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Abstract. We explore the mechanism of ferroparticle transfer in porous structures in the conditions of
simultaneous action of the thermal gradient and the magnetic field. We show that when a ferrocolloid
saturated porous matrix is placed in a homogeneous magnetic field the grains of the porous frame notably
distort the uniformity of the internal field by creating sharp gradients in the vicinity of the interface.
On the other hand, the application of the temperature gradient creates an imbalance of the ferroparticle
concentration in the bulk of the porous structure due to colloidal thermophoresis. The combination of the
imbalance of concentration of the magnetic nanoparticles and the internal gradients of the magnetic field
creates a magnetic force and convective flow of solution through the porous structure. We report the results
of the pore-scale numerical simulations of the ferrocolloid thermo-magneto-solutal flow in geometrically
simple ordered and disordered permeable structures and membranes with different porosity.

1 Introduction

Ferrocolloids are stabilized colloidal solutions, which con-
sist of magnetic nanoparticles suspended in a liquid car-
rier. These binary systems display pronounced colloidal
thermophoresis (Soret effect) [1,2], i.e. the presence of a
temperature gradient in a sample of ferrocolloid leads to
the establishing of the corresponding concentration gradi-
ent of the suspended nanoparticles. The magnitude of the
thermophoretic separation is determined by the value of
the Soret coefficent. In ferrocolloids its typical values are
two to three orders of magnitude larger than in molecular
mixtures ST ≈ ±0.1 . . . 0.16K−1 and depending on the
composition of the colloid its sign can be positive or nega-
tive corresponding to normal or anomalous thermophore-
sis [3,4], i.e. establishing of the concentration gradient in
the direction of the temperature gradient or in the op-
posite direction. At the same time the diffusive mobility
of the nanoparticles is very low and the dynamics of the
concentration field in a ferrocolloid is significant only on
submillimeter scale where the concentration profile can be
established in experimentally relevant time.

As solutions of magnetic nanoparticles the ferrocol-
loids strongly interact with the magnetic field [5]. Even
a homogeneous field can lead to the appearance of the
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magnetic buoyant forces. The possibility of the magnetic
control over the intensity and direction of mass transport
is the attracting property of these materials. Fluidic actu-
ation, mobilization of particles and mixing are important
problems on the micro-scale, especially in microfluidic ap-
plications.

While the theoretical considerations [6,7] evidence
that the dependence of the thermophoretic drift on the
magnetic field in the bulk of the ferrocolloid should be
weak, sometimes the stratification of the ferrocolloid in a
magnetic field can be accompanied by the magnetically
driven microconvective processes [8–15], which intensify
the internal mixing and lead to a considerable attenua-
tion of the established concentration gradient.

The experimental investigations show a significant de-
pendence of the ferroparticle Soret coefficient on the mag-
netic field [16]. Some recent experiments on the ther-
mophoretic separation of the ferrocolloid through perme-
able membranes [17–19] have demonstrated a considerable
decrease of the measured Soret coefficient and enhanced
mixing due to the applied magnetic field. A similar ef-
fect was observed also in porous layers [20]. The micro-
scopic mechanism of these phenomena is not sufficiently
understood at the moment. The advective mass transport
can lead to the enhanced mixing and attenuation of the
thermophoretic separation in ferrocolloid saturated per-
meable structures [21]. The possibility of the presence of
the magnetic microconvection, which is created by the
complex simultaneous interaction of the thermal gradient,
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ferroparticle concentration and external magnetic field, in
these media cannot be excluded.

When a system of non-magnetic inclusions is immersed
in ferrocolloid and placed in the external homogeneous
magnetic field the magnetic colloid becomes magnetized
and a discontinuity of the magnetization appears across
the surface of the non-magnetic inclusions. The inclusion
creates a perturbation of the external field and large gra-
dients of the magnetic field may appear in the vicinity of
its surface. The gradient of the magnetic field leads to the
appearance of the magnetic force acting on the magnetic
colloid. In isothermal homogeneous ferrocolloid this force
is potential and is not capable of inducing a sustained
convective motion. On the other hand, if a temperature
gradient persists within the magnetic colloid simultane-
ously with the external magnetic field it induces the for-
mation of the corresponding gradient of the ferroparticle
concentration due to the strong colloidal thermophoresis.
The magnetization of the ferrocolloid strongly depends
on the concentration of the magnetic particles. In a non-
homogeneous ferrocolloid the magnetic force becomes non-
potential and the magnetic convection may emerge as the
result.

At submillimeter scale the leading role in driving the
convective motion is assumed by the concentration of the
magnetic solute. The dependence of the ferrocolloid mag-
netization on the temperature itself is much weaker and
becomes important only on larger length scales. There-
fore, the relevant mechanism of the magnetic buoyancy is
magnetosolutal.

