pro-
pelled elements [12–14], share a common distinctive fea-
ture: elementary units convert ambient or stored energy
into large-scale clusters and flows, from coherently organ-
ised to seemingly chaotic.

Cytoskeletal reconstitutions, based on the entangle-
ment of filamentary and motor proteins, are singularly
motivating for their biophysics interest. Particularising to
extensile systems, we will focus on the system pioneered
by the group of Dogic [8], based on the hierarchical self-
assembly of tubulin, all the way up from monomers to
micron-size stabilised microtubules (MTs). The latter are
forced to bundle by the action of a depleting passive (non-
adsorbing) polyethylene-glycol (PEG) agent, while they
are internally cross-linked and sheared by clusters of ATP-
fueled kinesin motors. Inter-filament sliding occurs in bun-
dles containing MTs of opposite polarity. In volume pre-
pared samples this mixture self-organises into an active
gel continuously reconstituted following bundle reorgan-
isation [8,15]. Alternative preparations of this lyotropic-
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Fig. 1. Above: a typical texture of an active nematic layer [17].
Points indicate locations of +1/2 defects. Below: close-up on
paired +1/2 and −1/2 defects (indicated by arrows).

like system appear as bundled MTs two-dimensionally as-
sembled either at planar [8,16,17] or curved [18] interfaces.
In both cases, one observes textures characteristic of a
2D-nematic, that are punctuated by half-integer defects
(fig. 1) and permeated by streaming flows.

Topological defects commonly arise in liquid-
crystalline media following transition from the isotropic
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Fig. 2. The core structure of +1/2 (left) and −1/2 (right)
defects. Dashes indicate the director orientation, and shading
imitates patterns observed using the Schlieren technique. The
left picture shows the direction of the “comet tail”, further
taken as the x-axis and the origin of the polar angle, and the
orientation of the dipolar vorticity source (see sect. 3.2).

state, as a result of different ordering in spatially removed
domains [19,20]. In thin nematic layers with in-plane
director orientation, defects with the lowest energy have
charge ±1/2. The core structure of these defects is
sketched in fig. 2, showing their distinct symmetries. In
common passive nematics, defects gradually annihilate,
leading eventually to a monodomain state or, depending
on boundary conditions, to a texture with the minimal
number of defects. This evolution is accompanied by flow
that ceases when the final lowest-energy state is attained.
In contrast to this, in active nematics defects may
arise spontaneously due to an instability of a perfectly
aligned state [21]. Equilibrium is never reached, and
the motion of defects due to their topological attraction
is complemented by spontaneous motion driven by the
active stress that originates, in the experimental system
under the discussion, in the action of ATP-fueled kinesin
motors.

We will restrict our attention to such 2D active dynam-
ics but stressing its interfacial aspects when facing other
passive soft-matter components [16,17] where an ultrathin
active layer plays a role of a surfactant localised on the oil-
water interface. In fact, the possibility of interfacial active
materials makes them a lot more attractive from the point
of view of both biophysics and material science. Theoret-
ical and numerical studies were mostly restricted so far
to thin active nematic layers lacking such kind of con-
tact with passive soft media, and therefore inapplicable to
the experiments of this kind. Simulations of flow and ne-
matic textures in active layers [22,23] were based on solv-
ing the 2D Navier-Stokes equation, which, if applied to a
thin layer, presumes perfect slip at the confining planes.
In the free-slip 2D setting, the momentum transfer from
active medium is impeded, leading to far-field divergences
mitigated by inertial screening, which leads to an O(1)
Reynolds number based on the correlation length [23].
With a different perspective from the lubrication ansatz
employed here, an attempt to incorporate hydrodynamic
coupling has been published very recently to try to esti-
mate the shear viscosity of an active nematic film from
experiments with an open cell [17]. On the other hand,
the analytical study of defect dynamics by one of the au-

thors [21] used the lubrication approximation to describe
a more realistic no-slip Hele-Show geometry with strong
wall friction. In what follows, we adjust this technique to
experiments performed with the tubulin/kinesin active ne-
matic bound to an oil-water interface in a closed flow cell.
We aim at analysing the response of the active material
to this particular interfacial rheological condition, looking
mostly at the most significant features of the active ne-
matic, i.e. the proliferation of defects and the associated
streaming currents.

