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Abstract. We have determined the Soret (ST ), diffusion (D), and thermodiffusion (DT ) coefficients in
a ternary mixture of tetralin–isobutylbenzene–n-dodecane with a composition of 0.80/0.10/0.10 by mass
fraction at a temperature of 298 K. The Soret coefficients were measured in the microgravity experi-
ment DCMIX1 and on the ground by optical digital interferometry (ODI) using two lasers with different
wavelengths. The values of the Soret coefficients were determined from the stationary separation of the
components using two- and six-parameter fits. The diffusion coefficients were independently measured us-
ing the Taylor Dispersion Technique in the ground laboratory, and the thermodiffusion coefficients were
derived from known ST and matrix D. The processing of the data from the DCMIX experiment conducted
on the International Space Station is discussed in detail. The multi-user design of the on-board instrument
causes perturbations in the component separation. Several recommendations are suggested for improving
the quality of the microgravity results. For example, we demonstrated that the tomography reconstruction
of the 3-D concentration field allows to restore the underestimated component separation resulting from
the spatial non-linearity of the temperature field. Furthermore, to avoid errors in component separation
due to mass exchange between the working liquid volume and the expansion volume at the top of the cell,
we suggest considering the evolution of the separation only in the lower half of the cell. The results of this
study displayed reasonable quantitative agreement between the microgravity and ground experiments.

1 Introduction

The DCMIX (Diffusion Coefficients in Mixtures) project
consists of a series of microgravity experiments designed to
study thermodiffusion (also known as thermal diffusion or
the Soret effect) in different ternary liquid systems. This
project involves a large international group of scientists.

In ternary mixtures, when pressure diffusion is negli-
gible, the diffusive fluxes of two independent components
are driven by concentration and temperature gradients:

J1 = −ρ(D11∇C1 + D12∇C2) − ρD′
T,1∇T, (1)

J2 = −ρ(D21∇C1 + D22∇C2) − ρD′
T,2∇T. (2)

Here, C1, C2 are the corresponding mass fractions, Dij

are the mass-based diffusion coefficients, and DT,i are
the thermodiffusion coefficients, which can be written as
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D′
T,i = Ci(1−Ci)DT,i. In the steady state, the mass fluxes

vanish, Ji = 0, and eqs. (1)–(2) can be written as

∇Cst
i = −S′

T,i∇T, (3)

where the Soret coefficients S′
T,i are defined as

S′
T,1 =

D′
T,1D22 − D′

T,2D12

D11D22 − D12D21
,

S′
T,2 =

D′
T,2D11 − D′

T,1D21

D11D22 − D12D21
.

The primary objective of experimental efforts is to
determine four mass diffusion and two thermodiffusion
coefficients. Although experimentally difficult and chal-
lenging, the measurement of thermodiffusion in ternary
mixtures has attracted the attention of researchers and
has developed very rapidly [1–5]. However, even in well-
established techniques, the buoyancy-driven convection
may appear in ternary mixtures because the signs of the
Soret coefficients of the various components could be dif-
ferent, and it destabilizes the system [6]. In this respect,
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the microgravity platform offers the invaluable advan-
tage of convection-free conditions. This platform allows for
both the benchmarking of ground measurements and per-
forming unique experiments that are currently only pos-
sible in orbit.

The microgravity set-up uses optical digital interfer-
ometry (ODI) to measure concentration separation caused
by the Soret effect. The extraction of data from an exper-
iment with interferometric probing is a non-trivial task
in itself. In the particular case of DCMIX, this task is
complicated by the use of a non-standard cell design [7],
which makes processing of the experimental data even
more complex. This complexity requires the use of some
assumptions and simplifications, which can lead to differ-
ences in the results obtained from the same raw data by
different research groups. To form a solid background for
correct data processing, several groups agreed to process
similar datasets from the microgravity experiment and to
compare the results. The DCMIX1 experiments consisted
of 5 ternary compositions of the mixture THN (tetralin)–
IBB (isobutylbenzene)–nC12 (n-dodecane). The selection
of one of these compositions as the benchmark was made
during the meeting of the topical team “Diffusion in non-
metallic liquids” of the European Space Agency held in
October 2013 in Mondragon, Spain. The ternary mixture
THN/IBB/nC12 with mass fractions 0.80/0.10/0.10 was
selected as the benchmark.

The overall purpose of the benchmark was two-fold.
The second, equally important objective was to bench-
mark this mixture with all available ground measurement
techniques.

This paper is a contribution to the benchmark by
the group from Université Libre de Bruxelles (led by
V. Shevtsova), and it includes benchmarking contributions
for the processing of both microgravity experiments and
ground measurements.

2 Experimental

2.1 On-board instrument SODI

The Selectable Optical Diagnostics Instrument (SODI)
was designed to measure Soret coefficients on board the
International Space Station (ISS). A detailed description
of the instrument was given in [7], and thus, we will only
briefly outline the main features here.

The SODI is based on the optical digital interferom-
etry technique and uses a two-wavelength Mach-Zehnder
interferometer in which laser diodes with wavelengths of
670 and 935 nm serve as sources of coherent illumination.
Henceforth, we will refer to these laser diodes as red and
infrared lasers, respectively. Furthermore, the refractive
indices measured at these wavelengths will be subscripted
as (1) for the red laser and as (2) for the infrared laser.
Interferograms formed by both beams are recorded almost
simultaneously during the experiment.

The interferometer is aligned for the wide fringe con-
figuration because the phase-shift technique was proposed
for optical phase extraction from raw fringes [8].

liquid o-rings

membrane

hole for sensor

glass 
frame

expansion 
compensation 
volume

Fig. 1. Schematic of the central part of the experiment cell.

A transparent rectangular cell with inner dimensions
of 10mm × 10mm × 5mm is filled with a liquid mix-
ture. The glass frame is clamped from the top and bot-
tom between two copper blocks thermally stabilized by
Peltier elements, which maintain a temperature gradient
across the cell. The diffusion path (i.e., the distance be-
tween the working surfaces of the plates) is H = 5.0mm.
Five cells with ternary mixtures of different concentra-
tions (primary cells) and one cell with the reference binary
mixture (companion cell) are integrated into a one-piece
structure, which is called the cell array.

The SODI is a multi-user instrument, and the test
cell has specific features in the design (see fig. 1). To fa-
cilitate observation of the full liquid volume, the copper
blocks have protrusions that enter the opening in the glass
frame by approximately 2mm. Furthermore, due to the
double-containment requirement (i.e., leakage-preventing
barrier), there are two rubber O-rings between the glass
frame and each copper block. The blocks, in turn, contain
grooves to accommodate these seals. This cell geometry
leads to a strong deviation of the temperature field from
linearity in the vertical direction, particularly in the cor-
ners of the cell. This deviation was also observed during
the IVIDIL experiment [9].