Here we consider porous structures and membranes as
such systems of non-magnetic inclusions immersed in a
magnetic colloid. The presence of the internal magnetic
microconvection may explain the unusual enhancement of
mixing in the porous layers and membranes.

2 Governing equations

2.1 Pore-scale equations

The magnetic force acting on the magnetized ferrocol-
loid in the presence of a non-homogeneous magnetic fields
F = μ0(M∇)H [22]. In equilibrium the magnetization of
the ferrocolloid M = χ(c,H)H. Its magnetic susceptibility
χ depends on the concentration of the ferroparticles and
the magnetic field. Assuming non-interacting ferroparti-
cles the linear relation holds χ(c,H) = χ0(1 + χcΔc) for
the dependence of the magnetic susceptibility on concen-
tration, where Δc = c − c0 is the deviation of the con-
centration from the reference value c0, χ0 is the magnetic
susceptibility of the ferrocolloid at reference concentration
and magnetic field and χc = 1

χ0

∂χ
∂c = 1

c0
is the expansion

coefficient.
We introduce the characteristic scales: characteristic

length R0, mass transfer Fourier number Fom = DR−2
0

as time scale t̃ = Fomt (here D is the diffusion coefficient
of the ferroparticles), ΔH for the magnetic field and Δc
for the concentration.

The non-potential part of the magnetic force acting on
the non-homogeneous ferrocolloid then can be written in
a dimensionless form

F = Rsmc∇ [(h + rHδH) δH] , (1)

where h is the unit vector in the direction of the refer-
ence magnetic field H0, δH = (ΔH)−1(H − H0) is the
deviation of the magnetic field from the reference, c =
(Δc)−1Δc is the normalized perturbation of the ferropar-
ticle concentration and the coefficient rH = 1

2H−1
0 ΔH

determines the relative magnitude of the magnetic field
perturbation in relation to the reference field. The value
of the parameter rH is usually less than 5% so this con-
tribution is neglected.

From (1) it follows that indeed the simultaneous pres-
ence of the variations of the concentration and magnetic
field perturbations in the bulk of the ferrocolloid can pro-
duce convective motion. By analogy with the solutal buoy-
ancy in conventional mixtures this mechanism of mag-
netic buoyancy is magnetosolutal and is present only in
the magnetic colloids.

The dimensionless parameter Rsm is the magnetoso-
lutal Rayleigh number

Rsm = μ0χ0χcH0
L2

ηD
ΔcΔH, (2)

which characterizes the relative strength of the magne-
tosolutal buoyant effect.

Assuming that a non-magnetic cylindrical inclusion is
immersed in a magnetized isothermal homogeneous fer-
rofluid with magnetic permeability μr = 1 + χ0 and a
uniform internal magnetic field H0, it then creates around
itself a perturbation of the otherwise homogeneous mag-
netic field [23]. In cylindrical coordinates the dimension-
less magnetic perturbation:

δH(r, θ) = −cos θ

r2
er −

sin θ

r2
eθ. (3)

We define the characteristic length scale R0 as the radius
of the inclusion and the scale of the magnetic field then
becomes ΔH = KHH0 with KH = μr−1

μr+1 .
The perturbation of the magnetic field in the vicinity

of the non-magnetic cylindrical inclusion is illustrated in
fig. 1. Due to the presence of a discontinuity of the mag-
netization, the magnetic field is highly non-homogeneous
and possesses rather sharp gradients near the surface of
the inclusion. The gradients of the magnetic field may con-
tribute to the appearance of non-potential magnetic forces
in a non-homogeneous ferrocolloid (1) leading to the emer-
gence of the magnetosolutal flow. The complex structure
of the magnetic field around the inclusion (fig. 1) may pro-
mote different kinds of magnetosolutal flow—the mixing
component corresponds to the internal convective circula-
tions within the individual pores and integral flow of the
ferrocolloid across the non-magnetic inclusion is possible
as well [24,25].

The linearized mass flux of the ferroparticles in non-
homogeneous and non-isothermal ferrocolloids contains
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Fig. 1. Perturbation δH of the internal homogeneous mag-
netic field H0 in a ferrocolloid introduced by the non-magnetic
cylindrical inclusion: left: x-component of magnetic perturba-
tion; right: y-component.

principal contributions from advection, gradient diffusion
and thermophoretic separation due to a temperature gra-
dient ∇T [22]

J = uc − D∇c − c0(1 − c0)DST∇T. (4)

Here we have purposefully neglected the magnetophoretic
contribution to the mass flux, which could be important
in the immediate vicinity of the non-magnetic inclusions
due to the presence of the gradients of the magnetic field
there. This is done to avoid introducing additional effects
and to keep the problem as simple as possible.