2 Nematic texture

We consider an ultrathin flat layer of active nematic con-
fined between two fluid layers. The analysis largely follows
earlier theory [21], where, however, a thin active layer was
assumed to be confined between solid walls. The nematic
order parameter in the active layer depends on in-plane
coordinates r = (x, y), and 2D formulation is applicable.
The 2D nematic order parameter is a traceless symmetric
tensor with the components Qij = ρ(2ninj −δij), where ρ
is its absolute value, n = (cos θ, sin θ) is the unit director,
θ is the orientation angle, and δij is the Kronecker delta.
An equivalent more convenient representation is

Q =
(

p q

q −p

)
≡ ρ

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (1)

with ρ = (p2 + q2)1/2. The nematic energy per unit thick-
ness is expressed as F =

∫
Ld2r with the 2D Landau-de

Gennes Lagrangian [19]

L = −α

4
QijQij +

α

16
(QijQij)

2

+
κ1

2
|∂iQij |2 +

κ2

4

∑
ijk

(∂iQjk)2 . (2)

The coefficients at the algebraic terms are rescaled to the
common value α to ensure ρ = 1 in the homogeneous
nematic state; the cubic term vanishes identically in 2D.
The number of distinct elastic constants κ1, κ2 reduces to
two when their anisotropy is neglected, similar to the one-
constant approximation in the case ρ = 1. The Lagrangian
can be rewritten in terms of p and q as

L = −α

2
(
q2 + p2

)
+

α

4
(
q2 + p2

)2
+

κ1

2

[
(px + qy)2+(qx − py)2

]
+

κ2

2
[
p2

x + p2
y + q2

x + q2
y

]
.

(3)

Relaxation to equilibrium follows the gradient dy-
namics governed by the variational equation of the form
∂tQ = −ΓδF/δQ with the mobility coefficient Γ . Scal-
ing time t by (αΓ )−1 and length by the healing length
ξ =

√
(κ1 + κ2)/α, and varying eq. (3) yields the dynamic

equations in a particularly simple form:

pt = ∇2p+p−(p2+q2)p, qt = ∇2q+q−(p2+q2)q, (4)
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where ∇2 is the 2D Laplacian. These equations reduce to
a single equation for the complex variable χ = p + i q =
ρei ϑ identical to the equation of dissipative dynamics of a
vortex of unit charge in a complex scalar field [20]:

χt = ∇2χ + χ − |χ|2χ. (5)

In a planar film flowing or deforming with the velocity
u and vorticity ω = ∇× u, the time derivative should be
replaced by the corotational substantial derivative

DijklQkl = (∂t + u · ∇)Qij +
ω

2
(εliQkj − εikQlj), (6)

where εki is the antisymmetric tensor. This brings
eqs. (4), (5) to the form

pt + u · ∇p + ωq = ∇2p + p
(
1 − p2 − q2

)
, (7)

qt + u · ∇q + ωp = ∇2q + q(1 − p2 − q2), (8)
χt + u · ∇χ + iωχ = ∇2χ + χ − |χ|2χ. (9)

Consider a static defect with the charge ± 1
2 . In its far

field, i.e. at distances from the core exceeding the healing
length (taken here as unity), ρ → 1 and ϑ = 2θ = ±φ,
where φ is the polar angle. The solution in the defect core
can be obtained using the ansatz χ = ρ(r)e±i φ, leading to
the equation defining the dependence of the scalar order
parameter ρ = |χ| on the radial coordinate r:

ρrr + r−1ρr − r−2ρ + (1 − ρ2)ρ = 0. (10)

This defines the well-known short-scale core structure
ρ(r), identical to that of a superfluid vortex of unit
charge. The asymptotics of this solution are ρ ≈ ar at
r → 0, where the constant a is computed numerically as
a ≈ 0.583, and ρ(r) � 1− 1

2r−2 at r � 1. A useful analyt-
ical form of ρ(r) is a Padé approximant [20] with the same
leading-order asymptotics at both zero and infinity, that
fairly approximates the numerical solution in the entire
domain:

ρ(r) = r

√
0.34 + 0.07r2

1 + 0.41r2 + 0.07r4
. (11)

3 Flow induced by defects

3.1 Basic equations

We will now explore both active and passive flow induced
by defects in the nematic layer and in the isotropic pas-
sive fluids layers bounding it from above and below. The
latter are described in the lubrication approximation re-
ducing the Stokes equation for the horizontal velocities u±
to η±u′′