Another feature of the cell design that affects the ther-
modiffusion separation process is the presence of a com-
pensation volume for thermal expansion. This forms a
dead volume with a nearly isothermal liquid, which is not
directly involved in the Soret separation, but it indirectly
perturbs the separation through diffusive mass exchange
with neighboring regions already affected by thermodif-
fusion. Other dead volumes are formed by 0.5mm thick
grooves between the glass walls and protrusions of the
copper blocks.

The importance of considering the influence of the
dead volumes was first recognized in [7], and hereafter,
it will be discussed in more detail as one of the key points
for data evaluation.

Our study is focused on the mixture THN/IBB/nC12

with mass fractions of 0.80/0.10/0.10 in the selected cell
#3. Hereafter, the following numbering of the components
is used: (1) tetralin (THN) – (2) isobutylbenzene (IBB) –
(3) n-dodecane (nC12). These numbers will be used as
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subscripts when designating the concentration of the cor-
responding component Ci. Data evaluation was performed
for one of the experimental runs carried out with this cell,
namely, Run #18, which started 02-Dec-2011 21:43 and
ended 03-Dec-2011 08:06 UTC. Experiments in this cell
were repeated several times, but we will only present the
results for one run. Our experience with the IVIDIL ex-
periment on board the ISS inside the SODI instrument
showed [9–11] that the microgravity results are well re-
produced.

2.2 Ground ODI set-up

The optical digital interferometry technique (ODI) was
used to determine the Soret coefficients on the ground.
The only change with respect to the set-up described in de-
tail in [12] is the slightly modified design of the Soret cell.
To overcome the problem of solvent permeating through
the rubber O-rings, the seals were replaced with ones com-
posed of indium. We have confirmed that the new design
has no issue with lateral heat fluxes in the experimental
cell. Unlike the microgravity cell, the copper blocks in the
ground cell are flat and do not contain protrusions, and
the height of the cell is H = 6.06mm.

Two laser diodes with wavelengths of 670 and 925 nm
were chosen to be as close as possible to the wavelengths
utilized by the SODI. Only one laser is used in each exper-
iment, and then, it is replaced by the other laser. The light
source units have identical designs with standardized elec-
trical connectors and mechanical fixations, which allows
the lasers to be exchanged without touching the optical
elements or the cell. Thus, replacing the light source did
not affect either the alignment of the interferometer and
recording system or the cell. The thermodiffusion experi-
ments in the ground laboratory were repeated three times
with each laser. The test liquid mixture was the same dur-
ing all the experimental runs, which lasted approximately
two weeks.

Each time before switching the temperature difference
on, the full set-up, including the interferometer and cell,
was maintained at the mean temperature for 24 hours. In
all cases, the duration of the Soret separation phase was
16 hours.

2.3 Taylor dispersion set-up

Isothermal diffusion coefficients were measured using the
recently developed and tested Taylor dispersion instru-
ment outlined in [13]. To characterize ternary diffusion
in the mixture of interest, we performed 3 different in-
jections (with distinct concentration differences from the
base solution) and repeated each injection 3-4 times, thus
providing 11 runs for simultaneous processing.

The chemicals used to prepare the mixture were
1,2,3, 4-tetrahydronaphthalene (Acros Organics, 98+%),
isobutylbenzene (Acros Organics, 99.5%), and n-dodecane
(Acros Organics, 99%). The chemicals were used without
further purification, but the prepared mixture was contin-
uously degassed during the course of the experiment.

3 Data evaluation

In this section, we discuss the main features and difficulties
regarding the processing of data from the microgravity
and ground-based experiments. The results from applying
this procedure will be presented in the next section.

3.1 Analysis of data obtained in the microgravity
experiment

One of the important objectives of this benchmark study
is to establish a reliable procedure for evaluating data ob-
tained in the SODI. For this purpose, all the steps of the
data extraction procedure are discussed in detail below.

3.1.1 Temperature records and experimental time-line

Software developed by QinetiQ Space (developer of the
SODI instrument) records all the parameters that are vi-
tal for the proper execution of the experiments. Records
of thermistors that control the temperatures of the copper
blocks of the cell have particular importance for extract-
ing scientific information. The data acquisition frequency
was 2Hz, providing approximately 74800 data points from
each sensor during 623min of the experimental run.

Correlation of the temperature record with the time
stamps of acquired images allowed precise identification
of the image that will be taken as the reference image
and of the time margins for image sets attributed to a
particular experimental step. Due to this correlation, an
entire experimental run can be separated into three main
steps.

1) Initial isothermal step to equilibrate the set-up and
liquid at a constant temperature T0 = 298.15K, which
lasts 30min. During this time, 19 stacks of interferograms
were acquired equidistantly in time. Hereafter, stack refers
to a specific set of 5 fringe images.

2) Soret separation step, which has the objective of
measuring the separation of components driven by a tem-
perature gradient. At the beginning of this step, set-points
of Tbot = T0 − ΔT/2 and Ttop = T0 + ΔT/2 were applied
to the bottom and top plates, respectively. The imposed
temperature difference of ΔT = 10.0K was kept constant
over the entire step, but some minor fluctuations with a
magnitude of 0.012K (RMS value) were present due to
active regulation. The duration of this step was 358min,
during which 161 stacks of interference patterns were ac-
quired. The time step between acquired images was vari-
able, changing from 5 s at the very beginning to 200 s at
the end.

3) Diffusion relaxation step, when the temperature
gradient is removed and both plates are held at the mean
temperature. This step lasted 235min, and the number of
acquired stacks was 124. This last experimental step will
not be considered in the current study.
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3.1.2 Optical phase extraction

A phase-shifting technique was employed to determine the
phase difference between a test beam and a reference beam
using five successive images. The information needed to
retrieve scientific data was kept in stacks (files with ex-
tension .stk). Each stack contained five interference pat-
terns (fringe images) recorded by a CCD camera in RAW
format for one laser. Each image was acquired at a partic-
ular value of the laser diode driving current. The stepwise
variation of the laser current provides the wavelength shift
and, consequently, the optical phase shift between subse-
quent interferograms within the stack. The typical time
lag between the last and first interference patterns within
a stack did not exceed 1 s, and it has no effect in a slow
diffusion-controlled process. However, it might be impor-
tant for the reconstruction of a correct optical phase at
the temperature gradient build-up stage when the tem-
perature rapidly varies.

To obtain the optical phase from the stack of inter-
ferograms we tested both the standard Hariharan’s algo-
rithm [8] and its modified version [14]. We finally selected
the latter one and subsequently used it for phase extrac-
tion. The expression for the phase evaluation is as follows:

φ(x, z) = arctan
7(I4 − I2)

4I1 − I2 − 6I3 − I4 + 4I5
,

where the spatial coordinates of image intensities Ii(x, z)
are omitted for clarity.