The characteristic scale for the deviation of the fer-
roparticle concentration can now be defined in terms
of the applied temperature gradient as Δc = c0(1 −
c0)ST R0|∇T |.

Based on (4) the evolution of the ferroparticle concen-
tration is governed by the basic advection-diffusion equa-
tion in dimensionless form

∂c

∂t
+ u∇c = Δ(c + T ). (5)

The Lewis number Le = D
α , defined as a ratio of the

mass diffusivity D and thermal diffusivity α determines
the difference in time scales between the processes of the
mass and heat transfer. Owing to the low mobility of
the nanoparticles in colloidal solutions the characteristic
value of the Lewis number in ferrocolloids is very small
Le ∼ 10−3. Thus, the magnetosolutal flows described by
the diffusion time scale are not capable of influencing the
distribution of the temperature. We then neglect the ad-
vection of the temperature field.

In turn, the Schmidt number Sc = η
ρD , which describes

the ratio of the momentum and mass diffusivities, is very
large (of the order ∼ 104–105) in ferrocolloids. Here we
consider the systems with a characteristic size on the sub-
millimeter scale. Consequently, the magnetosolutal flow is
completely dominated by the momentum diffusion.

For the description of the creeping flow in the porous
structures we introduce the Stokes equation, in dimension-
less form

−∇p + Δu + F = 0 (6)

along with the flow continuity condition ∇ · u = 0.

For the characteristic parameters of the ferrocolloid,
the Soret coefficient ST = 0.1K−1, the dynamic viscos-
ity is η = 0.001Pa s, the mass concentration of ferropar-
ticles is c0 = 0.15, the particle diameter is d = 8nm,
the diffusion coefficient is D = 2 · 10−11 ms−2, the spon-
taneous magnetization of the ferromagnetic material is
MS = 5 · 105 Am−1 and in the presence of the mag-
netic field of 0.1T and the thermal gradient of 20K over
a distance of 1mm applied simultaneously across a cylin-
drical inclusion with the radius 2μm, the magnetosolutal
Rayleigh number in the vicinity of the inclusion reaches
Rsm ∼ 50. It is reasonable then to suspect the presence
of the magnetosolutal flow within a porous structure in
these circumstances.

2.2 Darcy scale

The real porous structures often contain a large number of
solid grains. It is then numerically complicated and usu-
ally even unnecessary to resolve the pore-scale transport
in large systems. In the macroscopic porous structures the
resolution of the macro-scale transport is usually required
while the peculiarities of the micro-scale processes are ac-
commodated through the appropriate physical models and
modeling parameters. The macroscopic models of the het-
erogeneous media can be obtained by volume averaging of
the pore-scale equations [26] and written in terms of the
macroscopic spatial averages.

The averaging of the Stokes equation (6) yields the
Darcy equation [27]

ε〈u〉β = −Da
(
∇〈p〉β − 〈F〉β

)
, (7)

accompanied by the continuity condition ∇·〈u〉β = 0 and
written in terms of the intrinsic averages 〈 〉β , i.e. averages
over the fluid part of the averaging volume. The parameter
ε = V β/V is the porosity of the porous medium. It deter-
mines the part of the total averaging volume V occupied
by the fluid phase V β .

The dimensionless Darcy number Da = KR−2
0 in

eq. (7) introduces the hydraulic permeability K of the
porous structure, which is the property of the geometry
of the porous matrix and can be calculated by several
methods: the Kozeny-Carman equations [28] and similar
analytic correlations [29] or as the solution of the closure
problem. We use the latter method described in [26].

In turn, the dimensionless averaged advection-diffusion
equation in the simplest form for a porous medium with
uniform porosity and neglecting the terms corresponding
to the interfacial transport and dispersion of the solute
concentration becomes [30]

∂〈c〉β
∂t

+ 〈u〉β∇〈c〉β = Δ
(
〈c〉β + 〈T 〉β

)
. (8)

Written in terms of the intrinsic averages, it is similar in
form to its pore-scale counterpart (5).
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Fig. 2. Considered ordered geometries of the porous mem-
branes: top: linear arrangement; bottom: shifted arrangement.

3 Ordered porous structures

As the models of porous media we assume the arrange-
ments of cylindrical elements, which represent the grains
of the porous structure and form systems with different
geometries. Two types of systems are considered: a) or-
dered geometries, which are spatially periodic and possess
a corresponding unit cell and a set of the lattice vectors;
b) disordered geometries, for which no unit cell can be
defined [26].

We investigate two kinds of ordered porous media. One
arrangement is a periodic 1D system of cylinders spaced
equidistantly along a common axis (fig. 2). The corre-
sponding unit cell consists of a square fluid domain with
the side length l and a solid circular inclusion of a unit
radius placed in the center of it.