±(z) = ∇P , where the pressure P is constant across
both upper (marked by the plus sign) and lower (marked
by the minus sign) layers, η± are the respective viscosi-
ties, and ∇ is the 2D gradient operator. Taking the active
layer as the plane z = 0, we impose the no-slip boundary
conditions at z = ±h± and the continuity condition at
z = 0:

u±(0) = u, u±(−h±) = 0, (12)

where u is the velocity in the active layer. This leads to
the velocity profiles

u± = u + b±z +
∇P

2η±
z2, b± =

∇P

2η±
h± +

u
h±

. (13)

The flow field u(r, z) in the active layer is determined
by the generalised 2D Stokes equation complemented by
the terms expressing the friction with the bounding pas-
sive layers:

η∇2u− (η+b+ + η−b−) = ∇P −∇ ·
(
σ(a) + σ(p)

)
, (14)

where η is the 2D viscosity of the active layer (with the
viscous anisotropy neglected), σ(a) = ζαQ is the active
stress [24] with the activity parameter ζ, and σ(p) =
−∂jQkl∂L/∂(∂iQkl) is the passive Ericksen stress.

Taking the curl of eq. (14) to eliminate pressure yields
the equation of vorticity ω(r). We write it in the dimen-
sionless form, scaling velocity by ξ/(Γα), and stress by
α:

∇2ω − βω = Φ, Φ = ε∇×
[
∇ ·

(
σ(a) + σ(p)

)]
. (15)

The dimensionless parameters of the problem are

ε =
ζ

ηΓ
, β =

ξ2

η

(
η+

h+
+

η−
h−

)
. (16)

The former can be viewed as the ratio of the characteristic
elastic-to-viscous relaxation times in the active layer, and
the latter is the effective friction coefficient. Since ξ � h±,
the lubrication approximation for the passive layers breaks
down near the defect location but viscous dissipation in
the active layer prevails there over friction in the realistic
case β � 1.

3.2 Active flow

We compute first the contribution of the active stress gen-
erated by a defect placed at the origin of the polar coor-
dinate system {r, φ}. Taking σ = σ(a) = ζQ, we express
the inhomogeneity in eq. (15) for defects with the charge
± 1

2 as

Φ
(a)
+ = −ε sin φ

(
ρrr + r−1ρr − r−2ρ

)
= ερ(1 − ρ2) sin φ, (17)

Φ
(a)
− = −ε sin 3φ

(
ρrr − 3r−1ρr + 3r−2ρ

)
,

where the last expression for Φ
(a)
+ is written using eq. (10).

In a positive defect, activity generates within the defect
core a force oriented along the “comet tail”, leading to a
normally oriented dipolar vorticity source (see fig. 2). A
negative defect has a different structure with the three-
fold symmetry, and a sextuplet vorticity source is gener-
ated instead. The vorticity due to a positive defect can be
presented as ω

(a)
+ = −ευ(r) sin φ, where υ(r) satisfies

υrr + r−1υr − (β + r−2)υ + (1 − ρ2)ρ = 0. (18)
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After solving this equation with the boundary conditions
υ(0) = υ(∞) = 0, one can compute the stream function
with the same symmetry Ψ = εψ(r) sin φ satisfying ∇2Ψ =
ω, or equivalently

ψrr + r−1ψr − r−2ψ + υ(r) = 0. (19)

This corresponds to the flow field

u(a)
+ = ∇× Ψ = ε

⎧⎨
⎩

r−1ψ cos2 φ + ψr sin2 φ

1
2

sin 2φ(r−1ψ − ψr)

⎫⎬
⎭ . (20)

For a negative defect, we write in a similar way ω
(a)
− =

−ευ(r) sin 3φ, where υ(r) satisfies

υrr+r−1υr−(β+9r−2)υ−ρrr+3r−1ρr−3r−2ρ = 0. (21)

The respective stream function is Ψ = εψ(r) sin 3φ, where
ψ(r) satisfies

ψrr + r−1ψr − 9r−2ψ + υ(r) = 0. (22)

This corresponds to the flow field

u(a)
− = ε

[
3
2

ψ

r

{
cos 2φ + cos 4φ

sin 2φ(2 cos 2φ − 1)

}

+
1
2
ψr

{
cos 2φ − cos 4φ

− sin 2φ(2 cos 2φ + 1)

}]
. (23)

As before, vorticity decays asymptotically as r−2, and the
far-field asymptotics of the flow field is

u(a)
− � 1

12
ε

βr

{
cos 2φ + cos 4φ

sin 2φ(2 cos 2φ − 1)

}
. (24)

The total active flow field is a superposition of flow in-
duced by all extant defects but this simple superposition
breaks down near defect cores.