All the stacks were processed into wrapped optical
phase maps and stored in the computer for further pro-
cessing as lossless bitmap images of 8 bit gray scale.
This storage requires considerably less disk space com-
pared with storing all the maps in double precision for-
mat. It does not reduce the accuracy of the data because
the resulting resolution of the phase after such storage is
2π/256 = 0.025 rad, which is essentially below the typical
level of background noise observed on the phase maps.

3.1.3 Selecting the reference phase image

One of the important steps in obtaining correct results is
the correct choice of the so-called reference phase image.
This reference image will be subtracted from each of the
following images to isolate the value of interest and to
monitor its evolution. The selection of the reference image
essentially follows the procedure described in [12].

We are interested in the change in the refractive index
caused by the Soret effect. Thus, the reference image has
to be chosen at the time instant when the thermal field is
completely established inside the experimental cell. One
of the easiest methods is to select this instant equal to
the characteristic thermal time τth = H2/χ, where χ is
the thermal diffusivity of the liquid and H is the char-
acteristic length (cell height). However, the temperature
stabilization also depends on the time required by the tem-
perature controllers to reach the set-point values, which
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Fig. 2. Choice of reference image for processing of the Soret
separation step.

is solely a technical constraint. Both factors, heat con-
duction and the response time of the temperature con-
trollers, affect the thermal stabilization simultaneously,
but based on our experience, the second factor is the most
important. Therefore, a careful analysis of the actual tem-
perature records is needed to select the proper reference
image.

Figure 2(a) shows the evolution of the temperature
difference recorded by the sensors (solid curve) and the
time instants of the snapshots (dots). Time zero was made
to coincide with the boundary between step (1) and step
(2), and it corresponds to image #19. The Soret step is
started at this time instant by switching the temperature
difference on. According to the records of the thermistors,
complete temperature stabilization on both plates is at-
tained at the moment when image #34 is acquired. With
the purpose of reaching stabilization of the temperature
field in the entire liquid volume, image #36 is selected
as the reference image for final data extraction. The time
difference between images #36 and #19 is t0 = 193 s.
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Fig. 3. Wrapped phase map after subtraction of the reference
image obtained with the red laser, which corresponds to the
end of the Soret separation phase.

Figure 2(b) compares ΔT recorded by the sensors
(curve with closed circles) with the optically reconstructed
ΔT across the cell (curve with open circles) using a rea-
sonably adjusted value of the thermal contrast factor
(∂n/∂T )C. Two large circles (red and black) indicate the
position of the reference image in time, i.e., t = t0. The
visible deviation of the optically evaluated temperature
difference (black circle) from its real value (red circle) at
t = t0 indicates that the concentration separation occurs
not only after but also before the reference image.

The optical contrast factors, used for data extraction
from interferograms, (∂n/∂T ), (∂n/∂C), depend on the
temperature, concentrations, wavelength, etc. Hereafter,
we will use their simplified notation without indicating
by subscripts that all other parameters except for the
main one, from which the derivative is calculated, are held
constant.

3.1.4 Determination of refractive index profiles

After selection of two phase images, one to be processed
and another as the reference, we have to subtract the
reference phase image from the phase image of interest.
Both of them are wrapped into [0, 2π] range. It creates
two options to proceed with processing. The first option
is to independently unwrap both phase images and then
to implement subtraction. The second option is to make
subtraction first, then to wrap the result into the [0, 2π]
range, and only then to unwrap the single phase image.
Both options provide identical result. The second option
with minimized unwrapping workload was our final choice
because the phase unwrapping is most computationally
demanding part of the processing.

After subtraction of the reference phase image from all
the phase images of interest, the obtained wrapped phase
images were rotated 1.2◦ counter-clockwise, and then, the
field of view (FOV) was cropped for further processing.
This is performed to correct the slight misalignment be-
tween the camera and the cell. After cropping, all im-
age regions related to the plates and side walls were re-
moved, transforming the original size of the image from
1920 × 1080 pixels to 1530 × 765 pixels, which covers a
FOV of exactly 10 × 5mm. An example of a wrapped
phase image obtained with the red laser at the end of the
Soret step is presented in fig. 3.

The obtained phase maps were subjected to two-
dimensional (2-D) phase unwrapping based on the simple
pixel-to-pixel comparing principle but with a specifically
oriented unwrapping path, starting from the region with
the best phase quality toward regions with worse phase
quality.

The unwrapped phase map was converted into a map
of refractive index by applying the expression

n(x, z) =
λ

2πL
φ(x, z), (4)

where L = 10.0mm is the path that the beam passes
through in the liquid volume and λ is the wavelength.

Because the phase and, consequently, the refractive in-
dex obtained by eq. (4) suffer from absolute value ambigu-
ity, the value of the refractive index has to be normalized.
Subtraction of the refractive index value averaged over the
FOV, n′(x, z) = n(x, z) − 〈n(x, z)〉FOV, is a convenient
method for such normalization.

Then, the 1-D profile of a normalized refractive index
along the diffusion path is determined from its 2-D map.
For this purpose, a normalized refractive index is aver-
aged in the horizontal direction within a selected verti-
cal band/strip of pixels from the map. The bands/stripes
of maps selected for averaging are shown in fig. 4(a) by
dashed lines, and the arrows indicate regions and the di-
rection of averaging. Figure 4(b), which shows the refrac-
tive index difference between the hot and cold walls, clar-
ifies the selection principle. This is performed to avoid the
impact of the corners of the cell with non-linear temper-
ature on the resulting profile and to exclude the central
region of the cell where the channel to the compensation
volume is located. Thus, the visible reduction in the ob-
served refractive index difference in these regions does not
affect the final average result. The averaging increases the
reliability of the extracted profiles because it suppresses
local noise, which is otherwise observable, without apply-
ing additional filters.

3.1.5 Concentration separation during the temperature
gradient build-up time

After cropping out ΔnZ in the problematic regions of the
cell, the 1-D profile obtained by averaging from the 2-D
map does not have the perfectly linear shape expected
at steady state, as shown in fig. 4(c). It deviates from
linearity, particularly at the boundaries. This result can
be explained by fig. 2(b): at times earlier than the time
of the reference image, the separation of components al-
ready occurs, and this separation begins near horizontal
walls. However, subtraction of the reference image turns
this contribution into background. The magnitude of this
neglected separation depends on the values of the initial
time t0 (i.e., the time between reference image and switch-
ing on of the temperature gradient) and on the diffusion
coefficients, and as a rule, it is not very small.

Several approaches are available to overcome this prob-
lem, for example, restoring this missing separation by lin-
ear interpolation over the central part of the cell or cutting
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Fig. 4. Determination of 1-D profile of a refractive index from
its 2-D map at the end of the Soret separation phase as ob-
served by the red laser. (a) 2-D map of the normalized refrac-
tive index. (b) Refractive index difference between hot and cold
walls. Dashed lines and arrows indicate regions remaining after
cropping, inside which averaging is performed. (c) Resulting 1-
D profile after averaging.

out the central part of the profile, where the influence of
the initial separation is not as noticeable.