The other arrangement is similar but every even cylin-
der is shifted by a half of the period in the y-direction
(fig. 2). We note that the total number of elements in both
cases is chosen to be odd so that the surface of the mem-
brane would be identical on either side for both arrange-
ments. We call the first arrangement a linear arrangement
and the second a shifted arrangement. The number of the
elements composing the membrane is also sufficiently large
so that the properties of the flow in either case would not
depend on the size of the membrane.

The macroscopic hydraulic properties of the membrane
are determined by its Darcy number Da(ε), which is a
function of the porosity ε. The porosity of the membrane
is identical for both the linear and the shifted arrangement
and can be calculated from a simple relation ε = 1−πl−2.
We can adjust the porosity in the interval from ∼ 0.215,
which is the minimum value for these arrangements, up to
∼ 1 by changing the size l of the unit cell.

We calculate the hydraulic permeability (and the cor-
responding Darcy number) of the membrane numerically
by solving the closure problem within a unit cell of the
ordered membrane with periodic boundary conditions in
x- and y-directions as detailed in [26].

The dependence of the Darcy number on the porosity
for both ordered arrangements is shown in fig. 3. Because
the shifted arrangement is slightly anisotropic the compo-
nent of the permeability tensor in the x-direction is taken
in this case. The calculations show a close match between

Fig. 3. Calculated dependence of the Darcy number on the
membrane porosity for the ordered porous structures: (a) linear
arrangement, (b) shifted arrangement.

the corresponding values of the Darcy number for both
geometries and within a wide range of the values of the
porosity. The hydraulic properties of the membrane should
thus be nearly identical in both cases, but the microscopic
configurations of the magnetic field and the corresponding
magnetic force will be different.

Assuming the specific geometry (fig. 2) we calculate
the magnetosolutal flow passing through the membrane by
solving the eqs. (6) and (5) numerically. The regions filled
with the homogeneous fluid are created on both sides of
the membrane. The length of these regions is chosen to be
sufficiently large so that the free stream boundary condi-
tions —zero gradient of velocity— could be applied on the
entrance and exit of the domain in the x-direction. Sym-
metry boundary conditions are imposed on the sidewalls
of the domain in the y-direction. The no-slip boundary
conditions are assumed on the surface of the cylindrical
inclusions.

A unit temperature gradient |∇T | = 1 is applied across
the membrane and the homogeneous magnetic field is im-
posed in the same direction. We assume that the thermal
conductivity of the inclusions is the same as that of the fer-
rocolloid and their presence does not perturb the temper-
ature field. In response to the appearance of the thermal
gradient a corresponding gradient of the ferroparticle con-
centration begins to form. We start all calculations from
a steady thermophoretic separation ∇c = −∇T assuming
a positive value of the Soret coefficient. The surface of the
inclusions is treated as impermeable to the mass flux of
the ferroparticles J · n = 0 and the advective perturba-
tion of the initial thermophoretic concentration gradient
vanishes in the free stream on both sides of the membrane.

Two series of simulations are performed: in the first
(case 0) we only solve the Stokes equation (6) and do
not solve the advection-diffusion equation (5). This means
that we neglect the advective transport of the ferroparti-
cle concentration. This is an artificial situation, which will
nevertheless be useful. In the second series of simulations
(case 1) we solve the Stokes equation and the advection-
diffusion equation in conjunction advancing the solution
to the stationary (or quasi-stationary) state. In these cal-
culations we take into account the advection of the fer-
roparticles.
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Fig. 4. Linear arrangement, series of calculations without the influence of advection (case 0): Magnetic field perturbation δH
(field lines and distribution of h · δH), magnetic force F (lines of force and distribution of Fx), velocity of the magnetosolutal
flow u (streamlines and distribution of velocity magnitude), plot of averaged magnetic force 〈F〉β , plot of averaged velocity
〈u〉β , plot of the gradient of averaged pressure −∇〈p〉β .

3.1 Linear arrangement

The calculated perturbation of the magnetic field created
by the immersed non-magnetic inclusions in the linear ar-
rangement is illustrated in fig. 4. Imposing the initial con-
centration gradient ∇c = −∇T we calculate the corre-
sponding distribution of the magnetic force (1) acting on
the ferrocolloid. The magnetic force (fig. 4) is notably non-
uniform and clearly could cause pore-scale convective cir-
culations. In order to discard the microscopic oscillations
and reveal its macroscopic structure we perform the spa-
tial averaging. The correct average in the ordered porous
media is the cellular average [26]. In order to smooth the
periodic oscillations it is necessary to average the mag-
netic force twice across a unit cell of the periodic porous
structure. Figure 4 shows the distribution of the cellu-
lar average of the magnetic force within the membrane.
Thus the macroscopic magnetic force completely vanishes
within the bulk of the membrane and is localized exclu-
sively in the immediate vicinity of the membrane surface
reaching a sharp maximum within approximately a sin-

gle period of the porous structure. While the averaged
magnetic force is well localized, its maximum value is
proportional to the value of the concentration at both
ends of the membrane. So, when a concentration gradient
is applied across the porous membrane, the total magnetic
force and subsequently the created pressure difference are
proportional to the thickness of the membrane.