3.3 Passive flow

The passive Ericksen stress is expressed in the adopted
units as

σ
(p)
ij = −2(ε/ζ)

(
∂ip∂jp + ∂iq∂jq + κ1ξ

−2δijεkl∂kp∂lq
)
,

(25)
where δij is the Kronecker delta and εkl is the 2D antisym-
metric matrix. Only the first term contributes to the inho-
mogeneity in eq. (15), which is expressed as Φ(p)(r, φ) =
∓2ε sin 2φfp(r) with

fp(r) = ρ2
rr + ρrρrrr − r−2ρ2

r − r−3ρρr + r−4ρ2. (26)

This reduces to Φ(p)(r) = ∓2r−4 sin 2φ in the far field.
The far-field vorticity solving eq. (15) decays asymptoti-
cally as r−4, which corresponds to a quadrupole flow field
decaying as r−3 at r → ∞. Due to the faster decay, the

passive stress can be dissipated in the nematic layer, with-
out a necessity to transfer the momentum to solid walls
indispensable for the active stress. The exact expression
for the flow field, obtained by computing as above the
vorticity and the stream function Ψ = ψ(r) sin 2φ, has the
form

u(p) =
ε

ζ

{
cos φ(r−1ψ cos 2φ + ψr sin2 φ)
sin φ(r−1ψ cos 2φ + ψr cos2 φ)

}
. (27)

4 Perturbed defect core

4.1 Solvability condition

The defect velocity under the combined action of orienta-
tion gradients and flow induced by other defects, as well as
self-induced active flow, is computed by asymptotic per-
turbation analysis assuming that the defect core structure
is only weakly perturbed. Assuming that the defect mo-
tion is quasistationary, it is advantageous to transform
eq. (9) to the frame comoving and corotating with the de-
fect: χt → Ũ · ∇χ + i Ω̃χ, where Ũ, Ω̃ are, respectively,
the translational and rotational velocities of the defect rel-
ative to the surrounding active fluid, so far unknown. Note
that rotation is a non-trivial effect, since the orientation
field around the defect lacks circular symmetry. The flow
velocity induced by other defects, removed at a distance
R large compared with the core size, is constant across
the core in the leading order in 1/R. Therefore it does not
perturb the core structure, and can be eliminated by the
transformation to the comoving frame, so that Ũ, Ω̃ are
replaced by absolute translational and rotational velocities
of the defect U, Ω. The remaining variable advective term
contains the self-induced velocity u = u(a)

+ + u(a)
− + u(p)

+ .
Thus, eq. (9) is reduced to the form

(U+u) · ∇χ + i (Ω + ω)χ = ∇2χ + χ(1− |χ|2) = 0. (28)

Further on, we assume ε � 1, so that the pertur-
bations of the stationary core structure are weak. If the
distance between defects is of order O(ε−1), the defect
velocity should be of order O(ε). Therefore we rescale
{U, Ω} → {εU, εΩ}, R → R/ε, and expand χ in the
small parameter ε: χ = χ0 + εχ1 + . . .. The zeroth-order
function is χ0 = ρ(r)e±i φ, where ρ(r) verifies eq. (10). The
first-order equation can be written in a compact form [20]

H(χ1, χ1) = I(r), (29)

containing the inhomogeneity

I(r) = (U + u) · ∇χ + i (Ω + ω)χ (30)

and the linear operator

H(χ1, χ1) = ∇2χ1 + (1 − 2|χ0|2)χ1 − χ2
0χ1, (31)

where the overline denotes the complex conjugate. This
operator is self-conjugate, and has three eigenfunctions
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ϕ(r, φ) with zero eigenvalue: the two vector components
of ∇χ0 = e±i φW(r), where

W(r) = ρr

{
cos φ

sinφ

}
± i ρ

r

{
sinφ

− cos φ

}
, (32)

that correspond to the translational degrees of freedom in
the plane, and the eigenfunction iχ0 corresponding to the
rotational degree of freedom.