A completely different approach is based on explic-
itly introducing the initial time t0 into the fitting algo-
rithm [12,15]. The objective function that has to be min-
imized during the course of the fitting takes the following
form:

Φ =
∑

i,j

[
n′

exp(zi, tj) + n′
calc(zi, t0) − n′

calc(zi, tj)
]2

, (5)

where tj=1 = t0. Here, an additional term is introduced
into the objective function; this term corresponds to sepa-
ration reached by the system at time instant t0 according
to the analytical model of separation (second term on the
right-hand side of eq. (5)).

The results of this approach are shown in fig. 5, in
which each of the three profiles corresponds to one of the
terms in eq. (5). It is clearly observed (and effectively con-
firmed by values of the objective function) that adding the
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Fig. 5. Refractive index profiles, experimentally observed and
analytically calculated, corresponding to different terms of the
objective function eq. (5); blue dots represent the experimental
profile, the dashed red line is the calculated profile of the initial
time separation, and the solid red line is the calculated profile
corresponding by time to the experimental one. The experi-
mental profile is taken with red laser at the end of the Soret
separation step.

calculated profile corresponding to time t0 to the experi-
mental profile of any further time tj will provide a much
better fit to the full profile calculated for this time tj .
This approach does not require special consideration re-
garding the small magnitude of t0 because it is already
accurately accounted for. Furthermore, this approach has
been systematically and successfully used for all of our
previous ground measurements based on a similar tech-
nique [16,17].

An alternative approach would be to use direct nu-
merical simulations in the fitting procedure rather than
an analytical solution, see [18,19], although in the case of
ternary mixtures, it is a computationally demanding task.

3.1.6 Two-parameter fit

The purpose of this section is to find true steady-state
refractive index differences at each wavelength Δnst

i and
related concentration separations ΔCst

i .
At this step, the ternary mixture is considered to be

quasi-binary; subsequently, evolution of the component
separation is characterized by a single diffusion coefficient,
referred to as the effective diffusion coefficient, Deff . The
applicability of this approach follows from the expectation
that the eigenvalues of a diffusion matrix for the ternary
system are rather close.

In this case, the analytical profiles are calculated using

n′(z, t) = Δnst · f(z, t,Deff), (6)

where f(z, t,D) is the function presenting the solution of
the diffusion problem with initial and boundary conditions
of the Soret cell for the case of a binary mixture. The
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Table 1. Optical contrast factors taken from [20].

wavelength

„

∂n

∂CTHN

« „

∂n

∂CIBB

«

670 nm 0.142741 0.088676

925 nm 0.137344 0.083753

expression for the function is

f(z, t,D) =
1
2
− z

H

− 4
π2

∞∑

k,odd

1
k2

cos
(

kπz

H

)
exp

(
−k2π2

H2
Dt

)
.

(7)

The fitting procedure with the use of eq. (6) comprises
two fitting parameters: Δnst and Deff .

The fitting of two datasets related to different lasers
is performed independently, and it provides two station-
ary values: Δnst

670 nm and Δnst
935 nm. These variations in

the measured refractive indices allow the variation in con-
centrations to be determined through solving a system of
linear equations

(
Δnst

1

Δnst
2

)
=

⎡

⎢⎢⎢⎣

(
∂n1

∂C1

) (
∂n1

∂C2

)

(
∂n2

∂C1

) (
∂n2

∂C2

)

⎤

⎥⎥⎥⎦

(
ΔCst

1

ΔCst
2

)
= [A]

(
ΔCst

1

ΔCst
2

)
.

(8)
The optical contrast factors (∂ni/∂Cj) composing ma-

trix [A] in eq. (8) were obtained from interpolating poly-
nomials eqs. (1)-(2) in [20] for wavelengths of 670 and
925 nm, and their values are given in table 1.

3.1.7 Six-parameter fit

A more general and correct approach is to consider the
full problem that takes into account the complete diffusion
matrix. In ternary mixtures, two concentration variations
independently contribute to the variation in the refractive
index:

n′
j(z, t) =

(
∂nj

∂C1

)

C2,λj

C ′
1(z, t) +

(
∂nj

∂C2

)

C1,λj

C ′
2(z, t),

(9)
where C ′

i(z, t) = Ci(z, t) − C0
i is the variation of the i-th

component with respect to its initial value C0
i and j indi-

cates the laser.
To fit the experimental n′(z, t) profiles to eq. (9), an

analytical solution is needed for both concentrations. By
using the diffusion matrix diagonalization method [21], the
solution can be written as

(
C ′

1(z, t)

C ′
2(z, t)

)
= [B] ·

[
f1 0

0 f2

]
· [B]−1 ·

(
ΔCst

1

ΔCst
2

)
, (10)

where the modal matrix [B] is defined as

[B] =
[

1 1
v1 v2

]
=

⎡

⎢⎣

1 1

D̂1 − D11

D12

D̂2 − D11

D12

⎤

⎥⎦ . (11)

Here, Dij are the elements of a diffusion matrix; D̂i are
the eigenvalues of a diffusion matrix; v1 and v2 are the
eigenvectors; and the functions fi = f(z, t, D̂i) are the
same as those given by eq. (7).

Then, the solution for the concentration profiles ob-
tained by eqs. (10)–(11) and the function from eq. (7)
are substituted into eq. (9) and fitted to the experimen-
tal data. In this case, there are six parameters to fit: two
eigenvalues, D̂1 and D̂2, two eigenvectors, v1 and v2, and
two stationary concentration separations, ΔCst

1 and ΔCst
2 .

The problem of initial time t0 is equally valid for this
data extraction approach, although in this case, the ac-
counting for the initial time is generally more correct be-
cause both kinetics are properly defined by two eigenval-
ues. The Nelder-Mead and Levengergh-Marquardt fitting
techniques are used. The latter was tested with both nu-
merically calculated and analytically expressed Jacobian
matrices.

3.1.8 Uncertainty caused by non-linear temperature field

The temperature field in the cell is spatially non-linear,
and it causes the non-linearity of the refractive index dis-
tribution, as shown in figs. 3, 4. Consequently, a concen-
tration field obtained via the refractive index variation
exhibits similar non-linearity. Optical integration of such
a deformed field leads to an underestimated value of the
Soret separation ΔCi between differently heated walls [7].

An important starting point for the determination of
the correct profile from the disturbed picture is to ap-
ply tomography reconstruction of the 3-D concentration
field in the whole cell. Of course, one view provided by
the interferometer is not sufficient for such a reconstruc-
tion. A second view of the cell, identical to the basic one
(see fig. 6(a)), can be assumed keeping in mind the square
symmetry of the cell. Two views are sufficient for robust
reconstruction following the algebraic algorithm suggested
in [22]. A target of the reconstruction is just one vertical
line, located in the cell center (dashed red line in fig. 6(a)).
On that line, both the temperature and concentration pro-
files are less perturbed by disturbances originating from
the cell corners and are expected to be closest to linear.