Next we solve the Stokes equation using the predeter-
mined distribution of the magnetic force. The calculated
distribution of the pore-scale velocity is shown in fig. 4.
As expected aside from the pore-scale convective circula-
tions the magnetosolutal buoyant forces produce notable
integral flow through the porous membrane in the direc-
tion of the decreasing concentration (or increasing tem-
perature in the case of the positive Soret effect). Due to
the neighboring cylindrical elements shadowing each other
from the flow the space between the inclusions is occupied
by almost stagnant fluid.

The cellular average of the velocity field (fig. 4) shows
that the flow is uniform within the bulk of the membrane.
The value of the averaged velocity in the free stream out-
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Fig. 5. Linear arrangement, series of calculations without the
influence of advection (case 0). Left: dependence of averaged
velocity in the bulk of the membrane on porosity: (a) pore-scale
simulations; (b) predictions of Darcy’s law. Right: dependence
of −∇〈p〉β and εDa−1〈u〉β in the bulk of the membrane on
porosity calculated from pore-scale simulations.

side the membrane is proportional to the velocity in the
center of the membrane and the porosity of the membrane
ε as required by the continuity of the flow.

According to Darcy’s law (7) a simple linear relation-
ship should hold between the gradient of the averaged
pressure, the magnetic force and the velocity in the bulk
of the membrane. In fig. 5 we compare the values of the
averaged velocity 〈u〉β0 obtained from numerical simula-
tions of the case with the imposed concentration gradient
and without the influence of advection (case 0) and the
predictions of Darcy’s law based on the gradient of the
averaged pressure ∇〈p〉β0 (the cell-averaged magnetic force
vanishes in the bulk of the membrane in the simulations
without advection and so does the corresponding term in
Darcy’s equation) for different porosities. While there is
a reasonable correspondence and scaling with respect to
the porosity, the error can reach up to 30%.

To reveal the cause of this discrepancy we plot the de-
pendence of the pressure gradient −∇〈p〉β0 on the porosity
(fig. 5) within the membrane and compare it with the cal-
culated quantity εDa−1〈u〉β0 , which has the meaning of the
force density. The pressure gradient scales linearly with
increasing the porosity, while the latter quantity obeys a
parabolic dependence, which is the reason for the failure
of Darcy’s law.

In the second series of calculations (case 1) we solve
the Stokes equation (6) in conjunction with the advection-
diffusion equation (7) taking into account the advective
transport of the ferroparticle concentration. We advance
the solution in time from the initial state corresponding to
the purely thermophoretic separation ∇c = −∇T towards
the stationary state.

Since the velocity in the bulk of the membrane is higher
than that in the free stream region the value of the gra-
dient of the averaged concentration decreases within the
membrane (fig. 6) due to the increased advective flux in
the direction of the decreasing concentration. The magni-
tude of this effect can be estimated from the macro-scale
equations.

Assuming that a steady flow of the ferrocolloid is pass-
ing through the membrane with the porosity ε and a con-
centration gradient (∇〈c〉β)|out is established in the free
stream on both sides across the membrane (fig. 7), from
eq. (8) it follows that within the membrane

∂

∂t
〈c〉βin + 〈u〉βin

(
∇〈c〉β

) ∣
∣
in

= 0 (9)

and in the free stream on both sides of the membrane,

∂

∂t
〈c〉βout + 〈u〉βout

(
∇〈c〉β

) ∣
∣
out

= 0. (10)

At the surface of the membrane (points P1 and P2,
fig. 7) 〈c〉βin = 〈c〉βout. In turn, the velocity of the flow within
the membrane 〈u〉βin = ε−1〈u〉βout. It follows then that the
magnitude of the established concentration gradient inside
the membrane should be proportional to its porosity

(
∇〈c〉β

) ∣
∣
in

= ε
(
∇〈c〉β

) ∣
∣
out

. (11)

In fig. 8 we have plotted the value of the gradient of
the cell-averaged concentration ∇〈c〉β in the center of the
membrane for different porosities. Since the magnitude of
the concentration gradient in the free stream is equal to 1,
the concentration gradient inside the membrane is indeed
proportional to the porosity.