The translation and rotation velocities are determined
by the solvability condition of eq. (29), which requires the
inhomogeneity to be orthogonal to the eigenfunctions with
zero eigenvalue. To avoid far-field divergence, the solvabil-
ity condition may be computed in a circle of radius L large
compared to the core size but small on the far-field scale,
i.e. 1 � L � ε−1. In this case, it has to be complemented
by a contour integral over the bounding circle:

Re

{∫ L

0

r dr

∫ 2π

0

ϕ I(r, φ) dφ

+L

∫ 2π

0

(ϕ∂rχ1 − χ1∂rϕ)r=L dφ

}
= 0. (33)

4.2 Area integrals

It follows from the symmetries of self-induced active and
passive flow that the respective inhomogeneities do not
project on the rotational eigenfunction iχ0, and therefore
the rotation Ω may be only caused by the vorticity of
the external flow. We concentrate therefore on the trans-
lational eigenfunction. The only component of u yield-
ing a non-vanishing contribution is the active self-induced
flow term in a positive defect. Using eq. (27) to compute
the respective component of the inhomogeneity in eq. (33)
yields, after angular integration,

∫ L

0

r dr

∫ 2π

0

W
(
u(a)

+ · W
)

dφ =

π

∫ L

0

dr

{
ψρ2

r + r−1ψrρ
2

−i ρρr(r−1ψ + ψr)

}
. (34)

Since the y-component of this vector expression is purely
imaginary, the non-vanishing contribution comes only
from the x-component, (directed along the “comet tail” of
the defect). Although the angular dependence in eq. (23)
has superficially the same structure, the contribution of a
negative defect vanishes identically upon angular integra-
tion. Vanishing of the contribution of the passive flow is
evident from the angular symmetry of eq. (27).

The contribution of the vorticity term iωχ0 also comes
only from the self-induced active flow in a positive defect,
and here again only the x-component is real:

Re
∫ L

0

r dr

∫ 2π

0

iWωρdφ = −π

∫ L

0

υρ2dr. (35)

Due to the 3-fold symmetry of the active flow in a negative
defect, its contribution to the solvability condition always
vanishes, as also does that of the passive flow.

It remains to compute the contribution of the transla-
tional term U · ∇χ0:

Re
∫ L

0

r dr

∫ 2π

0

W(r) (U · W(r)) dφ =

πU
∫ L

0

(
ρ2

r
+ rρ2

r

)
dr = πU ln

L

a0
(36)

with a0 ≈ 1.126 computed using the numerical solution of
eq. (10).

4.3 Computation at small β

We concentrate now on the active flow generated by a
positive defect, which is the only source of self-propulsion.
For a viscous layer with no vertical momentum transfer
(β = 0), the obvious solution of eq. (18) is υ(r) = ρ(r) �
1 − 1

2r−2. In view of eq. (19), this leads to the far-field
asymptotics ψ(r) � 1

3r2, so that u(+) diverges linearly in
r at r → ∞. If β � 1, viscous dissipation in passive layers
is essential at r � 1 only, i.e. outside the defect core.
Rescaling r = s/

√
β and using the far-field asymptopics

of ρ(r) leads to the far-field equation

υss + s−1υs − (1 + s−2)υ + s−2 = 0. (37)

The solution satisfying the boundary condition υ(0) = 1
and decaying at infinity is expressed in a standard way by

υ(s) = K1(s)
∫

I1(s)
s

ds − I1(s)
[
2π +

∫
K1(s)

s
ds

]
,

(38)
where Ij(x), Kj(x) are modified Bessel functions. This
solution approaches unity at s → 0, thereby matching
the outer asymptotics of the short-scale solution υ(r) =
ρ(r) � 1 at β = 0. The leading term in the expansion of
the integral in the second term evaluates to −2π, while the
other terms decay exponentially. Therefore the divergence
stemming from the asymptotic behaviour of the function
I1(s) solving the homogeneous equation is compensated
by adding 2π in the parenthesis. The resulting expression
decays as s−2 or, in the original length units, as 1/(βr2)
at r → ∞. The far-field solution is plotted in fig. 3.