The algorithm of the reconstruction is as follows: from
the 2-D map, we select the i-th row of pixels/points with n

values of refractive index, from n
(1)
i,1 to n

(1)
i,n; see fig. 6(b).

Here, the superscript (1) means that these values relate
to the 1st view. The same i-th row of pixels from the
second view (superscript (2)) also participates in the re-
construction. The reconstruction proceeds in a row-by-row
manner.

Processing begins from an initial guess that assigns
some average value to all 3-D cells nikl whose values are
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Fig. 6. Schematic representation of the tomography recon-
struction concept (a) and illustration of the algorithm proce-
dure (b).

the target of the reconstruction. Then, all values of cells
from ni11 to ni1n are proportionally corrected in such a
way to obtain an integral (arithmetic average) of them
equal to a pixel value of n

(1)
i,1 . The same procedure is ap-

plied to all rows until the end, which corresponds to pixel
n

(1)
i,n. Afterwards, the values of the 3-D cells allow the first

view to be perfectly reconstructed, although the second
view will appear out of range after this procedure.

Logically, the same procedure is applied for the second
view; in particular, all values of cells from ni11 to nin1 are
proportionally corrected in such a way to obtain the inte-
gral of them equal to a pixel value of n

(2)
i,1 . The procedure

is repeated until the row corresponding to the last pixel
n

(2)
i,n. Such processing with alternating views is repeated in

a loop until convergence to a given tolerance of the values
of 3-D cells is reached.

This procedure allows the refractive index profile along
the cell center to be restored with reduced impact from the
grooves at the lateral walls and deformations at the cor-
ners. However, it reveals the influence of the compensation
volume in a most pronounced manner.

3.1.9 Uncertainty caused by compensation volume

Careful examination of the refractive index profiles reveals
slight non-symmetry between the top and bottom parts.
The wrapped phase map in fig. 3 presents clear evidence

Fig. 7. Wrapped phase map obtained at the end of the Soret
phase in the ground set-up.

of the fringe perturbations at the middle of the top plate
caused by the presence of a compensation volume. The
reconstructed 3-D distribution exhibits the same feature
(fig. 9).

The simplest (but, it appears, most exact) approach
to remove this concern is to limit the fitting area only to
the bottom half of the cell, to 0 ≤ z ≤ H/2.

3.2 Extraction of the Soret coefficients in the ground
ODI set-up

Because SODI and ground ODI instruments are based on
the same principle, most of the data analysis steps are
equivalent. Thus, in this section, we will only point out
the differences between them.

A peculiarity of the ground interferometer is that it is
aligned for obtaining narrow fringe patterns, and it uti-
lizes the 2-D Fourier transform technique to extract opti-
cal phase information from interferograms (see a detailed
description of the technique in [12]). In this case, all spatial
information is obtained instantly from a single snapshot,
and therefore, the result is not sensitive to how fast the
variation in the refractive index is inside the cell.

The correct choice of a reference phase image is equally
important for the laboratory set-up and for its on-board
analogue. In the laboratory set-up, the initial time value is
different and is typically equal to t0 = 400–600 s, although
the approach for finding this time is exactly the same as
that discussed in sect. 3.1.3. The large difference in the
initial time t0 between the two experiments can partly
be attributed to the different thermal characteristic times
of the cells. Because the height of the cells is different
(6.06mm versus 5mm), τ lab

th is approximately 1.5 times
larger than τ ISS

th . However, it does not explain the complete
difference that is, mostly, attributed to various response
times of the thermal regulation system.

The important difference between the two instruments
is the design of the experimental cell. The cell of the
ground set-up has passed a long chain of improvements
(see, e.g. [15]), and as a result, the thermal and concen-
tration fields in the cell are not disturbed by lateral walls.
The distribution of refractive indices associated with the
concentration field has a perfect 1-dimensional character,
as shown in fig. 7; subsequently, the analysis of the ground
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results does not require the steps discussed in sects. 3.1.8,
3.1.9 (tomography reconstruction and consideration of the
parasitic mass flux from compensation volume).

3.3 Measurement of diffusion coefficients by the
Taylor Dispersion Technique (TDT)

To characterize the diffusion matrix using the Taylor Dis-
persion Technique (see a description of the instrument
in [13]), small injections of three different concentrations
into the laminar flow of a carrier solution inside a thin
long capillary were performed. The concentration of the
diffusing injected samples as a function of time was mon-
itored at the end of the capillary using a high-sensitivity
differential refractometer. The recorded curve is very close
to a Gaussian function in the case of binary solutions. The
width of the peak is defined by a diffusion coefficient, and
for a binary solution, it is determined even by a single
experiment.

In the case of a ternary solution, two Gaussian func-
tions are mixed together. They may have very different
amplitudes and peak widths (defined by eigenvalues of the
diffusion matrix), sometimes forming very complex signal
shapes. A set of experiments with injections of different
concentrations is required to obtain reliable results. In the
particular case when the eigenvalues are similar in mag-
nitude, resolving them by fitting an experimental signal
becomes very challenging.

Important steps of data processing also include prepar-
ing the signals to fit (baseline subtraction) and estimating
the so-called sensitivity ratio, which is the ratio of the
detector’s sensitivities to changes in two independent con-
centrations. Details on these steps, as well as formulations
for the analytical model of signals for the case of ternary
mixtures, are given in [23].

4 Results

4.1 Soret coefficients from microgravity experiment

In this section, we present the results from the analysis of
the microgravity experiment. As we have noted, the com-
plete procedure consists of several steps and implements
some data corrections. To illustrate the relative impor-
tance of different processing steps/corrections, all the re-
sults, including intermediate ones, will be presented in one
table (table 2).

First, we analyzed refractive index variations obtained
using the steps described in sects. 3.1.2–3.1.4. The results,
obtained without accounting for the initial time and with-
out any additional corrections, are listed in the very first
row of table 2, and they form the starting point for further
processing.

4.1.1 Two-parameter fit

The objective of this step is to find the true steady-state
from the time-dependent behavior taking into account the

Table 2. Separations as measured by refractive index.
DCMIX-1 experiment, cell 3, run #18.

Processing stage Δnst
670 nm, Δnst

935 nm, gain

10−4 10−4

(1) Separation visible from −10.704 −10.489 –

raw profiles

(2) Separation obtained −12.196 −11.868 12-13%

by fitting profiles in

transient with counting t0

(3) Separation obtained −13.217 −12.851 8%

by fitting tomographically

reconstructed profiles

in transient

(4) Separation from fitting −13.485 −13.095 2%

bottom half of reconstructed

profiles in transient

separation lost at the initial time t < t0. Raw profiles of
the refractive index (obtained in sect. 3.1.4) were sub-
jected to a two-parameter fit to extract stationary refrac-
tive index variations (as described in sects. 3.1.5–3.1.6).