Advection of the ferroparticle concentration within the
membrane influences the magnitude and distribution of
the magnetic force (fig. 6). Due to the decrease of the con-
centration gradient the magnetic force becomes asymmet-
ric with respect to the center of the membrane. Addition-
ally, there also appears a negative component of the mag-
netic force in the bulk of the membrane, which opposes the
pressure difference created on both surfaces of the mem-
brane. This is not the consequence of the decreasing of
the concentration gradient due to the integral flow (11),
which was discussed previously. This is a microscopic ef-
fect caused by the periodic narrowing and expansion of the
streamlines within the pores of the membrane resulting in
pore-scale mixing. The interaction of the magnetic per-
turbation introduced by the non-magnetic inclusions with
the perturbation of the concentration gradient by the ad-
vective circulations just within the individual pores leads
to the appearance of this opposing magnetic force.

In fig. 8 we check the validity of Darcy’s law (7) for the
series of calculations with account for advection (case 1).
In this case the averaged velocity in the bulk of the mem-
brane 〈u〉β calculated from the pore-scale simulations is
only growing with respect to the porosity up to ε ≈ 0.87
and further increasing the porosity it begins to decrease.
This happens due to the interference of the vortices lo-
cated in between the cylindrical inclusions (fig. 4). The
prediction of the velocity calculated from the pressure gra-
dient ∇〈p〉β and magnetic force 〈F〉β in the center of the
membrane according to Darcy’s law (7) is adequate only
at relatively low values of the porosity and considerably
underestimates the flow velocity at larger porosity. Based
on the values of the averaged velocity 〈u〉β0 calculated in
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Fig. 6. Linear arrangement, calculations with account for advection (case 1): plot of the gradient of averaged concentration
∇〈c〉β , plot of averaged magnetic force 〈F〉β , plot of averaged velocity 〈u〉β , plot of the gradient of averaged pressure −∇〈p〉β .

Fig. 7. Magnetosolutal flow through a permeable membrane
with porosity ε and associated macroscopic quantities: aver-
aged velocity 〈u〉βin and ferroparticle concentration gradient

∇〈c〉β |in inside the membrane and 〈u〉βout, ∇〈c〉β |out in the free
stream.

the series of simulations without account for advection
(case 0) an empirical correlation can be used,

〈u〉β = ε〈u〉β0 , (12)

to estimate the averaged velocity 〈u〉β in the bulk of the
membrane with the influence of advection (case 1). The
correspondence of this empirical relation with the results
of the case 1 simulations (fig. 8) is good up to the point
where the flow structure begins to change leading to the
decrease of the averaged velocity with the growing poros-
ity. The obvious but useful conclusion is that the averaged
velocity 〈u〉β is proportional to the gradient of concentra-

Fig. 8. Linear arrangement, calculations with account for ad-
vection (case 1). Left: dependence of the gradient of concentra-
tion in the bulk of the membrane on porosity calculated from
pore-scale simulations. Right: dependence of the averaged ve-
locity in the bulk of the membrane on porosity: (a) pore-scale
simulations, (b) predictions of Darcy law, (c) empirical correla-
tion ε〈u〉β0 where 〈u〉β0 is the corresponding velocity calculated
from simulations without the influence of advection (case 0).

tion within the membrane. As previously discussed, ad-
vection causes the decrease of the concentration gradient
in the bulk of the membrane proportionally to the value
of its porosity (11) (at unit concentration gradient in the
free stream) and it appears that the velocity decreases in
the same proportion in the calculations with account for
the advective transport.
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Fig. 9. Shifted arrangement, series of calculations without the influence of advection: Magnetic field perturbation δH (field
lines and distribution of h · δH), magnetic force F (lines of force and distribution of Fx), velocity of the magnetosolutal flow u
(streamlines and distribution of velocity magnitude), plot of averaged magnetic force 〈F〉β .

3.2 Shifted arrangement

It is reasonable to verify the general conclusions of the
previous section by briefly considering another kind of an
ordered porous structure with a different geometry: the
shifted arrangement, in which every other cylindrical in-
clusion is shifted by a half of the period in the vertical di-
rection (fig. 2). The calculations with a different structure
of the membrane can give additional evidence that these
conclusions are not accidental for a particular geometry
but are valid for different kinds of ordered porous struc-
tures.

The perturbation of the external magnetic field within
the membrane with the shifted arrangement of inclusions
is shown in fig. 9. We repeat the general approach used in
the previous section comparing two series of simulations
without and with account for advection of the ferroparticle
concentration (case 0 and case 1 correspondingly).