The radial dependence of the stream function solving
eq. (19) with the boundary condition ψ(0) = 0 and ap-
proaching a constant value at r → ∞ is presented in the
form

ψ(r) =
1
2

[
r

∫ ∞

r

υ(r′)dr′ − 1
r

∫ r

0

(r′)2υ(r′)dr′
]

, (39)

where υ(r) = ρ(r) in the core region and υ(r/
√

β) is given
by eq. (38) at r � 1. The crossover between the inner
and outer expressions for υ(r) can be set using the next
expansion terms: υ(r) = 1 − 1

2r−2 in the outer limit of
the inner solution and υ(r) = 1 − 1

8π
√

βr in the inner
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Fig. 3. The function υ(r) in the far field of a positive defect.
Inset: logarithmic plot in the asymptotic region.

limit of the outer solution. the two expressions are equal
at r0 = 22/3(π

√
β)−1/3, which we choose as the crossover

point. The derivative of ψ(r) is

ψr =
1
2

[∫ ∞

r

υ(r′)dr′ +
1
r2

∫ r

0

(r′)2υ(r′)dr′
]
− rυ(r).

(40)
Taking into account the asymptotics of υ(r) ∼ r−2 at
r → ∞, we see that ψs indeed vanishes in this limit,
since both the second integral and the last term decay
as r−1. The flow velocity can be subsequently obtained
using eq. (27) but it is not required for evaluation of the
solvability condition.

Taking into account the far-field asymptotics of
υ(r), ψ(r) and ρ(r), one can see that both inte-
grals (34), (35) converge, decaying as L−1 at L � 1,
so that the outer limit can be extended to infinity. Both
integrals are evaluated separately in the core and far re-
gions, taking into account the different length scales. Thus,
eq. (35) is evaluated as

−Iω

π
=
∫ r0

0

ρ3(r)dr +
1√
β

∫ ∞

s0

υ(s)ds, (41)

where s0 =
√

βr0 = (4/π)1/3β1/6 and ρ(r) is set to unity
in the far region. In a similar way, eq. (34), is calculated
separating the core and far regions and taking into account
that in the latter the term ψρ2

r is negligible:

Iψ

π
=
∫ r0

0

[
ψρ2

r +
ψrρ

2

r

]
dr +

√
β

∫ ∞

s0

ψs

s
ds. (42)

This expression is most conveniently evaluated as a double
integral using eqs. (39), (40). The sum F (β) = −(Iω +
Iψ)/π is presented then as

F (β)=2
∫ r0

0

ρ3(r)dr +
2√
β

∫ ∞

s0

υ(s)ds

−1
2

∫ r0

0

[
rρ2

r +
ρ2

r

]
dr

∫ r0

r

υ(r′)dr′

Fig. 4. The integral F (β).

+
1
2

∫ r0

0

[
ρ2

r

r
− ρ2

r3

]
dr

∫ r

0

(r′)2υ(r′)dr′

− 1
2

√
β

∫ ∞

s

ds′

s′

[∫ ∞

s0

υ(s)ds+
1
s2

∫ s

s0

(s′)2υ(s′)ds′
]

. (43)

We find that the second term is prevailing while the last
one is negligible. The result is plotted in fig. 4. The depen-
dence F (β) is well approximated by a simple power law
F = e/

√
β.

5 Far-field solution

Unlike the integrals (34), (35), the area integral in eq. (36)
diverges at L → ∞, and therefore a cut-off is neces-
sary. The respective contour integral dependent on the
first-order solution χ1 cannot be discarded but has to be
evaluated by matching to the far-field solution. Assuming
L = O(ε−1/2), we have ρ(L) = 1 − O(ε). It follows that
the contour integral can be expressed, to the leading or-
der O(ε), through the phase field ϑ alone. The phase field,
generally, evolves on a slow O(ε2) time scale and verifies
the convection-diffusion equations obtained as the limiting
form of the imaginary part of eq. (9):

ϑ + u · ∇ϑ + ω = ∇2ϑ, (44)

subject to the circulation condition
∮

ϑ ds = ±2π along
any contour surrounding a single defect. The phase field
determined by this equation depends both on advection by
active or passive flow and phase gradients due to extant
defects.

The problem has two small parameters, ε and β, and
the relative strength of the above factors depends on their
ratio. The active flow induced by a defect decays with the
distance from its center as

√
β/r (in the length units mea-

sured in ξ), while the phase gradient decays as ε/r. Thus,
the action of the phase gradients prevails at

√
β/ε � 1,

while advection dominates at
√

β/ε � 1. The former
case is much more favourable for theory, since the vari-
able velocity field, which itself depends on the phase field,
makes the problem non-linear. The passive flow decays
as ζ−1(r/ε)2, and is not important in the case of well-
separated defects, unless activity is very small. Assuming
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a typical defect separation R ∼ ε−1, the passive flow is
comparable with motion under the action of phase gradi-
ents at ζ ∼ ε2.