We found that the initial time t∗0 used for fitting can-
not be exactly equal to the time difference between the
moment of switching the temperature difference on and
the reference image #36. In theory, at the time t = 0, the
temperature difference instantly jumps from zero to 10K.
In practice, at this moment, the temperature difference
only began to increase with a finite rate. This is why the
correct initial time should be t∗0 < t0, which is indicated
in sect. 3.1.3. To make the approach more reasonable, the
zero time was shifted from the moment of imposing ΔT
to the moment when the temperature difference recorded
by the sensors reached ΔT/2. Analysis of the temperature
records reveals that it occurs at t ≈ 18 s. Thus, the ini-
tial time used for calculation of the objective function was
t∗0 = t0 − 18 s = 193 − 18 = 175 s.

Figure 8 presents vertical profiles of the refractive in-
dex, both experimental and calculated according to the
best fit, obtained after this processing step. Data points
closest to the horizontal walls (2% of the diffusion path H
on each side) were excluded from the fit to reduce noise
from diffraction.

The resulting values of Δnst
i are given in the second

row of table 2. Note that the effective diffusion coefficient
obtained by the fit was the same for both lasers,

Deff = 5.74 · 10−10 m2/s.

As shown in table 2, consideration of the initial time t0
allows a gain of 13% for Δnst

i , and as such, it has to be
included as a necessary step in any data analysis.
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Fig. 8. Experimental (blue) and analytical (red) refractive
index profiles at different time instants of the experiment after
a quasi-binary two-parameter fit. Time is normalized by the
diffusion time τD = H2/(π2Deff).

Then, ΔCst
i can be determined by solving a system

of equations (8) with the contrast factors from table 1.
Using the measured refractive index differences Δnst

i , the
solution provides the required concentration separations
ΔCst

i (in mass fraction):

ΔCst
THN = −1.381 · 10−2, ΔCst

IBB = 0.848 · 10−2.

4.1.2 Six-parameter fit

This fit is performed simultaneously with data from both
lasers being aimed to simultaneously extract six indepen-
dent parameters, as described in sect. 3.1.7. Contrast fac-
tors, the same as in the previous step, are the constant
parameters given in table 1.

To investigate the robustness of the fit, the set of initial
guesses were tested with different but physically meaning-
ful values. The results of the fitting runs were somewhat
scattered and can be summarized as follows. Eigenvalues
are the most robust group of parameters; they always con-
verged to the same values

D̂1 = 6.81 · 10−10 and D̂2 = 0.75 · 10−10 m2/s.

Next, less robust are the concentration separations; al-
though varying, they always remained within the limits

ΔCst
THN = (−1.5 ± 0.15) · 10−2,

ΔCst
IBB = (0.8 ± 0.2) · 10−2.

Finally, components of eigenvectors vi exhibited non-sys-
tematic scattering.

Notably, substituting essentially scattered values of
ΔCst

i in eq. (9) provides values Δnst
i that are consistent

with those provided by the two-parameter fit, although
they are slightly overestimated. The reason for this over-
estimation is attributed to the small value of the second

Fig. 9. Refractive index field at the end of the Soret step
reconstructed by the tomography.

eigenvalue defined by the multi-parameter fit. Due to the
presence of the unrealistically slow second kinetics, the
analytical solution would reach a true steady-state 10–15
times later than in the real experiment and would provide
a greater value. Because such small eigenvalues should be
considered as a mathematical phantom rather than as a
real physical property of the system, this overestimation
is non-physical.

We can conclude that the six-parameter fit cannot be
considered reliable because of the large number of un-
knowns and the high sensitivity to the imperfection of
the experimental data. However, this fit confirms quite
well the results of the steady separation obtained by the
quasi-binary fit. Thus, in further analyses, we will use only
the two-parameter quasi-binary fit because it is consider-
ably more robust, less computationally demanding and
confirmed to be accurate.

4.1.3 Result of tomography reconstruction

Here, the tomography reconstruction of the refractive in-
dex distribution inside the mixture is applied as described
in sect. 3.1.8. To perform the reconstruction of all avail-
able 2-D maps in a reasonable amount of time, we rescaled
these maps from 1530× 765 points to 201× 101 points by
linear interpolation. This change of the scale keeps a rea-
sonable compromise between computation cost and data
resolution.

The result of the tomography reconstruction at the end
of the Soret step is shown in fig. 9 with spacing between
iso-surfaces Δn = 2.75 · 10−4. Strong 3-D deformation of
the field is clearly visible: bending of iso-surfaces at the
corners reflects nonlinearity of the thermal field, and a
circular hole in the center of the top iso-surface (blue)
shows the effect of the compensation volume.

A refractive index profile taken from these 3-D distri-
butions exhibits deviation from the original profile taken
from the 2-D map, as shown in fig. 10. As expected, the re-
fractive index variation over the height of the cell is larger
in the reconstructed profile. All reconstructed profiles were
subjected to the two-parameter fit. The steady refractive
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Fig. 10. Comparison of refractive index profiles obtained from
integrated 2-D refractive index map (blue dots) and from 3-D
distribution along the centerline of the cell (red circles).
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Fig. 11. Experimental and analytical refractive index profiles
at different time instants of the experiment after a quasi-binary
two-parameter fit in the bottom part of the cell.

index differences Δnst
i after this correction are given in

row (3) of table 2. The increase in separation achieved at
this step is 8%.

4.1.4 Correction attributed to compensation volume

Tomography reconstruction allows the missing separation
due to disturbances from lateral walls and corners to be
retrieved. At the same time, however, this profile is mostly
exposed to the influence of the compensation volume,
whose channel is located in the center of the top plate.

The effect from this channel is mostly localized in the
upper half of the cell, close to the channel position. There-
fore, a logical solution is to cut and crop out the top part
of the profile. The fit is performed with the residual part
of all the profiles, i.e., within 0 ≤ z ≤ H/2.

Fig. 12. Computed temperature field in the geometry of the
experimental cell. White spots indicate the positions of the
sensors.

The qualitative results of the fit after cropping are
shown in fig. 11, and the quantitative results are given in
the fourth row of table 2. Compared with previous steps,
the gain achieved here is not large, approximately 2%.
However, considering the poor conditioning of the matrix
of contrast factors, even a tiny error in measured Δn can
produce a large shift of the solution for concentration sep-
arations. This is why if correction is possible, it has to be
implemented.

Finally, note that the last values of Δnst
i given in row

(4) of table 2 will be used for calculating the Soret coeffi-
cients.

4.1.5 Correction of temperature difference

Another issue that may slightly affect the values of the
Soret coefficients is the temperature difference used for
the calculation of these coefficients. In reality, the tem-
perature difference, which is assumed to be between the
working surfaces of the copper blocks, corresponds to the
temperature difference between the positions of the sen-
sors inside these blocks. The actual position of the sensor
is at least a few millimeters out of the working surface of
the block, and this may introduce a certain misfit between
ΔT displayed by the sensors and the actual temperature
difference that drives Soret separation.