Imposing a unit concentration gradient the distribu-
tion of the magnetic force (1) is calculated (fig. 9). Due
to the different geometries the structure of the magnetic
force in the bulk of the membrane is significantly different
than that in the linear arrangement. In turn the immedi-
ate surface of the membrane is geometrically identical for
both arrangements. Calculating the cellular average of the
magnetic force its magnitude and distribution is similar to
the one of the linear arrangement and the same conclu-
sions are valid: the magnetic force still vanishes in the bulk
and is concentrated just in the immediate vicinity of the
membrane surface.

Next a series of calculations is performed at different
porosities without accounting for advection of the fer-

Fig. 10. Shifted arrangement, summary of calculations. Left:
calculations without the influence of advection (case 0), depen-
dence of the averaged velocity 〈u〉β0 in the bulk of the mem-
brane on porosity: (a) pore-scale simulations, (b) predictions of
Darcy’s law. Right: dependence of the averaged velocity 〈u〉β
in the bulk of the membrane on porosity, calculations with ac-
count for advection (case 1): (a) pore-scale simulations; (b) pre-
dictions of Darcy’s law; (c) empirical correlation ε〈u〉β0 where

〈u〉β0 is the corresponding velocity calculated from simulations
without the influence of advection (case 0).

roparticle concentration (case 0) making use of the pre-
determined distribution of the magnetic force. The con-
figuration of the flow for this geometry is different from
the linear arrangement: the inclusions no longer shadow
each other from the flow and there are no stagnant regions
between the elements.

The velocity 〈u〉β0 in the bulk of the membrane is com-
pared with the prediction of Darcy’s law (7) in fig. 10.
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Fig. 11. Disordered porous membranes, series of calculations without the influence of advection: velocity of the magnetosolutal
flow u (streamlines and distribution of velocity magnitude) in membranes with different porosity (a) ε ≈ 0.90, (b) ε ≈ 0.81,
(c) ε ≈ 0.67, (d) ε ≈ 0.47; plot of porosity ε within the membranes, plot of averaged magnetic force 〈F〉β .

The comparison is slightly better for the shifted arrange-
ment than for the linear arrangement, which was con-
sidered in the previous section, but this seems acciden-
tal.

In the case 1 simulations with account for advection
of the ferroparticles we calculate the gradient of their av-
eraged concentration in the bulk of the membrane. The

decrease of the magnitude of the concentration gradient
within the membrane is closely proportional to its poros-
ity as in the case of the linear arrangement. Thus this
conclusion is not influenced by the particular geometry of
the membrane.

The dependence of the averaged flow velocity 〈u〉β in
the center of the membrane on the porosity in the simula-
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tions with account for the advective transport is plotted in
fig. 10. The velocity grows with increasing the porosity up
to a certain threshold. At the value of the porosity ε ≈ 0.87
the flow velocity starts to decrease further increasing the
porosity. While this behavior is similar to the results of
the calculations in the linear arrangement the difference
is the presence of a discontinuity at the threshold value of
the porosity. This discontinuity appears due to the change
of the symmetry of the flow through the hydrodynamic in-
stability: at large porosity the flow becomes asymmetric
with respect to the midline of the channel. Further in-
creasing the porosity periodic oscillations of the flow can
be observed in the simulations.

We note that in the shifted arrangement Darcy’s law
also fails to correctly describe the velocity in the mem-
brane for the porosity larger than ε ≈ 0.6. Still, the empiri-
cal relation (12) shows acceptable correspondence (fig. 10)
in a wide range of the porosity up to the threshold of the
instability.

4 Disordered structures

In order to determine whether the periodicity of the or-
dered porous media that have been considered up to this
point plays a significant role in the obtained results we
investigate disordered porous structures possessing irreg-
ular geometry, for which no unit cell can be defined. For
this purpose the systems with a large number of inclu-
sions are necessary to accommodate the large averaging
domains for the correct calculation of the distribution of
the averaged values [26]. For all calculations the size of the
membrane is chosen to be 32×128, which is a compromise
between the size of the averaging volume (larger volumes
produce lower statistical oscillations of the average quan-
tities, 32× 32 is the chosen size), and the numerical com-
plexity of the problem. The structure of the membrane
is generated by randomly positioning the cylindrical in-
clusions with the radius 1 within the domain of this size.
The porosity was changed by varying the number of the
inclusions composing the membrane. Four cases have been
considered with the average porosity (a) ε ≈ 0.90 (128 in-
clusions), (b) ε ≈ 0.81 (256 inclusions), (c) ε ≈ 0.67 (512
inclusions), (d) ε ≈ 0.47 (1024 inclusions). The distribu-
tion of the porosity within each membrane is illustrated
in fig. 11.