The expressions for ϑ can be obtained in a simple form
either for stationary defects or for defects propagating
with a constant speed. In an active nematic layer contain-
ing a number of well-separated defects, one can distin-
guish between self-propulsion velocity of positive defects
and velocity induced by the phase field of surrounding de-
fects. The former is constant, up to slow rotation, which
is estimated as Ω = O(ε2), while the latter depends on a
variable configuration of defects, and is likely to have zero
average on a long time scale. It is reasonable therefore to
compute the phase field assuming positive defects propa-
gating with their self-propulsion velocity U and negative
ones to be stationary. This approach is more reliable in
the parametric domain ε2 � β � 1 where the action of
phase gradients dominates advection.

Neglecting advection, eq. (45) is rewritten in the frame
comoving with a positive defect as

U · ∇ϑ + ∇2ϑ = 0, (45)

where the coordinates are extended by the factor ε and
U is rescaled by the same factor. Since this equation is
linear, the solution is a superposition of phase fields in-
duced by all extant defects, ϑ =

∑
ϑi. It is solved [25] by

introducing a univalued function dual to ϑ, leading to a
scale-invariant expression for the phase gradient:

∇ϑ =
1
2

e−(U·r)/2 J
[
UK0

(
Ur

2

)
− Ur

r
K1

(
Ur

2

)]
,

(46)
where U = |U|, and J denotes clockwise rotation by the
right angle. Taking the inner limit of eq. (46) at r → 0,
one can reconstitute the phase

ϑ = φ
U × r

2
ln
(

Ur

4
eγE−1

)
, (47)

where γE ≈ 0.577 is the Euler constant. This expression
can be used to determine the function χ1 entering the
contour integral:

χ1 = ei ϑ − ei φ = i ei φ U × r
2

ln
(

Ur

4
eγE−1

)
. (48)

Using this in eq. (33), one can see that only its component
along the x-axis has a non-vanishing real part, which is
computed as

LRe
∫ 2π

0

(∂xχ0∂rχ1 − χ1∂r∂xχ0)r=L dφ =

πU ln
(

UL

4
eγE−1/2

)
. (49)

When this contour integral is added to the area inte-
gral (36), the auxiliary radius L falls out. Adding also the
integrals (34), (35) evaluated for β � 1 in sect. 4.3 and
reverting to the original short-scale units, the solvability

condition for a positive defect defining its self-induced ve-
locity takes the form

U ln
U0

εU
= −εF (β)x̂, U0 =

4
a0

eγE−1/2 ≈ 3.29, (50)

where x̂ is the unit vector along the x-axis, i.e. along the
“comet tail” of the defect. Since, due to the small parame-
ter in the denominator, the logarithm in the above formula
is positive, and for tensile activity (ζ > 0, hence ε > 0),
the defect is pushed back from its tail.

For a stationary negative defect, the phase field so-
lution is simply ϑ = −φ, and its dual is Φ = − ln r, so
that χ1 = 0, and the self-induced phase field does not
contribute to the contour integral. An additional contri-
bution to the function χ1 is due to the phase field gradient
A =

∑
∇ϑi generated by other defects. This contribution

varies in time as defects rearrange and is likely to be ob-
served experimentally as a random jitter.

6 Discussion

Although the dynamics of defects is largely determined
by active driving concentrated in the core of positive de-
fects, the necessity of coupling inner and outer solutions
makes the computations very complicated when a num-
ber of defects are present. Equation (50) has been derived
under the assumption of rectilinear motion of positive de-
fects, but, although their motion along the direction of the
“comet tail” is prominent in experimental observations,
both topological interactions and flow generated by other
mobile defects lead to deviations from rectilinear trajec-
tories. This random component of motion is similar in its
origin to jitter of negative defects, and therefore statistics
of motion of negative defects can be used to isolate the de-
terministic part of motion of positive defects and compare
it with the prediction given by eq. (50).

Another source of experimental uncertainty lies in vari-
ations of the thickness of the interfacial active layer, which
affects its effective viscosity η and activity ζ. Assuming
that both parameters are proportional to the layer thick-
ness, the dimensionless combination ε would be roughly
constant but the other dimensionless parameter β will
be variable. For both the above-mentioned reasons, the
experimental data would contain a strong quasi-random
component, and their reliable comparison to theoretical
predictions would require compiling statistics of the ve-
locity vectors of a large number of defects.
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