To estimate the effect of the position of the sensors
on the temperature difference, 2-D stationary heat trans-
fer calculations were conducted using the Comsol Multi-
physics package with the correct cell geometry, material
properties and realistic boundary conditions.

The computed temperature field is presented in fig. 12.
Constant temperature boundary conditions for the outer
limits of the copper blocks were adjusted in such a way
to have the exact values given by the sensors indicated by
white spots in the figure.

While the calculated temperatures at the locations of
the sensors perfectly reproduce the values provided by
the measurements, the temperature difference between the
working surfaces of the plates does not provide the same
value. The temperature slightly changes over the surface,
but on average, the temperature difference between sen-
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Table 3. Results of ground experiments, ΔT = 5.994.

run λ Δnst · 104 −Δnst

ΔT
· 104 Deff · 1010

(#) (nm) (K−1) (m2/s)

1 670 −8.3763 1.3974 5.65

2 670 −8.3664 1.3958 5.72

3 670 −8.3473 1.3926 5.69

−8.3633 1.3953

±0.0147 ±0.0025

4 925 −8.0441 1.3420 5.63

5 925 −8.0726 1.3468 5.67

6 925 −8.0502 1.3430 5.63

−8.0557 1.3440

±0.0150 ±0.0025

sors ΔTsensor = 10.0K corresponds to ΔT = 9.95K be-
tween the surfaces of the plates. This reduced temper-
ature difference will be used for calculating the Soret
coefficients.

4.1.6 Soret coefficients

By solving a system of linear equations (8) with the matrix
of optical contrast factors [A] with elements from table 1
and the measured refractive index differences Δnst

i from
the last row of table 2, we obtain the required concentra-
tion separations ΔCst

i (in mass fraction):

ΔCst
THN = −1.419 · 10−2, ΔCst

IBB = 0.763 · 10−2.

After dividing by ΔT = 9.95K, these separations pro-
vide the desired Soret coefficients

S′
T,1(THN) = 1.426 · 10−3,

S′
T,2(IBB) = −0.767 · 10−3 K−1.

The value of Soret coefficient for third component can
also be found due to the mass conservation that requires
vanishing of the sum of Soret coefficients for all three com-
ponents

S′
T,3(nC12) = −0.659 · 10−3 K−1.

4.2 Soret coefficients from the ground experiment

Data from ground experiments were processed using the
procedure discussed in sects. 3.1.2–3.1.4 to obtain normal-
ized refractive index profiles, and then, two-parameter fits
were used to obtain steady refractive index differences, as
described in sects. 3.1.5–3.1.6. The results from all the
experiments are summarized in table 3.

Because the experiment was repeated several times, we
were able to determine the standard deviation for these re-
fractive index differences. This error will allow us to esti-
mate the overall precision of the derived Soret coefficients.

Table 4. Comparison of normalized refractive index differ-
ences obtained in microgravity (without and with all correc-
tions) and in ground experiments.

Experiment −Δnst
1

ΔT
· 104 (K−1) −Δnst

2
ΔT

· 104 (K−1)

Microgravity, 1.226 1.193

row (2) of table 2

Microgravity, 1.355 1.316

row (4) of table 2

Ground 1.3953 1.3440

±0.0025 ±0.0025

Remarkably, the repeatability of the measured Δnst
i is ex-

cellent, exhibiting a dispersion of only 0.2%. The actual
temperature difference in the ground experiments was also
verified by calculating the heat transfer in the actual ge-
ometry of the cell, and it was ΔT = 5.994K.

Direct comparison of Δnst observed in the experiments
with different ΔT (as in the case with the experiments
performed in the SODI and in the ground ODI) is not
possible. It is convenient to introduce the variation of the
refractive index per 1K of temperature difference, so we
introduce the parameter −Δnst

i /ΔT .
A comparison of space and ground results by this nor-

malized parameter is given in table 4. In the case when
tomography reconstruction and correction for the compen-
sation volume are not implemented (first row in table 4),
the microgravity results deviate from the terrestrial ones.
Analysis of the microgravity results with all the neces-
sary corrections (second row in table 4) provides much
better agreement between these two experiments. Note
that the agreement between the effective diffusion coeffi-
cients found in terrestrial and microgravity experiments
was good.

The Soret coefficients can be determined from the
steady-state measurements and the matrix of contrast fac-
tors according to the equations

(
S′

T,1

S′
T,2

)
= − 1

ΔT
[A]−1

(
Δnst

1

Δnst
2

)
. (12)

The calculated Soret coefficients for ground experiments
from the data presented in table 3 are as follows:

S′
T,1(THN) = 1.035 · 10−3,

S′
T,2(IBB) = −0.093 · 10−3 K−1,

and for the third component

S′
T,3(nC12) = −0.942 · 10−3 K−1.

4.3 Error estimation

Error estimation for Soret coefficients in ternary mixtures
from optical measurements has a certain peculiarity. It can
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Fig. 13. Summary of the Soret coefficients measured in mi-
crogravity and ground instruments.

be examined by dividing the data analysis into two steps:
the measurement step and the calculation step. During
the measurement step, after several repetitions of the ex-
periment, the mean values of Δn1, Δn2 and their stan-
dard deviations σΔn1 , σΔn1 can be evaluated. In the first
approximation, these two standard deviations can be con-
sidered as independent from each other. They are rather
small; our results with ground experiments show that for
steady state σΔnst

i
≈ 0.015 · 10−4.

At the calculation step, the measured quantities have
to be recalculated into the desired coefficients. The Soret
coefficients ST,i (and their errors) can be determined from
the steady-state measurements as follows:

(
S′

T,1 ± σS′
T,1

S′
T,2 ± σS′

T,2

)
= − 1

ΔT
[A]−1

(
Δnst

1 ± σΔn1

Δnst
2 ± σΔn2

)
, (13)

where the values Δnst
i correspond to the average values

over a series of experimental runs. Here, we do not consider
the error related to the measurements of the elements of
matrix [A].

The magnitude of the error of ST,i will appear as the
value of the error of Δnst

i magnified by the condition num-
ber of matrix [A], which is large, K = 241. Solving the
system of eqs. (13), we obtain the coordinates of the four
points, limiting the area where the solution can be found.
This area, forming a type of elongated parallelogram, is
the error bar that bounds the possible solutions. The pe-
culiar feature of this parallelogram is that one diagonal
is much smaller than other one, and practically, it trans-
forms into the line shown in fig. 13. The distinction of
this error bar is that it relates to the solution of eqs. (13),
i.e., to the couple (ST,1, ST,2) but not to their individual
values.

The orientation of the error bar is primarily defined
by the matrix of the optical contrast factors; therefore,
all results obtained with the same matrix should have an

Table 5. Concentration of solutions used for Taylor dispersion
measurements, in mass fractions.