Due to the relatively large size of the system for the
disordered structures only the calculations with the im-
posed concentration gradient, i.e. without account for ad-
vection of the ferroparticle concentration have been per-
formed (case 0). Applying a concentration gradient with
a unit magnitude across the membrane the distribution of
the magnetic force and the averaged magnetic force can be
calculated (fig. 11). Despite the presence of unsmoothed
rapid oscillations with respect to the position the mag-
netic force basically vanishes within the membrane just
as was observed previously and with greater clarity in
the simulations within the ordered porous structures. The
magnetic force is localized in the vicinity of the membrane

Fig. 12. Summary of calculations without advection of fer-
roparticle concentration (case 0), comparison of averaged ve-
locity in the bulk of the membrane for all calculated geometric
configurations: ordered linear arrangement, ordered shifted ar-
rangement, disordered membrane.

surface creating a pressure difference driving the magne-
tosolutal flow through the porous structure.

Making use of the calculated distribution of the mag-
netic force we calculate the magnetosolutal flow passing
through the disordered membrane by solving the Stokes
equation (6). The calculated configuration of the flow for
all four considered cases of disordered membranes with
different porosity is shown in fig. 11. We note that the ir-
regular structure of the membrane surface may cause the
appearance of a tangential flow and intensive mixing in
the vicinity of the surface, especially at lower values of the
membrane porosity, which was not observed in the ordered
porous membranes possessing a symmetrical configuration
of the membrane surface. Due to the disordered structure
of the bulk of the membrane the penetrating flow passes
through irregular paths. Decreasing the porosity of the
membrane the total magnetosolutal flow also decreases. In
the previously considered ordered porous structures this
happened just due to the increased shear and the decrease
of the Darcy number with the porosity while the number
of the percolation paths available to the flow remained the
same. In disordered porous structures the number of the
percolation paths also decreases with the porosity as evi-
denced by fig. 11. Then the decrease of the magnetosolutal
flow with the decreasing porosity should happen faster in
the disordered porous structures than in the ordered ones.

5 Summary

We have performed calculations of the magnetosolutal
flow of the ferrocolloid through porous permeable mem-
branes with different structure and porosity. Two series
of calculations —with and without account for advection
of the ferroparticle concentration— have been performed
for the linear and shifted arrangements of inclusions form-
ing the ordered porous structures. An additional series of
calculations without account for advection of the ferropar-
ticles has been performed for a random arrangement of in-
clusions forming disordered porous membranes. We have



Eur. Phys. J. E (2015) 38: 38 Page 11 of 11

shown that regardless the structure of the membrane the
magnetic force vanishes within the bulk and remains only
in the immediate vicinity of the membrane surface. This
surface force creates the pressure difference, which drives
the magnetosolutal flow. It is possible that the convective
circulations within the individual pores and the result-
ing pore-scale mixing could lead to the appearance of a
negative component of the magnetic force, which opposes
the pressure difference originating at the membrane sur-
face. The competition of the bulk and surface forces could
lead to instabilities and oscillations of the flow through the
membrane at some parameters. Advection of the ferropar-
ticles leads to the decrease of the concentration gradient
within the bulk of the membrane as compared to its mag-
nitude in the free stream proportionally to the porosity of
the membrane (11). As a consequence the magnetosolutal
flow through the membrane is reduced in comparison with
its initial magnitude without account for advection of the
ferroparticle concentration. This decrease is proportional
to the decrease of the concentration gradient in the bulk
of the membrane and can be described with acceptable
accuracy by a simple empirical correlation (12). This re-
lation holds up to a relatively large value of the porosity
ε ≈ 0.87.

We now plot the summary of the results of our series
of calculations without account for advection of the fer-
roparticle concentration (case 0), i.e. the averaged velocity
of the magnetosolutal flow in the bulk of the membrane,
for all considered configurations of the membrane struc-
ture: two ordered arrangements (linear and shifted) and
one disordered arrangement of inclusions (fig. 12).

We conclude that the magnitude of the magnetosolutal
flow in the permeable membranes weakly depends on the
particular geometry of the membrane. The single impor-
tant geometric parameter is the porosity of the membrane.

Summarizing our finding it is possible to formulate a
correlation describing the magnetosolutal flow within the
membrane:

ε〈u〉β = DaF, (13)

F = −1.8ε2(1 − ε)Rsm∇〈c〉β , (14)

In this relation the minus sign shows that the mag-
netosolutal flow is directed towards decreasing concentra-
tion, the term ε(1 − ε) comes from the parabolic depen-
dence of εDa−1〈u〉β0 with respect to the porosity, which
was discussed previously. The magnitude of the flow is di-
rectly proportional to the magnetosolutal Rayleigh num-
ber due to the linearity of the Stokes equation. In turn,
the contribution ε∇〈c〉β describes the dependence of the
magnetosolutal flow on the gradient of the ferroparti-
cle concentration within the membrane according to (11)
and (12).
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