Solution CTHN CIBB no. of runs

Carrier 0.79975 0.10023 –

Inj. 1 0.76010 0.14007 4

Inj. 2 0.76051 0.09980 3

Inj. 3 0.79996 0.14019 4
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Fig. 14. Graphical representation of carrier and injected liq-
uids in a space of independent concentrations.

error bar with the same orientation. This orientation can
be represented mathematically as an equation of a line
passing through two extremities of the error bar:

S′
T,1 = 0.972 · 10−3 − 0.616 · S′

T,2 K−1.

This statement is also valid for measurements per-
formed by the SODI instrument and presented in
sect. 4.1.6. All the results obtained in microgravity and in
ground laboratory are summarized in fig. 13. The magni-
tude of the error bar for the microgravity experiment can
not be estimated from a single experimental run, but we
may assume similarity of span of error bar relying on simi-
larity of both experiments. This supposed error bar is plot-
ted in fig. 13 by dashed red line. From the figure it follows
that error bars of both ground and microgravity experi-
ments do intersect, thus proving agreement of the results.

Figure 13 shows also that the only results of the mi-
crogravity experiment with all corrections agree with the
ground experiment, whereas the results of processing with
minimal correction are shifted out.

4.4 Diffusion coefficients from TDT

Ternary dispersion profiles are generated by injecting
small samples of a mixture containing components 1
(THN) and 2 (IBB) with mass fractions (C0

1 ± δC1) and
(C0

2 ± δC2) into the carrier liquid of composition C0
1 and
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Fig. 15. Examples of peaks corresponding to different injected
solutions.

C0
2 . For the benchmark mixture, 11 successive runs with

injections of three different solutions, close but distinct
from the carrier one, were performed to measure the dif-
fusion coefficients. A list of injected solutions is given in
table 5, and they are graphically represented in fig. 14.
Ternary dispersion profiles (peaks) corresponding to these
injections are presented in fig. 15.

The diffusion matrix obtained by simultaneous fitting
of all Taylor dispersion runs is as follows:

D =
[

6.61 −0.59
−1.55 5.98

]
· 10−10 m2/s, (14)

with eigenvalues of

D̂1 = 5.29 · 10−10 and D̂2 = 7.30 · 10−10 m2/s.

An important fact in support of the previous examina-
tion of the two-parameter fit is that the two eigenvalues
are rather close. Furthermore, one of the eigenvalues is
close to the effective diffusion coefficient as well as to one
of the eigenvalues obtained in the Soret experiments.

Several repetitions of each injection allow us to esti-
mate error bars for the diffusion coefficients. For this pur-
pose, we fit not all 11 runs but different combinations
of 3 runs, each corresponding to a particular injection.
Forty-eight different combinations of this type are possi-
ble among the list of runs given in table 5. It allows us
to make a statistical estimation of the dispersion of the
coefficients.

The standard deviations of all individual diffusion co-
efficients and eigenvalues are calculated as

σDij
=

[
σD11 σD12

σD21 σD22

]
=

[
1.5 91
6.5 7.3

]
%

and

σD̂i
=

(
σD̂1

σD̂2

)
=

(
1.7
3.5

)
%.

As expected, the dispersion is largest for cross-diagonal
elements and smallest for eigenvalues of the diffusion ma-
trix.

4.5 Thermodiffusion coefficients

Because the Soret and diffusion coefficients were indepen-
dently measured, we can also estimate the thermodiffu-
sion coefficients. These coefficients can be determined us-
ing equation

(
D′

T,1

D′
T,2

)
= [D] ·

(
S′

T,1

S′
T,2

)
, (15)

for both the microgravity experiment

D′
T,1(THN) = 0.988 · 10−12 m2/(s · K),

D′
T,2(IBB) = −0.680 · 10−12 m2/(s · K),

D′
T,3(nC12) = −0.308 · 10−12 m2/(s · K),

and for the ground experiment

D′
T,1(THN) = 0.690 · 10−12 m2/(s · K),

D′
T,2(IBB) = −0.215 · 10−12 m2/(s · K),

D′
T,3(nC12) = −0.475 · 10−12 m2/(s · K).

5 Conclusions

We have determined the Soret (ST ) coefficients in the
ternary mixture of 0.80/0.10/0.10 of THN-IBB-nC12 using
raw data of run #18 of the DCMIX-1 microgravity experi-
ment and using data obtained in a ground laboratory. The
results exhibit reasonable quantitative agreement between
the ground and microgravity experiments in the limits of
the error bar.

S′Earth
T,1 (THN) = 1.035 · 10−3 K−1,

S′Earth
T,2 (IBB) = −0.093 · 10−3 K−1,

S′Earth
T,3 (nC12) = −0.942 · 10−3 K−1,

S′ISS
T,1 (THN) = 1.426 · 10−3 K−1,

S′ISS
T,2 (IBB) = −0.767 · 10−3 K−1,

S′ISS
T,3 (nC12) = −0.659 · 10−3 K−1.

Besides the measured magnitude of the Soret coefficients
we have proposed a way of estimating errors of the mea-
surement and have discussed a specific feature of the er-
rors. The diffusion (D) coefficients were measured on the
ground using the Taylor Dispersion Technique, and the
thermodiffusion (DT ) coefficients were calculated for the
ground and microgravity experiments.

All the steps required to extract the transport coeffi-
cients from the raw data obtained in the SODI on board
the ISS, as well as from the laboratory set-up, are dis-
cussed in detail.

In addition to the standard procedure, which includes
extraction of the wrapped phase, phase unwrapping, sub-
traction of the reference phase image and transformation
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of the phase map into the refractive index, some additional
issues specific to the thermodiffusion experiment are dis-
cussed.

These issues consist of examining the neglected sep-
aration at the initial time interval (before the reference
image), the under-evaluated separation due to spatial non-
linearity of the temperature field, and the mass exchange
between working liquid volume and expansion volume.
Two last corrections are specific to the microgravity cell
design and are recommended to be used in the analysis
of any DCMIX experiment because they allow approxi-
mately 10% of the component separation to be retrieved,
which would otherwise be lost.

A thorough analysis of the results of the six-parameter
fit indicated that it is not possible to extract the diffusion
matrix and the thermal diffusion coefficients with a de-
sirable accuracy from data obtained using the ODI tech-
nique. However, we have demonstrated the efficiency of
the two-parameter fit for accurate reconstruction of the
variation of the refractive index, from which concentra-
tion separations are obtained by solving a system of linear
equations. The validity of this approach was confirmed by
the fact that both eigenvalues obtained during the course
of the diffusion experiment (Taylor Dispersion Technique)
are similar for the considered mixture.

The authors would like to acknowledge the PRODEX pro-
gramme of the Belgian Federal Science Policy Office. This
work has been developed in the framework of the cooperative
project DCMIX (AO-2009-0858/1056) of the European Space
Agency and the Russian Space Agency (Roscosmos). The au-
thors would also like to acknowledge an anonymous referee
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